143
Increased Traffic Loads on Swedish Highway Bridges A Case study of the bridge at highway interchange Värö Fredrik Forsberg Civil Engineering, masters level 2017 Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering

Increased Traffic Loads on Swedish Highway Bridgesltu.diva-portal.org/smash/get/diva2:1074665/FULLTEXT01.pdf · Increased Traffic Loads on Swedish Highway Bridges ... Concrete slab

Embed Size (px)

Citation preview

Increased Traffic Loads on Swedish

Highway Bridges

A Case study of the bridge at highway interchange Värö

Fredrik Forsberg

Civil Engineering, masters level

2017

Luleå University of Technology

Department of Civil, Environmental and Natural Resources Engineering

i

Preface

This Master Thesis, written for the consulting engineering group Ramböll at their bridge

department in Stockholm, is the final part of my Master of Science in Civil Engineering at Luleå

University of Technology. The thesis was initiated by Dr. Ali Farhang, head of the bridge

department at Ramböll Sweden, with the aim to investigate the effects of the planned traffic

load increase on Swedish road bridges.

I would like to thank Ali, along with his colleague Murtazah Khalil at the Ramböll bridge

department in Stockholm, who acted as supervisors during the work, for all the support they

provided throughout the Master Thesis work and for letting me perform my work at their

Stockholm office.

I would also like to thank my supervisor Professor Lennart Elfgren at the Division of Structural

Engineering at Luleå University of Technology for introducing me to the bridge subject as well

as all the support he offered me in the process of finalizing this Master thesis.

Stockholm, January 2017

Fredrik Forsberg

ii

Abstract

The Swedish government is planning to increase the maximum vehicle gross load regulations

on parts of the national roads from the present 60 t, for the load carrying capacity class BK1, to

74 t, for the proposed new load carrying capacity class BK4. The initial implementation of the

new load carrying capacity class for 74 t vehicles will only regard major highways and

important roads, however, at a later stage the plan is to implement the new BK4 class on the

full current BK1 road network. The biggest obstacle which arises when implementing these

increased traffic loads is insufficient load carrying capacity for the bridges on the road network.

Thus, the objective of this thesis is to examine and analyze the effects of the increased traffic

loads on Swedish road bridges. In order to identify the structural effects of the load increase,

and draw general conclusions regarding the effects on the bridge network as a whole, a case

study with load carrying capacity calculations is carried out on a two-span concrete slab fram

bridge at a highway interchange in Värö in western Sweden. The bridge is classified as critical

by Trafikverket. The load carrying capacity calculation is carried out using the Swedish

standards, in which maximum load values for the axle load, A, and the bogie load, B, are

calculated.

The load effects acting on the bridge are calculated using the finite element software

BRIGADE/Standard, with input traffic A and B loads amounting to 12 t and 21 t respectively

for the new BK4 class and to 12 t and 18 t respectively for class BK1. In addition to the load

carrying capacity calculations with BK4 traffic loads, a comparison is carried out between the

results obtained when using the axle- and bogie loads from the BK1 versus the BK4 load

carrying capacity class in the load carrying capacity calculations.

The load carrying capacity calculations performed on the studied bridge shows that the capacity

of the bridge, both in regards to moment and shear force, is insufficient to meet the new,

increased, BK4 A/B – requirements. The critical A/B – values for the whole bridge are 17 t and

18 t respectively, to be compared with the required 12- and 21 t limit for the new BK4 load

carrying capacity class, thus, making the load carrying capacity of the bridge inadequate. The

critical A/B – values appear for the longitudinal shear force load case at the point where the

shear force reinforcement over the column support ends. Moreover, the difference between the

results obtained when using the BK1 versus the BK4 traffic loads in the calculations were found

to be negligible.

Due to the differing properties and characteristics of each individual bridge on the Swedish

road network it is difficult to make general statements regarding the effects of the increased

traffic loads on the bridge network as a whole. Specific load carrying capacity calculations will

need to be performed on each individual bridge in order to evaluate its capability to withstand

iii

the new increased BK4 traffic load. However, capacity calculations regarding the BK1 load

carrying capacity class can, with sufficient accuracy, be used to evaluate the capability of a

bridge to withstand the increased traffic loads in the BK4 load carrying capacity class, thus,

making it easier to evaluate the strengthening needs for the bridge network as a whole.

Keywords: BRIGADE/Standard, Concrete slab frame bridge, FEM, Load carrying capacity

calculation, Load carrying capacity class

iv

Sammanfattning

Sveriges regering planerar en utökning av den maximalt tillåtna bruttovikten för fordon på delar

av det allmänna vägnätet från den nuvarande begränsningen på 60 t, för bärighetsklass BK1,

till 74 t, för den nya föreslagna bärighetsklassen BK4. I det första skedet kommer den nya

bärighetsklassen, för fordon med bruttovikt upp till 74 t, bara att implementeras på stora

motorvägar och andra ur transportsynpunkt viktiga vägar, men, i ett senare skede finns också

planer på att implementera den nya bärighetsklassen, BK4, på hela det nuvarande BK1

vägnätet. Det största problemet som förväntas uppkomma under införandet av de nya, ökade,

trafiklasterna är otillräcklig bärighet på vägnätets broar.

Således är målet med denna uppsats att undersöka och analysera effekterna av dessa ökade

trafiklaster för broar på det Svenska vägnätet. För att identifiera effekterna, och dra generella

slutsatser, gällande denna ökade trafiklast för broarna på det Svenska vägnätet i sin helhet

kommer en fallstudie med bärighetsberäkningar utföras på en plattrambro vid trafikplats Värö

- en bro som Trafikverket bedömer som kritisk. Bärighetsberäkningen utförs enligt svenska

standarder, där maximala tillåtna värden på axellasten, A, och bogielasten, B, beräknas.

Lasteffekterna som verkar på bron beräknas med hjälp finita element programvaran

BRIGADE/Standard med trafiklaster, A och B, som uppgår till 12 respektive 21 t för den nya

BK4 bärighetsklassen och 12 respektive 18 t för bärighetsklass BK1. Som tillägg till

bärighetsberäkningarna med BK4 laster utförs också en jämförelse av resultaten som

uppkommer när axel- och bogielasterna från BK1 respektive BK4 används i beräkningarna.

Bärighetsberäkningarna på den studerade bron visar att brons kapacitet, både gällande moment

och tvärkraft, är otillräcklig när den belastas med de ökade BK4 trafiklasterna. De kritiska A-

och B- värdena för bron är 17 respektive 18 t, värden som skall jämföras med kraven på 12

respektive 21 t för den nya bärighetsklassen BK4 – därmed är brons bärighet otillräcklig. De

kritiska A- och B-värdena för bron uppkommer för lastfallet med longitudinell tvärkraft vid

punkten där tvärkraftsarmeringen över mittstödet slutar verka. Jämförelsen mellan

beräkningsresultaten som uppkom med trafiklaster enligt BK1 respektive BK4 visade att

skillnaden mellan beräkningsresultaten var försumbar.

På grund av de varierande egenskaperna hos varje enskild bro på det Svenska vägnätet är det

svårt att dra generella slutsatser gällande effekterna av lastökningen för vägnätet som helhet.

Specifika bärighetsberäkningar måste utföras på varje individuell bro för att kunna utvärdera

dess kapacitet att klara av de nya, ökade, BK4 trafiklasterna. Emellertid kan

bärighetsberäkningar som beträffar bärighetsklassen BK1, med tillräcklig tillförlitlighet,

användas för att bedöma en bros möjlighet att motstå de ökade trafiklasterna i den nya

bärighetsklassen BK4, vilket förenklar utvärderingen av vilka broar som kräver förstärkning.

v

Nyckelord: BRIGADE/Standard, Bärighetsberäkningar, Plattrambro, FEM, Bärighetsklasser

vi

Table of Contents

1 INTRODUCTION ........................................................................................................................................ 1

1.1 BACKGROUND ............................................................................................................................................ 1

1.2 GOAL AND OBJECTIVES .............................................................................................................................. 2

1.3 LIMITATIONS .............................................................................................................................................. 2

1.4 DISPOSITION ............................................................................................................................................... 3

2 METHODOLOGY ....................................................................................................................................... 5

2.1 LITERATURE REVIEW .................................................................................................................................. 5

2.2 CASE STUDY ............................................................................................................................................... 5

2.3 VALIDITY, RELIABILITY AND GENERALIZATION ......................................................................................... 6

3 LITERATURE REVIEW ............................................................................................................................ 7

3.1 LOAD CARRYING CAPACITY CLASSES ......................................................................................................... 7

3.2 ACTIONS ON BRIDGES ................................................................................................................................. 8

3.2.1 Permanent actions ....................................................................................................................................................... 9

3.2.2 Variable actions ............................................................................................................................................................ 9

3.2.3 Load combinations ................................................................................................................................................... 11

3.3 FEM ......................................................................................................................................................... 12

3.3.1 Modeling orthotropic slabs using FEM ............................................................................................................. 14

3.3.2 FEM result sections ................................................................................................................................................... 16

3.3.3 BRIGADE/Standard .................................................................................................................................................. 17

3.4 BRIDGE LOAD CARRYING CAPACITY CALCULATIONS ................................................................................ 20

