22
Turbo and Jet Engine Laboratory Technion Israel 8 th Symposium on Jet Engines and Gas Turbines יום העיון השמיני במנועי סילון וטורבינות גזwww. jet-engine-lab.technion.ac.il INCREASING OF OPERATIONAL STABILITY IN LOW NO X GT COMBUSTORS BY RADICALS INJECTION Y. Levy, A. Gany, Y. Goldman V.Erenburg, V. Sherbaum, V. Ovcharenko, L. Rosentsvit Faculty of Aerospace Engineering, Technion, Israel Institute of Technology B. Chudnovsky, A.Herszage, A. Talanker, Israel Electric Company 1

INCREASING OF OPERATIONAL STABILITY IN LOW NOX GT

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

INCREASING OF OPERATIONAL

STABILITY IN LOW NOX GT COMBUSTORS

BY RADICALS INJECTION

Y. Levy, A. Gany, Y. Goldman V.Erenburg,

V. Sherbaum, V. Ovcharenko, L. RosentsvitFaculty of Aerospace Engineering, Technion, Israel Institute of Technology

B. Chudnovsky, A.Herszage, A. Talanker,Israel Electric Company

1

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

•Necessity of NOx reduction in GT stimulates research for newcombustion methods.

• Lean combustion is a combustion method where low combustiontemperatures is used. It enables to lower NOx formation.

•Lowering temperature reduces the reaction rate of the hydrocarbon–oxygen reactions and the associated heat release. This deterioratescombustion stability.

• Combustion instability may cause severe damage to turbine.

2 Advantages and disadvantages of Lean Premixed combustion

GENERAL DESCRIPTION OF THE PROBLEM

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

•The objective: To investigate the possibility to enhance the combustion stability limit for lean premixed operation mode by injection of radicals.

•How did we try to achieve this objective?

Objective of the work3

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

Methodology • The study is based on the assumption that there is a correlation between the starting point of unstable operation and lean blow out of the premixed

fuel and air flame. Such correlation was observed in earlier studies.

4

(According to: Schefer R.W., Wichsall D.M., Agrawal A.K., 2002)

Flame stability and lean blowout limits of hydrogen-enriched methane

(a) air-methane, (b) H2 added

Stable operationfield

Blow out

Blow out

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

5

• We assumed that if we will be able to decrease the lower limit ofthe blow out temperature, the lower limit of temperature, whichleads to instability, will reduced.

• The effect of radicals on combustion stability was studied.

• Radicals were produced through combustion of rich fuel-airmixture inside a pilot combustor as source of radicals.

• Tests were carried out under atmospheric pressure.

Methodology (cont.)

Methodology (cont.)

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

•CFD simulations were performed to obtain : •1) a detailed description of the combustion process; •2) test combustor design;•3) for the CHEMKIN simulations.

•The CHEMKIN simulations were carried out for conditions as in industrial GT combustor.

Methodology (cont.)

6

Methodology (cont.)

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

Concept of industrial gas turbine combustor

Combustor with radicals injection (schematic)

SPARK

MAIN AIR

MAIN GAS

PILOT GAS O /AIR FLAME

RETAINING PORT2

Experimental burner unit. Turbine’s combustor with its 6 burners

7

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

8 Experimental set-up (schematic)

Air supply

Pressuregauge

Filter

Flowmeter

Combustor

Pilotcombustor

Igniter Oxygenvessel

Fuelvessel

Powersupply

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

9Combustor test unit

SPARK

MAIN AIR

MAIN GAS

PILOT GAS O /AIR FLAME

RETAINING PORT2

Cone angle and measurement probes position were

obtained from CFD simulation (described later)

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 Axial Distance[ cm ]

Temperature [0C]

0.9 0.45 0.6 0.7 0.5

Test ResultsTemperature evolution

•Pilot combustor: φ1=1.5, fuel fraction = 5% of main combustor.•For low global eq. ratio, φ0 , maximum temperature is achieved at downstream of the pilot combustor. •This means that lean mixture requires longer reaction time. •Typical lower limit in GT is 0.52 -0.55; present value = 0.45

TEMPERATURE AT COMBUSTOR AXIS VS. AXIAL DISTANCE

10

SPARK

MAIN AIR

MAIN GAS

PILOT GAS O /AIR FLAME

RETAINING PORT2

Eq. ratio φ definition:φ = FARact/ FARstoich

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

Temperature evolution along radius

. For low global φ0 , maximum temperature is achieved at intermediate radius, whereas for high φ0 it is closer to the combustor axis.