3.4.1 General approach ...................................................................................................................................................... 20

3.4.2 Condition assessment ............................................................................................................................................... 21

3.5 LOAD CARRYING CAPACITY CALCULATIONS ACCORDING TO SWEDISH CODES ......................................... 22

3.6 CONCRETE SLAB FRAME BRIDGE ............................................................................................................. 25

4 CASE STUDY – BRIDGE AT HIGHWAY INTERCHANGE VÄRÖ ................................................. 27

4.1 BRIDGE AT HIGHWAY INTERCHANGE VÄRÖ ............................................................................................. 27

4.2 SYSTEM DRAWINGS AND CALCULATION ASSUMPTIONS ............................................................................ 29

4.3 MATERIAL PARAMETERS .......................................................................................................................... 29

4.4 REINFORCEMENT ...................................................................................................................................... 31

5 BRIGADE/STANDARD MODEL ............................................................................................................ 34

5.1 GEOMETRY AND BOUNDARY CONDITIONS ................................................................................................ 34

5.2 MESH GENERATION AND CONVERGENCE STUDY....................................................................................... 34

5.3 MATERIAL MODEL .................................................................................................................................... 36

5.4 ACTIONS .................................................................................................................................................. 37

5.4.1 Self-weight ................................................................................................................................................................... 38

5.4.2 Pavement ...................................................................................................................................................................... 38

5.4.3 Earth pressure ............................................................................................................................................................ 38

5.4.4 Surcharge ..................................................................................................................................................................... 38

5.4.5 Traffic load ................................................................................................................................................................... 39

5.4.6 Dynamic contribution factor ................................................................................................................................ 40

5.4.7 Braking force............................................................................................................................................................... 40

5.4.8 Load combinations ................................................................................................................................................... 41

5.5 RESULT SECTIONS .................................................................................................................................... 41

5.6 RESULT VERIFICATION ............................................................................................................................. 42

vii

6 RESISTANCE CALCULATIONS ........................................................................................................... 46

6.1 MOMENT RESISTANCE CALCULATION ...................................................................................................... 46

6.2 MOMENT RESISTANCE CALCULATION - CONNECTION BETWEEN SLAB AND ABUTMENT ........................... 48

6.3 SHEAR FORCE RESISTANCE CALCULATION ............................................................................................... 49

7 LOAD CARRYING CAPACITY CALCULATION .............................................................................. 53

7.1 MOMENT LOAD CARRYING CAPACITY CALCULATION ............................................................................... 53

7.2 SHEAR FORCE LOAD CARRYING CAPACITY CALCULATION ........................................................................ 54

8 RESULTS AND ANALYSIS..................................................................................................................... 56

8.1 RESULT SUMMARY ................................................................................................................................... 56

8.2 MOMENT LOAD CARRYING CAPACITY CALCULATION ............................................................................... 58

8.3 SHEAR FORCE LOAD CARRYING CAPACITY CALCULATION ........................................................................ 60

8.4 COMPARISON BETWEEN BK1 AND BK4 ................................................................................................... 63

8.5 POSSIBLE STRENGTHENING METHODS ...................................................................................................... 65

9 DISCUSSION AND CONCLUSIONS ..................................................................................................... 67

9.1 DISCUSSION ............................................................................................................................................. 67

9.2 CONCLUSIONS .......................................................................................................................................... 68

9.3 SUGGESTIONS FOR FURTHER RESEARCH ................................................................................................... 69

10 REFERENCES ........................................................................................................................................... 70

APPENDIX A – Map of the initially proposed BK4 road network

APPENDIX B – Vehicle limits

APPENDIX C – Type vehicles

APPENDIX D – Load coefficients for each load combination

APPENDIX E – Reinforcement drawings

APPENDIX F – Reinforcement list

APPENDIX G – Finite element mesh convergence

APPENDIX H – Moment resistance calculations

APPENDIX I – Shear force resistance calculations

APPENDIX J – Capacity calculation (traffic on own lane)

APPENDIX K – Capacity calculation (traffic in the middle of the carriageway, alone on the bridge)

APPENDIX L – Capacity calculation (traffic on own lane) – check with 18 t bogie load

viii

List of Figures

Figure 1 - Gross loads for different load carrying capacity classes (Trafikverket, 2014a). ....... 7

Figure 2 - Type load model c (Trafikverket, 2016a)................................................................ 11

Figure 3 - Sketch of type load model c. ................................................................................... 11

Figure 4 - Result section - moment (Pacoste, Plos & Johansson, 2012). ................................. 16

Figure 5 - Result section - shear force (Pacoste, Plos & Johansson, 2012). ............................ 17

Figure 6 - BRIGADE/Standard structure lines (Scanscot Technology AB, 2015a). ............... 18

Figure 7 - A BRIGADE/Standard four-node shell element with one integration point (Scanscot

Technology AB, 2015a). .......................................................................................................... 18

Figure 8 - BRIGADE/Standard coordinate system for shell elements (Scanscot Technology AB,

2015a)....................................................................................................................................... 18

Figure 9 - BRIGADE/Standard directions for the shell element moments (Scanscot Technology

AB, 2015a). .............................................................................................................................. 19

Figure 10 - BRIGADE/Standard directions for the shell element shear forces (Scanscot

Technology AB, 2015a). .......................................................................................................... 19

Figure 11 - BRIGADE/Standard traffic lanes (Scanscot Technology AB, 2015a). ................ 19

Figure 12 - Self- and pavement weight acting on the bridge (Scanscot Technology AB, 2015a).

.................................................................................................................................................. 20

Figure 13 - Bridge carriageway division. ................................................................................. 23

Figure 14 - Type vehicles passing the bridge on their own lanes. ........................................... 23

Figure 15 - Type vehicles in the middle of the carriageway, alone on the bridge – eccentricity

cases. ........................................................................................................................................ 24

Figure 16 - Superstructure cross-section, concrete slab frame bridge. .................................... 26

Figure 17 - Principal sketch of a concrete slab frame bridge................................................... 26

Figure 18 - Bridge location (Värö bridge). .............................................................................. 27

Figure 19 - Värö bridge from the west. .................................................................................... 28

Figure 20 - Overview drawing of Värö bridge (Trafikverket, 2016c). .................................... 28

Figure 21 - Bridge cross-section - Värö Bridge (Trafikverket, 2016c). .................................. 28

Figure 22 - System drawing. .................................................................................................... 29

Figure 23 - Shear force reinforcement distribution (Trafikverket, 2016c). ............................. 32

Figure 24 - Reinforcement - connection between abutment and slab (Trafikverket, 2016c). . 32

Figure 25 - BRIGADE/Standard bridge geometry. ................................................................. 34

Figure 26 - Support lines and mesh generation sections. ......................................................... 35

Figure 27 - Convergence test. .................................................................................................. 35

Figure 28 - Finite element mesh on the bridge. ....................................................................... 36

Figure 29 - Material manager - BRIGADE/Standard model. .................................................. 37

Figure 30 - Traffic lanes for traffic passing the bridge on its own lane. .................................. 39

Figure 31 - Traffic lanes for traffic passing the bridge in the middle of the carriageway, alone

on the bridge............................................................................................................................. 40

ix

Figure 32 - Result lines - Traffic passing the bridge on its own lane. ...................................... 41

Figure 33 - Result lines - Traffic passing the bridge in the middle of the carriageway, alone on

the bridge. ................................................................................................................................. 42

Figure 34 - Result sections - longitudinal shear force. ............................................................. 42

Figure 35 - Deformed bridge model - dead weight load case. ................................................. 43

Figure 36 - BRIGADE/Standard dead weight moment. ........................................................... 43

Figure 37 - FRAME ANALYSIS dead weight moment. ......................................................... 44

Figure 38 - BRIGADE/Standard dead weight shear force. ...................................................... 45

Figure 39 - FRAME ANALYSIS dead weight shear force. ..................................................... 45

Figure 40 - Critical section and critical point – moment. ......................................................... 46

Figure 41 - Critical point and critical result section line - shear force. .................................... 50

Figure 42 – Load carrying capacity: Bogie load - Result line 1. .............................................. 58

Figure 43 – Load carrying capacity calculation: Bogie load - Result line 2. ........................... 59

Figure 44 – Load carrying capacity calculation: Bogie load - Result line 3. ........................... 60

Figure 45 - Transversal shear force: Bogie load – load carrying capacity calculation - Result

line 5. ........................................................................................................................................ 62

Figure 46 - Longitudinal shear force: Bogie load – load carrying capacity calculation - Result

line 6. ........................................................................................................................................ 63

Figure 47 - Magnified longitudinal shear force diagram: Bogie load - load carrying capacity

calculation - Result line 6 ......................................................................................................... 63

Figure 48 - Principle sketch - widening of column top. ........................................................... 65

x

List of Tables

Table 1 - Eccentricity of type vehicles (Trafikverket, 2016a). ................................................ 23

Table 2 - Material parameters concrete class K40 (Trafikverket, 2016a). .............................. 30

Table 3 - Design concrete material parameters. ....................................................................... 31

Table 4 - Characteristic reinforcement material parameters (Trafikverket, 2016c). ............... 31

Table 5 - Reinforcement design parameters. ........................................................................... 31

Table 6 - Transversal and longitudinal reinforcement quantities (Trafikverket, 2016c). ........ 32

Table 7 - Finite element mesh model 4. ................................................................................... 36

Table 8 - Material parameters - Earth pressure (Trafikverket, 2016a). ................................... 38

Table 9 - Result verification – moment. .................................................................................. 44

Table 10 - Result verification - shear force. ............................................................................. 45

Table 11 - Geometry and material input. ................................................................................. 47

Table 12 - Geometry and material input - connection between slab and abutments. .............. 48

Table 13 - Moment resistance - connection between the slab and the abutments. .................. 49

Table 14 - Geometry and material input - shear force calculation. .......................................... 50

Table 15 - Shear resistance. ..................................................................................................... 52

Table 16 - Load carrying capacity calculation results - Traffic on own lane. ......................... 57

Table 17 - Load carrying capacity calculation results - Traffic in the middle of the carriageway.

.................................................................................................................................................. 57

Table 18 - Comparison BK1/BK4. .......................................................................................... 64

xi

Notations

Roman upper case letters

As Reinforcement area [mm2]

D Dynamic contribution factor [%]

Eck Characteristic value of modulus of elasticity of concrete [GPa]

Ecd Design value of modulus of elasticity of concrete [GPa]

Esk Design value of modulus of elasticity for reinforcing steel [MPa]

Esd Design value of modulus of elasticity for reinforcing steel [MPa]

G Shear modulus [MPa]

L Length [m]

MRd Moment resistance [kNm]

MEd Moment load effect [kNm]

Mperm Moment stemming from permanent actions [kNm]

Mtraffic Moment stemming from traffic load [kNm]

VRd Shear force resistance [kN]

VEd Shear force [kN]

Vperm Shear force stemming from permanent load [kN]

Vtraffic Shear force stemming from traffic load [kN]

Vaz Transversal shear force [kN]

Vsz Longitudinal shear force [kN]

xL Length from reference point [m]

Q Point load [kN]

Roman lower case letters

a Equivalent width circular column [mm]

al Moment curve shift distance [mm]

b Width [mm]

c Concrete cover thickness [mm]

d CG reinforcement to cross-section outer edge [mm]

fck Characteristic compressive strength of concrete [MPa]

fck,adjusted Adjusted characteristic compressive strength of concrete [MPa]

fcd Design compressive strength of concrete [MPa]

fctk Characteristic tensile strength of concrete [MPa]

fctd Design tensile strength of concrete [MPa]

fsv Design yield strength shear reinforcement [MPa]

fv Concrete formal shear resistance [MPa]

fvR Positive shear resistance contribution [MPa]

fyk Characteristic steel yield strength [MPa]

fyd Design steel yield strength [MPa]

xii

h Height [mm]

k Proportionality factor for increasing/decreasing traffic point loads [-]

v Velocity [km/h]

x The height of the concrete cross-section compression zone [mm]

Greek letters

ν Poisson’s ratio [-]

ρ Weight [kN/m3]

ψ Factor [-]

η Factor [-]

γ Partial factor [-]

γn Partial factor [-]

γm Partial factor [-]

εs Reinforcement strain [-]

εsγ Reinforcement yield strength strain [-]

εcu Ultimate compressive strain in the concrete [-]

Other notations

∅ Diameter [mm]

xiii

Abbreviations

A Axle load

B Bogie load

BK1 Load carrying capacity class for vehicles with a gross load not exceeding 60 t.

BK2 Load carrying capacity class for vehicles with a gross load not exceeding 51,4 t.

BK3 Load carrying capacity class for vehicles with a gross load not exceeding 37 t.

BK4 Proposed load carrying capacity class for vehicles with a gross load not exceeding

74 t.

EN Eurocode

EU European Union

FEA Finite Element Analysis

FEM Finite Element Method

SLS Serviceability Limit State

ULS Ultimate Limit State

t Ton (1000 kg)

2-D Two-dimensional

3-D Three-dimensional

1

1 Introduction

In this chapter, the background of the problem as well as the reason for its importance is

summarized and presented. The goals and objectives of the thesis are stated as well as the

limitations on the work.

1.1 Background The Swedish government is planning to increase the maximum allowed vehicle gross load on

parts of the public roads from the present 60 t to 74 t, which, according to Trafikverket (2015),

will mean that, at the initial stage, approximately 66 bridges will require strengthening.

Following this planned load increase Trafikverket (2014a) proposes the implementation of a

new load carrying capacity class called BK4 for 74 t vehicles with a maximum length of 25.5

m. The roads affected, in the initial stage, by this new load carrying capacity class are major

highways and important roads, namely E-roads: E4, E6, E10, E18, E20 and parts of the national

roads 40, 50, 55, and 56 on which 2/3 of the total road freight volume is transported, see

appendix A for a map of the proposed changes. At a later stage, the Swedish government is

planning to allow for 74 t vehicles on the whole BK1 road network, consisting of a total of

15 442 bridges. Approximately 1000 of these bridges will require strengthening according to

Trafikverket (2015), strengthening works that is expected to cost roughly 9,6 billion Swedish

Crowns.

According to Transportstyrelsen (2014), the change is supposed to streamline the Swedish road-

transport sector as an increased load on each truck will decrease the total number of trucks and

thereby create significant economic, environmental and safety related benefits. The

socioeconomic benefit for the initial changes, in which only the major highways are affected,

is, according to Trafikverket (2014a), approximated to be between 2,6 and 5,6 billion Swedish

crowns over the next 40 years.

Comparatively the EU has a general limit of 40 t on their roads and bridges, which, with the

planned changes makes the Swedish road infrastructure very internationally competitive

(Transportstyrelsen, 2014). The only other country within the EU to have significantly

increased the loads on their roads and bridges are Finland, who increased their maximum traffic

load to 76 t in 2013 (Kommunikationsministeriet, 2013).

The biggest obstacle which arises when implementing the new load carrying capacity class BK4

is insufficient load carrying capacity for the bridges on the proposed road network. In order to

identify the bridges that require strengthening a load carrying capacity calculation ais carried

out, in which maximum load values for the axle load, A, and the bogie load, B, is calculated.

These load values, A and B, is the common capacity representation for bridges in Sweden.

2

The Swedish road network presently consists of three load carrying capacity classes with a

fourth, the BK4, at the planning stage, all of which has their own A and B values as load

carrying capacity representation (Trafikverket, 2016a). The new load carrying capacity class

will require an uptick in the maximum A/B – values, from a respective 12 and 18 t limit for the

BK1 load carrying capacity class, to, according to Trafikverket (2015), a respective 12 and 21

t limit for the new load carrying capacity class BK4.

With the big variation of applicable bridge types, especially when implementing the increased

load on the whole BK1 road network, the decision is made to focus the calculation and analysis

on the most common bridge type in Sweden, the concrete slab frame bridge - which makes up

approximately 50 % of the Swedish bridge stock (Trafikverket, 2014b).

1.2 Goal and objectives The goal of this thesis is to examine the effects of the increased traffic load on Swedish road

bridges, or, more specifically, on a Swedish concrete slab frame bridge and try to draw general

conclusions regarding the effects of the increased traffic loads on the Swedish bridge network

as a whole.

1.3 Limitations Calculations and analysis will be performed on a concrete slab bridge, where a suitable bridge

will be assessed and studied on a case basis. The assumption is made that non-prestressed

concrete slab bridges will be more critical and thereby the thesis will focus on non-prestressed

bridges and disregard prestressed bridges.

The calculations will be performed in ultimate limit state; thus it follows that the effects of the

increased load in regards to fatigue is disregarded. Furthermore, the superstructure is deemed

to be the most critical part of the bridge in regards to the ultimate limit state capacity, thereby,

only the superstructure will be taken into account in this thesis.

Using the Swedish standards for load carrying capacity calculations on bridges, as well as the

calculation methodology used by Ramböll, the bridges are assessed with the assumption that

they are undamaged. In traditional load carrying capacity calculations on Swedish bridges the

capacity to withhold the load of military vehicles are calculated, however, as this thesis focuses

on the effect of the increased traffic load, calculations regarding military vehicles will not be

carried out. Furthermore, the effects of snow and wind are deemed insignificant in comparison

to other actions and are thereby disregarded.

3

1.4 Disposition This thesis consists of nine chapters, all of which are briefly summarized in the following

sections.

1 - Introduction

In this chapter, the background of the problem as well as the reason for its importance is

summarized and presented. The goals and objectives of the thesis are stated as well as the

limitations on the work.

2 - Methodology

This chapter describes the methods and approaches used in this master thesis as well as the

research validity, reliability and generalization.

3 - Literature review

In this chapter, general research regarding load carrying capacity calculations on highway

bridges are presented. Furthermore, the theory behind the Swedish load carrying capacity

classes for road bridges is presented and described as well as some general theory regarding

actions on road bridges. The theory behind, and the methods used, when performing load

carrying capacity calculations on Swedish road bridges are thoroughly examined. Some

background on the usage of FEM, both generally and using the software BRIGADE/Standard,

is also presented in this chapter. Finally, some general theory regarding concrete slab frame

bridges is also described in this paragraph.

4 - Case study – Bridge at highway interchange Värö

The studied concrete slab frame bridge, the bridge at highway interchange Värö is thoroughly

described. The bridge material properties and reinforcement design is also presented.