Temperature Across The Flame

800

900

1000

1100

1200

1300

1400

0 5 10 15 20 25 30 35 40 45 50

R [mm]

T [

C]

q=0.55 q=0.6 q=0.65

11

SPARK

MAIN AIR

MAIN GAS

PILOT GAS O /AIR FLAME

RETAINING PORT2

Test Results Temperature across the flame, 130 mm downstream of pilot burner exit

Measure-mentplane

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

Emission spectrum for a premixed hydrocarbon fuel.

The presence of radicals was recorded by spectrometer

12

Test Results

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

•The experimental study showed that using a pilot combustorwith high equivalence ratio can help to stabilize thecombustion process in the main combustor. This allows tooperate at reduced global temperatures. Thus, it presents apotential method to lower NOx.

13

Summary of experimental results

Test results (summary)

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

CFD simulation of Lean Premixed Combustor

SPARK

MAIN AIR

MAIN GAS

PILOT GAS O /AIR FLAME

RETAINING PORT2

Velocity and temperature distributions inside the combustor

Simulations were carried out for atmospheric pressure

Cone angle was chosen according to inner boundary of the recirculation zone for different values of φ0.

14

CFD Analysis

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

Contours of “burning out” across the combustor length. Blue-unburned region (0), Red – complete reaction field (1).

CFD simulation of Lean Premixed Combustor

15

SPARK

MAIN AIR

MAIN GAS

PILOT GAS O /AIR FLAME

RETAINING PORT2

Burning region

(0)

(1)

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

CHEMKIN simulations:Link between CFD and CHEMKIN

PSR –perfectly stirred reactor;A – air; F – fuel;Blue region – fresh fuel-air mixture;Red region – burning is completed(T ≥ 0.9 Tad). Burning out exists in Plug Reactor (also red region,T ≥ 0.98Tad)

16

(T ≥ 0.9 Tad) T ≥ 0.98Tad)

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

CHEMKIN simulations results(Atmospheric pressure)

CO evolution with time in a Plug Reactor

Simulation results of the “lean” combustion. Conditions:Tad=1472K; Φ0 (R1-R16)=0.4962; Tair=300K; Pair = 1atm = 20 ms

Reactor1

Reactor 16

Plug reactor

T,K 1360 1458 1466

CO, ppm 9299.0 666.0 0.8

17

SIMULATION RESULTS ARE IN SATISFACTORY AGREEMENT WITH EXPERIMENTS.

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

CHEMKIN simulations results

1400

1450

1500

1550

1600

1650

1700

0 2 4 6 8

Pilot combustor fuel, %

T, K

•Effect of fuel fraction of pilot combustor on the lower limit of temperature which provides stable combustion at Φ1 =1.5.

•Lower limit of global equivalence ratio, Φ0, reduces with increasing fuel fraction at the pilot combustor, hence combustion temperature decreases.

18

Effect of fuel fraction on combustion temperature (Elevated pressure)

•The same combustion model was used for elevated pressure.

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

0

1

2

3

4

0 2 4 6 8

Pilot combustor fuel, %

NO

x, p

pm

•Effect of fuel fraction at pilot combustor on NOx emission (for lower limit of temperature).

•There is an optimal fuel fraction at pilot combustor where NOx

achieve their minimum.

CHEMKIN simulations resultsElevated pressure

Optimal fuel fraction of pilot combustor for minimum NOx

emission (φ1=1.5, φ0=variable)

19

Elevated pressure

1400

1450

1500

1550

1600

1650

1700

0 2 4 6 8

Pilot combustor fuel, %

T, K

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

•It was found that radicals can help to stabilize the combustion process at lean equivalence ratios.

•Radicals’ injection allows operation at lower temperatures which reduces the NOx emission and pollution.

•The CHEMKIN model was built according to CFD simulations.

•Distribution of air and fuel flow rates between the PSR reactors and Plug reactor in the CHEMKIN model enables to describe and model the combustion process.

CONCLUSIONS

20

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

•CHEMKIN simulations confirm that the use of the pilot combustorwith high equivalence ratio creates better conditions for stablecombustion.

•These results are in satisfactory agreement with experimentaldata. They can serve as a base for lean premixed industrialcombustor simulation and design.

•Further investigations for reducing of the temperature limit ofstable combustion should include improvement of the combustionmodel by taking into account flow recirculation, heat losses, andpreliminary mixture heating within the combustor.

CONCLUSIONS (cont.)

21

Turbo and Jet

Engine Laboratory

Technion – Israel

8th Symposium on Jet

Engines and Gas

Turbines

יום העיון השמיני במנועי סילון

וטורבינות גז www. jet-engine-lab.technion.ac.il

THANK YOU FOR YOUR ATTENTION