5 - BRIGADE/Standard model

The BRIGADE/Standard model used to calculate the load effects on the bridge is described.

Descriptions of the modelling of the bridge geometry, boundary conditions and material

properties is presented and in addition to this the model verification process is presented.

6 - Resistance calculations

Resistance calculations, regarding both moment and shear forces, for the critical points in the

bridge are performed and presented.

7 – Load carrying capacity calculations

Load carrying capacity calculations, in which A/B load limits are calculated, in regards to both

moment and shear forces are presented and carried out for all critical parts of the bridge.

4

8 - Results and analysis

The results of the load carrying capacity calculations are presented and analyzed for both

moment and shear force cases and a comparison between load carrying capacity calculations

using the BK1 input A/B – values and BK4 input values is performed.

9 - Discussion and conclusions

In this paragraph, the results of the load carrying capacity calculations performed on the bridge

at highway interchange Värö will be discussed and conclusions will be made, both in regards

to the specific bridge studied in this thesis, but also in regards to bridges on the Swedish road

network in general.

5

2 Methodology

This chapter describes the methods and approaches used in this master thesis as well as the

research validity, reliability and generalization.

2.1 Literature review In order to identify research and gain knowledge of the subject a literature review, in which

books, articles and research papers are studied, is performed. Studies regarding, both the old

load carrying capacity classes and the proposed new load carrying capacity class, for Swedish

roads and bridges were conducted, studies in which a representative from Trafikverket were

consulted when relevant questions emerged. Loads and actions on road bridges, both according

to the Swedish standards and Eurocode, are studied. The load carrying capacity calculation

process for bridges, both in general and with a focus on Swedish rules and regulations, is studied

in order to be able to analyze the bridge and its capacity to withstand the new, increased, traffic

loads. Drawings of relevant bridges, bridges assessed to be at risk when BK4 is implemented,

are obtained using the, by Trafikverket supplied, database BaTMan. Furthermore, studies of the

FE-software BRIGADE/Standard, as well as the finite element analysis method in general, were

also required to get an understanding of the software and its applications for concrete bridges

and load carrying capacity calculations.

2.2 Case study A case study with load carrying capacity calculations is performed on the bridge at highway

interchange Värö in order to analyze the structural effects of the increased load and identify

critical elements in the bridge. In order to calculate the design load effects on different

significant parts of the bridge, the bridge is modelled in the finite element software

BRIGADE/Standard - a software specifically designed to model bridges and bridge-like

structures. In order to make sure that the software produces reliable results the load effects

produced by the BRIGADE/Standard model are verified and controlled using the 2-D frame

analysis software, FRAME Analysis.

The resistance in regards to moment and shear force is calculated using hand-calculations for

all critical sections on the bridge. Calculations carried out using the relevant Swedish codes and

regulations for load carrying capacity calculations on concrete bridges as well as rules and

regulations for regular concrete structures. Using the calculated capacities and the load effects

produced by the BRIGADE/Standard software the design load carrying capacity, expressed by

the A/B – values, is calculated for all critical parts of the bridge and for all relevant load cases.

Using these calculated load carrying capacities the design load carrying capacity for the whole

bridge is determined. A thorough evaluation and analysis of the results are then carried out in

order to draw conclusions of the effects of the increased traffic loads, both in regards to the

specific bridge studied- and in regards to bridges on the Swedish road network in general. In

addition to this analysis, suggestions regarding future studies will be presented and discussed.

6

2.3 Validity, reliability and generalization It is important to design and plan the research structure in such a way that it links the case study

and data collection with the literature and initial goal and objective of the study, see paragraph

1.2, which should make sure that there is a clear view of what is to be achieved (Rowley, 2002).

In this case, a combined literature- and case study is conducted in order to examine the problem.

The motivation for this approach is the fact that each individual bridge, and bridge type, has its

own characteristics and flaws, thereby making a broader study hard to conduct.

It is important that the study is as generalizable as possible - that you can claim that the results

of your study can be applied to theory and that the results are applicable to other comparable

situations (Rowley, 2002). In this case, the generalization of the study is quite limited as each

individual bridge varies considerably in its characteristics. The results will be weaker if the

bridge types or loading conditions differ significantly from the case studied in this thesis.

The validity of a research refers to how well the study measures what it is supposed to measure

- how well the goals and objectives of the study is met and achieved (Rowley, 2002). It is

important to seek to reduce subjectivity in the study as much as possible. Furthermore, it is

important from a validity standpoint to make the study as transparent as possible. This will be

achieved by complete result transparency; full results will be presented in appendices and clear

explanations on every step of the calculation process will be presented.

Another issue with close ties to the validity and generalizability of a study is the reliability,

which is the degree of which it can be demonstrated that the study can be repeated with the

same result; that the assessment produces stable and consistent results (Rowley, 2002).

Reliability within the study will be achieved through thorough demonstrations and

documentations of studies and calculation procedures, thereby ensuring that the study could be

repeated with similar results. However, the reliability of the study faces the same difficulty as

the generalization; the result reliability will decrease significantly if the loading conditions or

considered bridge type is altered.

7

3 Literature review

In this chapter, general research regarding load carrying capacity calculations on highway

bridges are presented. Furthermore, the theory behind the Swedish load carrying capacity

classes for road bridges is presented and described as well as some general theory regarding

actions on road bridges. The theory behind, and the methods used, when performing load

carrying capacity calculations on Swedish road bridges are thoroughly examined. Some

background on the usage of FEM, both generally and using the software BRIGADE/Standard,

is also presented in this chapter. Finally, some general theory regarding concrete slab frame

bridges is also described in this paragraph.

3.1 Load carrying capacity classes Different load carrying capacity classes control the load capacity regulations of the Swedish

road- and bridge network. These load carrying capacity classes are in turn used to regulate the

traffic on each national road. Presently there are three different load carrying capacity classes,

BK1, BK2 and BK3 with a fourth, BK4, being proposed. The maximum gross load for each

load carrying capacity class depends on the length of the vehicle, counted as the distance

between the first- and last axle. As the length of the vehicle increases, so does the acceptable

gross load for each load carrying capacity class, see Figure 1. As seen in Figure 1 the maximum

gross load for BK1 is 60 t, BK2 is 51,4 t, BK3 is 37 t and the new proposed load carrying

capacity class BK4 has a maximum gross load of 74 t (Trafikverket, 2014a). Trafikverket also

proposes that the maximum gross load for class BK1 is increased to 64 t in conjuncture with

the suggested new load carrying capacity class BK4. The total length of the vehicle is also

regulated within the load carrying capacity classes, with a maximum length of 25,5 m for

classes BK1 and BK4 (Trafikverket, 2014a).

Figure 1 - Gross loads for different load carrying capacity classes (Trafikverket, 2014a).

8

The maximum vehicle load of each load carrying capacity class is denominated by the

maximum axle load, bogie load, maximum length and gross load. Values for a triple axel load

are also included in the different load carrying capacity classes. Trafikverket (2014a) defines

the applicable load and vehicle variables that apply to load carrying capacity classes as follows:

The axle load is the total static load that the wheels on a wheel axle transfer to the road.

A bogie is two wheel axles with a distance between them that are below 2 meters.

The bogie load is the total static load that the wheels of a bogie transfer to the road.

A triple axel is three wheel axles with a distance between the first-and last axle that

are below 5 m.

The triple axel load is the total static load that the wheels on a triple axel transfer to the

road.

The gross load of a vehicle is the combined total static load that all the wheels of a

vehicle transfer to the road at any given moment, i.e. the sum of the axle, bogie and

triple axel loads of a vehicle.

The gross load curve for vehicles of different load carrying capacity classes on the Swedish

road network, viewed in Figure 1, is determined using different “type vehicles”, taken forth in

collaboration with truck and vehicle manufacturers. The proposed new load carrying capacity

class, BK4, for vehicles with a gross load up to 74 t will have the same maximum length as the

vehicles in class BK1, 25,5 m. The new BK4 capacity curve were determined using the same

vehicle limits in regards to axle, bogie and triple axel load as in BK1, see Appendix B, but the

increased gross load limit ensures that the capacity curve moves “upwards” for vehicles with a

distance between the axles that exceeds 4,4 meters, see Figure 1. In a practical sense, the

vehicles need nine axles in order to achieve the maximum BK4 load, 74t (Trafikverket, 2014a).

Load carrying capacity calculations for Swedish road bridges are carried out using the Swedish

type vehicle model, further explained in paragraph 3.2, where 14 different type cases are used

to, as accurately as possible, simulate traffic loads on bridges. These type cases are, when the

correct loads for each load carrying capacity class is used, creating a similar curve as in Figure

1. Depending on the load carrying capacity class assigned to the bridge, different loads - axle

load, A, and bogie load, B, are used as point loads in the type cases. load carrying capacity class

BK1 has, for example, an A of 120 kN and a B of 180 kN. In order to allow 74 t-vehicles, with

the same length restrictions as in BK1, the B-value for the proposed load carrying capacity class

BK4 will be 210 kN (Trafikverket, 2015).

3.2 Actions on bridges An action can, according to SS-EN 1990 (2002), be divided into direct and indirect actions,

where direct actions are defined as a set of forces or loads which are applied to the structure

and indirect actions refers to a set of imposed deformations or accelerations caused, for

example, by temperature changes, moisture variation, uneven settlement or earthquakes. This

9

thesis will largely focus on the direct actions on bridges, which are the most important ones

when conducting a load carrying capacity calculation (COST, 2004).

Furthermore, the actions can be classified by their variation in time, where the following,

perhaps more common, classifications are used (SS-EN 1990, 2002):

Permanent actions: Self-weight of structures, fixed equipment and road surfacing, and

indirect actions caused by shrinkage and uneven settlements.

Variable actions: Imposed loads, wind actions or snow loads.

Accidental actions: explosions, or impact from vehicles crashing into the structure.

These actions, and how they specifically are used in bridge load carrying capacity calculations

in Sweden, will be further explained in the following paragraphs.

3.2.1 Permanent actions

One of the main components when calculating the permanent actions on a structure is the self-

weight which, in the case of a road bridge, consists of the load-carrying part of the structure

(Trafikverket, 2016a). When calculating the self-weight according to Trafikverket (2016a),

reinforced concrete is assumed to have a specific weight of 24 kN/m3.

The specific weight of the pavement, 22 kN/m3 for asphalt pavement and 23 kN/m3 for concrete

pavement, also needs to be added to the permanent load. According to Trafikverket (2016a) the

shrinkage of the concrete is only considered for composite and prestressed concrete bridges and

thereby won’t have to be considered in this thesis. Furthermore, the earth pressure will have to

be considered using factors and coefficients according to Trafikverket (2016a).

3.2.2 Variable actions

3.2.2.1 Snow loads

Snow loads are, according to Trafikverket (2016a), only taken into account when the bridge in

question have a roof structure, thus, snow loads aren’t considered on the bridges in this thesis.

3.2.2.2 Wind loads

Using the same reasoning as with the snow loads, the wind loads on the structure is not

considered in this thesis.

3.2.2.3 Traffic loads

Traffic loads on road bridges in Sweden is primarily simulated and calculated using two

different load models, the Eurocode load model, where load model 1 is decisive for most

bridges, and the Swedish load model, defined by Trafikverket, called the type vehicle model.

These two load models are based on real traffic measurements on bridges and is designed to

simulate those traffic effects as accurately as possible (SS-EN 1991-2, 2003), (Trafikverket,

2016a).

10

The Eurocode load model 1 for bridges, see SS-EN 1991-2 (2003), is based on uniformly

distributed loads acting in combination with bogie loads on the, by lane, divided bridge surface.

The traffic loads on each lane are assigned a predetermined load value and adjustment factor,

depending on the specific, predisposed, lane placement on the bridge. However, for load

carrying capacity calculations regarding existing road bridges the Eurocode load model is

disregarded and the type vehicle model, defined by Trafikverket (Trafikverket, 2016a), is

applied on the bridge.

The type vehicle load model is using different type cases to represent real heavy vehicles and

traffic situations. The model consists of 14 different vertical loading scenarios, represented by

the letters a-n, where each scenario denotes a, by extensive tests and experiments formed

(Carlsson, 2006), load case, see Appendix C. The point loads, A and B, in each load model are

representing the axle -and bogie loads of real heavy vehicles and the uniformly distributed load,

q, are meant to represent lighter traffic in-between the heavier vehicles (Trafikverket, 2016a).

The capacity of road bridges is represented by a maximum traffic load, denoted by the

maximum axle load, A, and bogie load, B. The uniformly distributed load, q, which is evenly

distributed over the width of the loading field, is set as 5 kN/m in unfavorable loading

conditions and 0 kN/m in favorable loading conditions. When conducting a load carrying

capacity calculation, the result of the calculations are capacity values for the point loads A and

B. These calculated A and B values are then compared to the limits and requirements of each

load carrying capacity class. Load carrying capacity class BK1 has, for example, an A

requirement of 12 t and a B requirement of 18 t and the new, proposed, load carrying capacity

class BK4 has an A requirement of 12 t and a B requirement of 21 t (Trafikverket, 2015).

The type vehicle models, always centrally placed, are acting on notional load lanes with a width

of 3 m. The number and placement of the notional load lanes should always represent the most

unfavorable possible influence on the bridge, where the number of notional load lanes depends

on how many that fits on the carriageway. However, the maximum number of load lanes is four.

The number of notional load lanes on which type vehicles are placed are a maximum of two

lanes where the type vehicles on one notional lane are multiplied with a factor of 1,0 and the

other with a factor of 0,8. The remaining lanes are only affected by the uniformly distributed

load, q, see (Trafikverket, 2016a).

The transverse distance between the wheels are, according to Trafikverket (2016a), spanning

between 1,7 m to 2,3 m and the wheels themselves have a distribution of 0,3 m in the transverse

direction and 0,2 m in the longitudinal direction. As an example, consider type load model c;

see Figure 2. The bogie point load, B, is divided onto four wheels, and thereby four point loads,

11

a sketch of this can be seen in Figure 3 along with a sketch of the distances between the axles

and the dimensions of the wheels.

Figure 2 - Type load model c (Trafikverket, 2016a).

Figure 3 - Sketch of type load model c.

For every point load in the type load model, a dynamic contribution for the vertical loads should

to be added. This is achieved by adding a dynamic contribution factor, D, to the point loads,

calculated using equation 3.1

𝐷 = 180+8(𝑣−10)

20+𝐿[%] (3.1)

Where v is 80 km/h and L is calculated using paragraph 10.5 in Trafikverket (2016a).

3.2.2.4 Surcharge

Surcharge is the load acting on the bridge when a temporary load, usually traffic load, is placed

on the part of the road which is connecting the road to the bridge, see Trafikverket (2016a).

3.2.2.5 Braking force

The load created when the type vehicles are braking or accelerating is called braking force and

are said to equate to a horizontal force on the bridge, see Trafikverket (2016a).

3.2.3 Load combinations

When combining the loads and actions presented in the previous paragraphs it is integral that

the loads are added together in the most unfavorable way possible. According to Trafikverket

(2016a) the applicable load combination, there are plenty of other possible combinations, are

12

load combination A which is the primary load combination for bridge capacity calculations in

the ultimate limit state, ULS. Trafikverket (2016a) states that the amount of variable loads

considered is limited at a maximum of four loads, where the ones considered, as one would

suspect, are the most unfavorable ones. The most unfavorable of the variable loads are given

the higher load coefficient value, ψγ. Coefficients, both the higher- and lower ones, are

presented in Appendix D.

3.3 FEM The finite element method (FEM) or finite element analysis (FEA) is an approximate numerical

method used for solving complex differential equations regarding a wide range of physical

problems, including complex structural engineering problems. Broo, Lundgren and Plos (2008)

suggests that the finite element method can be especially effective and helpful when assessing

existing structures, such as bridges, because of their complexity in a geometrical sense and the

complexity of the actions on the structures. When using FEM to evaluate existing structures,

higher capacities are often reached compared to the results achieved from more traditional

forms of calculation. Broo, Lundgren and Plos (2008) suggests that the reason for the higher

estimated capacities primarily is a more favorable load distribution as the structure in most FEM

software products is analyzed in three dimensions.

When using the finite element method for structural problems, the complex structures are

subdivided into a finite number of elements. Elements, interconnected by nodes, whose relation

between their nodal displacements and nodal reactions can be specified by a limited number of

functions and parameters, called shape, or form, functions. The displacements, strains and

stresses of an element is calculated by assembling all of the elements into vectors or matrices

and solving the general system, see equation 3.2 (Rombach, 2004).

[𝐊] ∗ {𝐮} = {𝐅} (3.2)

The stiffness of all the elements are represented by the global stiffness matrix [K], the loads on

the structure are represented by the vector {F} and the nodal displacements, the typical result

of a FEM calculation, are denoted by the vector {u}. In order to find the form or shape functions

that, as closely as possible, approximates the behavior of the structure different methods can be

used. For simple problems, basic equilibrium relations can be used to find the relation between

the nodal forces and their displacements. However, as the complexity of the structure increases

so does the complexity of the methods used - leading to the usage of virtual work- and virtual

displacement principles (Rombach, 2004).

The first step of conducting a finite element analysis of a structure in a more practical sense is,

according to Samuelsson & Wiberg (1998), to simplify the structure in regards to various

parameters such as boundary conditions, geometry, material parameters and loads. A material

deformation behavior, typically linear elastic behavior, is also assigned to the structure. The

13

next step is to divide the structure into finite elements, a process where it is important to

consider both the element type and size, as this greatly can influence the future calculations and

results. The stiffness matrix, an integral part of the finite element method, is calculated for each

element and then put together to form a global stiffness matrix for the whole structure.

Geometry- and boundary conditions are then assigned to the model in order to solve the

equation system for the whole structure and create relevant results.

Perhaps the most important step, when conducting a finite element analysis, is to perform

extensive result verification in order to make sure that the results of the FEM calculations are

reasonable and correct. Almost no software is, as Rombach (2004) puts it “free from errors”

which makes a critical distrust, leading to post processing checks of the FEM results integral

when using FEA on structural problems. The errors can sometimes stem from simple software

glitches but it should always be kept in mind that the finite element method is a numerical

method based on lots of assumptions and simplifications, the result of any calculation can only

be as accurate as the underlying assumptions and the underlying numerical model.

These boundary, support, element and load assumptions and simplifications can greatly affect

the results, for example, Pacoste, Plos, and Johansson (2012) states that the support conditions

in a finite element model of a structure often have a decisive influence on the analysis results.

Davidson (2003) supports this statement and states that the modeling of the supports for slabs,

regular or bridge slabs, significantly can affect the moment load effect over that support.

It is especially important to be cautious when modelling point loads, for example tires of

passing vehicles, as point loads can create discontinuity zones on which singularities, infinite

stresses and internal forces, can occur. Rombach (2004) clarifies that these stresses only occur

in the numerical model, and not in the real structure, and are caused by the simplifications and

assumptions regarding the element behavior. These discontinuity zone behaviors are not always

as drastic as the creation of infinite stresses, they can be subtler and harder to recognize, creating

local stress surges that significantly changes the result of the calculation, a phenomenon that

underlines the importance of proper result interpretation and analysis. To avoid and, at least

partially, limit this problem, point loads are often modelled as uniformly distributed loads, for

example, the point loads from the wheels of vehicles passing a bridge is evenly distributed over

the whole wheel-area.

Both closely knitted to- and significantly affecting this problem is the process and decisions

involved when dividing the structure into finite elements, a process called discretization. The

size and shape of the elements can significantly affect the result and Rambach (2004) stresses

that the discretization phase is where most of the mistakes when performing FEM calculations

occurs. To emphasize this, Davidson (2003) states that the size of the finite elements, also called

the mesh size, significantly affects the moment and shear forces that are calculated in certain

14

points of the structure, making the discretization face essential in order to achieve reliable

results from the FEM calculation. One method to limit the risk and probability of mistakes in

the discretization and element mesh generation phase is to perform a convergence study. A

process in which the element mesh size in the model is continuously reduced until the results,

for example the moment curve for the dead weight load case, converges. This process makes

sure that the element mesh sizes, in a global perspective, is properly modelled and that the

element mesh is dense enough.

Another important aspect to consider is which material analysis model is used in the FEM

calculations. Typically, in order to simplify the analysis and to be able to use the superposition

principle when evaluating the effects of load combinations, linear analysis is adopted, even

though concrete slabs usually, due to cracking and reinforcement distribution, display clear

non-linear response. This is, at least in ultimate limit state, reasonable since concrete slabs

typically have good plastic deformability. Since the design is based on a moment (and force)

distribution that satisfies equilibrium, the load carrying capacity will be adequate if the structure

has sufficient plastic deformation capacity (Pacoste, Plos & Johansson, 2012).

There are multiple different types of elements that can be used to divide the structure, Broo,

Lundgren and Plos (2008) states that in order to model an entire structure, like a whole bridge,

structural finite elements are used, such as, beam, shell and truss elements. Typically, when

performing FEM calculations on concrete slabs and slab bridges the elements are specified as

shell elements. Davidson (2003) adds that using 3D shell elements, sometimes in combination

with beam elements, is the most common and effective method when modelling concrete

bridges using FEM.

3.3.1 Modeling orthotropic slabs using FEM

When modelling concrete bridges using FEA an important aspect to consider - and choice to

make - is whether the slab is considered to have an isotropic or orthotropic behavior. Usually

when performing FEA the assumption is made that the slab, or structure, has an isotropic

behavior. However, when considering the reinforcement and cracks in the concrete, which

usually disrupts the isotropic behavior, concrete slabs doesn’t have an isotropic behavior and

thereby the model might produce more accurate results when modelled in a, at least partially,

orthotropic way (Rombach, 2004).

Bridges and slabs are generally not equally reinforced in both the longitudinal and transversal

direction. Thereby, the concrete will behave differently in different directions, and the relative

stiffness due to reinforcement orientation- and quantity will produce a stress distribution with

significant differences from the stress distribution produced by an analysis assuming isotropic

conditions. Old bridge slabs were generally designed using a two-dimensional, and thereby

partially orthotropic, stress distribution, creating significantly higher stresses in the longitudinal

direction compared to the transversal direction. Thus, the amount of reinforcement in the

15

longitudinal direction compared to the reinforcement amounts in the transversal direction is

often significantly higher in old concrete bridges.

This creates a problem when analyzing these older bridges with modern numerical methods

such as FEM. The FEM software, which as mentioned earlier usually is using an assumption of

isotropic material behavior, will thereby produce significantly larger stresses in the transversal

direction compared to the stresses obtained from the two-dimensional model used in the original

design calculations. Thus, the older bridges, which have been operational for decades, will,

when making load carrying capacity calculations using modern methods, often be deemed

unsafe (COST, 2004).

One solution to this problem is to scale the material properties in accordance with the amount

of reinforcement in transversal and longitudinal direction, creating a scaled orthotropic material

model or, also called, a transversally orthotropic model. Two of the three directions are said to

be equally stiff, creating a model that has different stiffness’s in the longitudinal and transversal

directions. Kwak & Filippou (1990) clarifies that the usage of orthotropic finite element

material models is especially efficient and accurate for FEM using shell elements, which is the

usual element model used when modeling concrete bridges in finite element software.

Unlike isotropic material models, which are parametrized by a single Young’s modulus of

elasticity, the transversally orthotropic material model has two different Young’s moduli – Ea

and Es (Li & Barbic, 2014). These different modules of elasticity can be scaled in different

ways in the finite element material model. One suitable solution, which is used in the load

carrying capacity calculation performed in this thesis, is to scale the modulus of elasticity in

accordance to the relation between the amount of longitudinal and transversal reinforcement.

When assigning the material shear modulus to the transversally orthotropic finite element

model, Huber (1923) proposes that the shear modulus in the longitudinal direction is calculated

using the classical formula, see equation 3.3 and that, the shear modulus in the transversal

direction is calculated using the geometrical mean of the two different modules of elasticity,

see equation 3.4. The poisson ratio, 𝜐, defined as the ratio between the lateral strain and the

axial strain, is, according to Rombach (2004), said to be 0,2 when modelling concrete slabs

using finite element analysis.

𝐺 = 𝐸

2(1+𝜐) (3.3)

𝐺 = √𝐸𝑎𝐸𝑠

2(1+𝜐) (3.4)

16

3.3.2 FEM result sections

Another important aspect to consider when post-processing and acquiring results from the FEM

calculations is that unrealistic cross-sectional moments and shear forces can occur in the finite

element model due to simplifications in the modeling (Pacoste, Plos & Johansson, 2012).

These unrealistic moments and shear forces usually occurs over the supports, making the

modeling and choice of result sections over and around the supports crucial in order to obtain

accurate and reasonable results from the finite element model.

Pacoste, Plos & Johansson (2012) states that if the slab is monolithically connected with its

supports, columns or walls, it can be shown that the maximum stresses appears at the border of

the connection and not inside the connection region, see Figure 4. This stems from the fact that

the cross-sectional moments and forces in the slab is defined as integrals of the stresses over

the cross-section and, thereby do not have a clear interpretation inside a connection region

(Pacoste, Plos & Johansson, 2012). These support areas must, according to Pacoste, Plos &

Johansson (2012), be seen as disturbed regions, where beam or slab theory and its applications

are not valid. Pacoste, Plos & Johansson (2012) states that a critical bending crack will form no

closer to the theoretical support point than along the surface of the column or wall. Thus, this

is also where the tensile reinforcement will start to yield. Thereby, as previously stated, the

critical cross-section for bending failure is along the surface of the column or wall.

Figure 4 - Result section - moment (Pacoste, Plos & Johansson, 2012).

For circular columns, the width a, see Figure 4, is calculated using equation 3.5, where ∅ is the

diameter of the column.

𝑎 =√𝜋∅

2 (3.5)

Regarding the failure section for shear forces, Pacoste, Plos & Johansson (2012) states that the

critical shear cracks will occur where it transfers the largest possible shear force across the

inclined shear crack. Thus, a critical shear crack will develop no closer to a support than with

its lower end at the support edge, see Figure 5.

17

This phenomenon stems from the fact that if the shear crack is moved towards the center of the

support, a portion of the load would be directly transferred down to the support without passing

the shear crack. Thus, the shear force transferred over the shear crack would be reduced.

Figure 5 - Result section - shear force (Pacoste, Plos & Johansson, 2012).

Thereby, Pacoste, Plos & Johansson (2012) makes the conclusion that the critical result in a

slab, with emphasis on shear forces, are not located closer to the support edge than the distance

z cot θ – independent of the slab-support connection and stiffness of the slab. For slabs without

shear reinforcement Pacoste, Plos & Johansson (2012) concludes that the shear crack

inclination is not steeper than 45 degrees, making the simplification in equation 3.6 viable.

𝑧 cot 𝜃 = 𝑧 ≈ 𝑑 (3.6)

To further simplify the equations presented in Figure 5 Pacoste, Plos & Johansson states that,

particularly for cases where moving loads such as traffic is involved, cot θ can be said to be

equal to 1.5, leading to the simplifications, for result sections regarding cross-sections with

shear reinforcement, that are presented in equation 3.7.

𝑧 cot 𝜃 = 1.5𝑧 ≈ 1,5𝑑 (3.7)

To clarify, the distance from the center of the support to the critical shear section for cross-

sections without shear reinforcement is presented in equation 3.8 and the distance for cross-

sections with shear reinforcement are presented in equation 3.9.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑠ℎ𝑒𝑎𝑟 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡: 𝑎

2+ 𝑑 (3.8)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝑠ℎ𝑒𝑎𝑟 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡: 𝑎

2+ 1,5𝑑 (3.9)

3.3.3 BRIGADE/Standard

The FEM software used in this thesis is BRIGADE/Standard, a finite element program used

when analyzing and designing bridge structures, which provides a three-dimensional analysis

18

concept and a graphical user interface for pre- and post-processing (Scanscot Technology AB,

2015b).

So-called structure lines describe the geometry of the bridge. Lines that usually consists of a

stake out line in the center of the bridge, which describes the direction of the bridge, and two

borderlines that describes the width and banking of the bridge, see Figure 6. The rest of the

bridge geometry, such as the bridge deck geometry, is modelled using these structure lines,

along with transversal support lines added to indicate support locations as basis points (Scanscot

Technology AB, 2015a).

Figure 6 - BRIGADE/Standard structure lines (Scanscot Technology AB, 2015a).

BRIGADE/Standard uses 4-node shell elements with one integration point, see Figure 7, to

model the deck of the structure. Elements that can be used for both thick and thin shell

structures, as they are able to handle transverse shear forces. The results of the FEM calculation

are interpolated between the integration point and the nodes.

Figure 7 - A BRIGADE/Standard four-node shell element with one integration point (Scanscot Technology AB, 2015a).

The result sections for stresses and section forces in the BRIGADE/Standard shell elements are

denominated using a local s, a and z coordinate system, visualized in Figure 8.

Figure 8 - BRIGADE/Standard coordinate system for shell elements (Scanscot Technology AB, 2015a).

19

More specifically, the moment and shear force shell element section forces for the bridge deck

is described using the directions presented in Figure 9 and Figure 10 below.

Figure 9 - BRIGADE/Standard directions for the shell element moments (Scanscot Technology AB, 2015a).

Figure 10 - BRIGADE/Standard directions for the shell element shear forces (Scanscot Technology AB, 2015a).

BRIGADE/Standard will calculate the traffic loads acting on the bridge using the type vehicle

model, described in paragraph 3.2.2, where the type vehicles are acting on user specified

traffic lanes. Each lane symbolizes the centerline of the type vehicle configuration moving

along the bridge, see Figure 11, and BRIGADE/Standard will, for each node and result

component, find the most critical traffic load position and/or positions (Scanscot Technology

AB, 2015a).

Figure 11 - BRIGADE/Standard traffic lanes (Scanscot Technology AB, 2015a).

Furthermore, BRIGADE/Standard will calculate the actions due to the self-weight and

pavement weight acting upon the bridge, see Figure 12.

20

Figure 12 - Self- and pavement weight acting on the bridge (Scanscot Technology AB, 2015a).

BRIGADE/Standard also implements forces such as overburden, earth pressure and braking

forces into the model and calculations as well as a full load combination system according to

the Swedish standards, whose load coefficients are presented in Appendix D.

3.4 Bridge load carrying capacity calculations

3.4.1 General approach

In many aspects, bridge load carrying capacity calculations is similar to the design of new

bridges as they share many of the same principles and calculation processes. However, an

essential difference lies in the fact that when a new bridge is designed a more conservative

approach is generally a good thing. But, when a bridge is being assessed it is vital to avoid

unnecessarily conservative approaches as the economic repercussions, due to replacement or

reparation cost, when deciding that a bridge is deficient can be significant, which make proper

condition and capacity assessment of bridges and structures absolutely vital (Sustainable

bridges, 2007).

To add to this problem, very few of the existing bridges have been designed according to current

design rules and regulations. This, despite years of problem free operation, means that the safety

level of numerous in-service structures, in this case road bridges, can be shown to be inadequate

compared to current design and code documents (COST, 2004).

Structural bridge assessment is usually carried out using formal and rule-based standard

calculations. However, according to COST (2004), many of the factors and parameters that

generates structural instability or collapse on structures and bridges cannot be taken into

account in standard based calculations. Thereby, major approximations are required and

uncertainties are an inherent part of the load carrying capacity calculations. Nevertheless, as

COST (2004) puts it “Calculation based assessment are the only practical means available at

present for gaining assurance”.

The appropriate and required level of safety when designing a new bridge is higher than what’s

required or suitable for an existing bridge. According to COST (2004), this is due to the fact

that the degree of knowledge of existing structures, and the certainty of which the actual traffic

conditions can be measured, is significantly more accurate compared to the knowledge at hand

21

when designing a new bridge. Thereby, the partial safety factors can, in theory, be reduced with

a maintained degree of structural safety (COST, 2004).

3.4.2 Condition assessment

Although a proper condition assessment will not be performed in this thesis - the assumption is

made that the bridge is undamaged - it still has an integral part in the general maintenance and

capacity assessment of a nations highway- and railway bridges. A condition assessment is

undertaken to provide information on the overall condition of a structure or its elements.

Information regarding the extents of possible defects and their effects on the bridge capacity

and life span can also be derived and calculated following a bridge condition assessment

(COST, 2004).

BRIME (2001) describes the main objectives of a bridge condition assessment as follows:

Identify deterioration processes

Provide an indication of the condition of a structure and/or of its components or

elements

Identify further work

Rank a structure according to the need for future work

Optimize expenditure on further works

When performing a condition assessment Plos et al. (2008) states that it is important to properly

assess the material properties and bridge deterioration on the specific bridge in order to, in a

later stage of the assessment, be able to use the most relevant and correct material parameters.

Deterioration of bridges can, according to BRIME (2001), be divided into three sub categories:

Deterioration arising from faults in design, building materials or components

Defects due to the construction method or defects occurring during the production

process

Deterioration caused by external influences

Furthermore, BRIME (2001) states that the most common form of deterioration for concrete

bridges specifically is corrosion of the reinforcement, and thereby impairment of the

reinforcement strength, caused by the ingress of carbon dioxide and, or, chloride ions.

Furthermore, methods for assessment of bridges and their Life Cycle Costs have been studied

in e.g. the European projects Sustainable Bridges (2007) and Mainline (2014).

Another aspect worth considering is the inherent conservative material capacity assumptions

that are used when performing capacity calculations. Specifically, when calculating the shear

force resistance for cross-sections without shear reinforcement, Vc, which, especially for slabs,

are very uncertain and thus, underestimated in most national codes and calculation regulations.

These, perhaps overly, conservative underestimations of the shear force capacity of concrete

slabs is discussed and described in many sources, but, perhaps most notably by Nilimaa (2015)

22

and Nilimaa et al. (2016). Underestimations that by extension can lead to higher repair and

maintenance costs for the owner of the structure or bridge, in this case the Swedish transport

agency, Trafikverket.

3.5 Load carrying capacity calculations according to Swedish codes Load carrying capacity calculations are, in Sweden, primarily carried out using the Swedish

codes, rules and recommendations put forth in Trafikverket (2016a) and Trafikverket (2016b).

Furthermore, design guidance and regulations regarding concrete structures are primarily based

on Boverket (2004).

In order to perform a load carrying capacity calculation for a bridge, Trafikverket (2016a) states

that load limit values for the axle load, A, and the bogie load, B, are to be calculated for all

parts of the structure and all limit states. However, this thesis focuses on ultimate limit state

calculations, thus the serviceability limit state is disregarded. Although also disregarded in this

report, capacity checks for military vehicles as well as regular extra-heavy vehicles are

performed when conducting a full, proper, capacity assessment on a road or highway bridge

(Trafikverket, 2016a). Load carrying capacity calculations are usually carried out under the

assumption that the bridge in question is undamaged.

The bridge traffic capacity is, as stated in Trafikverket (2016a), calculated for vehicle passing

the bridge on:

Their own lane

The middle of the carriageway, alone on the bridge

The middle of the carriageway with traffic on the opposite carriageway

Trafikverket (2016a) defines the bridge carriageway as the distance between rails or barriers on

which vehicles can travel freely. If the bridge is divided by rails in the middle, the bridge is said

to have two carriageways and if the bridge is undivided the bridge only has one carriageway,

see Figure 13 for a visualization of the bridge carriageway division.

23

Figure 13 - Bridge carriageway division.

When making calculations in regards to vehicles passing the bridge on their own lane, the type

vehicles are placed in the most unfavorable way possible on the bridge carriageway

(Trafikverket, 2016a), see Figure 14 for a visualization of the traffic loads.

Figure 14 - Type vehicles passing the bridge on their own lanes.

Calculating in regards to passage on the middle of the carriageway means that one loading lane

with type vehicles is placed in the middle of the carriageway, with a maximum eccentricity

(distance from the centerline of the carriageway) according to Table 1. The width of the load

lane in this case is 4,0 m, see Figure 15 for a sketch of the loading situation. For carriageway

widths, spanning between 4- and 7 m the eccentricity is linearly interpolated between the values

put forth in Table 1.

Table 1 - Eccentricity of type vehicles (Trafikverket, 2016a).

Bridge carriageway width [m] eccentricity [m]

4 0,5

≥7 1

24

Figure 15 - Type vehicles in the middle of the carriageway, alone on the bridge – eccentricity cases.

When calculating in regards to passage on the middle of the carriageway with traffic on the

opposite carriageway means that one carriageway is loaded in the same manner as in the case

with passage on the middle of the carriageway, alone on the bridge and the other, opposite one,

is loaded with type vehicles. This loading case is, quite obvious, only applicable for bridges

with two carriageways (Trafikverket, 2016a).

In order to calculate the capacity limit, the A and B value limits, for the bridge a proportionality

factor for increasing/decreasing the traffic loads, k, is used. An input traffic load value,

depending on which load carrying capacity class is being checked, is used as the original traffic

load in the calculations. For example, if the load carrying capacity is calculated on a BK1

bridge, the input traffic loads are: A = 120 kN and B = 180 kN. In this thesis, where the aim is

to check the implications of the new load carrying capacity class BK4, the input traffic loads

are A = 120 kN and B = 210 kN (Trafikverket, 2015).

The resistance in each critical cross-section regarding both shear and moment is calculated

using existing drawings. The load effects are then calculated in regards to both shear forces and

moments for both the permanent loads and the traffic loads. The proportionality factor is then

used to scale the traffic load and make the grade of utility 100 %. The last step is to multiply

the proportionality factor with the original input A/B - values in order to find the traffic load

carrying capacity for the bridge. An example of this process and the equations used to calculate

the proportionality factor, and thereby the capacity in regards to A and B for the bridge, is

presented below in equations 3.10 – 3.14 for the moment resistance case.

𝑀𝑅𝑑 = 𝑀𝐸𝑑 (3.10)

25

The load effects can be divided into a permanent component and traffic component. The

proportionality factor is multiplied with the traffic component in order to be able to scale the

traffic load, see equation 3.11.

𝑀𝐸𝑑 = 𝑀𝑝𝑒𝑟𝑚 + 𝑘 ∗ 𝑀𝑡𝑟𝑎𝑓𝑓𝑖𝑐 (3.11)

Equation 3.11 can then be combined with equation 3.10 creating equation 3.12.

𝑀𝑝𝑒𝑟𝑚 + 𝑘 ∗ 𝑀𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = 𝑀𝑅𝑑 (3.12)

Equation 3.12 is then rewritten in order to calculate the proportionality factor, k, see equation

3.13 below.

𝑘 = 𝑀𝑅𝑑−𝑀𝑝𝑒𝑟𝑚

𝑀𝑡𝑟𝑎𝑓𝑓𝑖𝑐=

𝑀𝑅𝑑−𝑀𝑝𝑒𝑟𝑚

𝑀𝐸𝑑−𝑀𝑝𝑒𝑟𝑚 (3.13)

The capacity A/B - values are then calculated by multiplying the proportionality factor with the

original input traffic point load value, see equation (3.14).

𝐵 = 𝑘𝐵 ∗ 𝐵210 (3.14)

This process is then performed for each loading case and each applicable load effect where the

lowest calculated B – value represents the capacity of the bridge in regards to the bogie traffic

load.

3.6 Concrete Slab Frame Bridge Concrete slab frame bridges are, both historically and presently, one of the most common bridge

types in Sweden, making up approximately 50 % of the current Swedish bridge stock

(Trafikverket, 2014b). Concrete slab frame bridges can be designed with one- or multiple spans

and can, depending on the span length, be designed with pre-stressed or non-prestressed

reinforcement, making the bridge type very versatile. The concrete slab frame bridge has a

superstructure that is fully restrained to the end supports creating a frame. It should also be

noted that the reinforcement should be continuous around the upper corners of the frame

(Trafikverket, 2014b).

The superstructure consists of a concrete slab, usually designed as a solid slab, visualized in

Figure 16 below. Solid concrete slabs typically have good force distribution properties, making

them efficient at carrying concentrated moveable loads, such as wheel loads for highway

bridges. However, for bridges with large span-widths it can occasionally be economical to

design the bridge superstructure as a hollow slab in order to reduce the impact of the self-weight

(Ryall, Parke & Harding, 2000).

26

Figure 16 - Superstructure cross-section, concrete slab frame bridge.

The road embankment is connected directly to the abutments through earth fill. The horizontal

earth pressures this connection produces benefits the stability of the bridge and creates a

positive overall impact on the bridge, see Figure 17.

Figure 17 - Principal sketch of a concrete slab frame bridge.

In general, concrete slab frame bridges are, according to Trafikverket (2014b), quite effective

for span-lengths up to 25 m for non-prestressed concrete and 35 m for prestressed concrete.

Ryall, Parke & Harding (2000) states that slab frame bridges have some positive maintenance

aspects compared to, for example simply supported bridges, in that the maintenance problems

that commonly appears in the joints will not be applicable for slab frame bridges.

27

4 CASE STUDY – Bridge at highway interchange Värö

The studied concrete slab frame bridge, the bridge at highway interchange Värö is thoroughly

described. The bridge material properties and reinforcement design is also presented.

4.1 Bridge at highway interchange Värö The bridge, a two-span concrete slab frame bridge, is part of the E-road, E6, spanning between

Malmö and Gothenburg. The bridge is, more precisely, located at the highway interchange

Värö, approximately 17 km north of the Swedish city Varberg (see Figure 18). The traffic

interchange consists of two similar bridges, carrying traffic in two lanes each. The western

bridge, on which this load carrying capacity calculation is carried out, carries highway traffic

towards Malmö and the eastern bridge carries traffic towards Gothenburg. The load carrying

capacity calculation is carried out using design drawings and information according to the

BaTMan database (Trafikverket, 2016c), in which Värö bridge has the bridge index number

13-576-2.

Figure 18 - Bridge location (Värö bridge).

The bridge was constructed in 1981 and is part of the new proposed BK4 road network. The

bridge was highlighted by Trafikverket (2014a) as a critical bridge with possible capacity issues

when affected by the increased traffic loads in the new BK4 load carrying capacity class. The

bridge has a total length of approximately 31 m and an approximate width, consisting of two

traffic lanes and one carriageway, of 12 m (Trafikverket, 2016c). An image of the bridge from

the west is presented in Figure 19.

28

Figure 19 - Värö bridge from the west.

As previously stated the bridge consists of two-spans with equal theoretical span lengths of

15,35 m. When including the full abutment width, the total bridge length amounts to 31,3 m.

The bridge, as viewed in the overview drawing presented by Trafikverket (2016c), is visualized

below in Figure 20.

Figure 20 - Overview drawing of Värö bridge (Trafikverket, 2016c).

The bridge superstructure is a continuous slab where the reinforcement on both the top- and

bottom is passing the middle-supports uninterrupted. The bridge is, as previously stated, a slab

frame bridge in which the superstructure and the end-supports are rigidly connected by

uninterrupted reinforcement in the outer corners. The bridge has three monolithically connected

columns in the middle, see Figure 20 & Figure 21. Furthermore, the bridge slab is 0,7 m thick

and has a transversal slope of 2 %.

Figure 21 - Bridge cross-section - Värö Bridge (Trafikverket, 2016c).

29

4.2 System drawings and calculation assumptions The load carrying capacity calculation will be carried out as a bridge load carrying capacity

calculation in accordance with Trafikverket (2016a). The highest possible axle- and bogie load

capacity is calculated for every load effect on the superstructure and the outer connection

between the superstructure and the abutments. Then a final A/B value is, as the bridge only

consists of one carriageway, presented for vehicle passing the bridge on:

Their own lane

The middle of the carriageway, alone on the bridge

The bridge is calculated as a slab frame bridge with monolithically connected abutments and

columns, a system drawing of the bridge is presented below in Figure 22. The edge beams are

not statically active and thereby does not affect the resistance of the bridge. The load carrying

capacity calculation is performed under the assumption that the bridge is undamaged. As seen

in the system drawing, see Figure 22, and the bridge cross-section, see Figure 21, the bridge is

symmetric in both the longitudinal- and transversal direction. Thus, the calculations are only

carried out for one half of the bridge.

In order to account for the increased tension in the cross-section due to inclined cracks the

moment curve is shifted with the distance, al, when performing capacity calculations in regards

to moment (Boverket, 2004). In this case, for a bridge built after the year 1960 the distance al

is 1,0d (Trafikverket, 2016a).

The capacity calculations have been performed using the commonly accepted lapping- and

anchorage length 50∅ (Boverket, 2004).

Figure 22 - System drawing.

4.3 Material parameters The bridge span-length is bigger than 15 m and thereby, according to Trafikverket (2016a), the

bridge is belonging to reliability class 3 with a partial coefficient, γn = 1.2 (Boverket, 2004).

30

The bridge was, according to Trafikverket (2016c), constructed using concrete class K40 with

a concrete cover of 30 mm. Characteristic values for the concrete tensile strength, fctk, the

concrete compressive strength, fck, and the characteristic modulus of elasticity, Eck, is presented

below in Table 2.

Table 2 - Material parameters concrete class K40 (Trafikverket, 2016a).

Concrete class K40

fck fctk Eck

[MPa] [MPa] [GPa]

28,5 1,95 32,0

For bridges in performance class I, built before 1986 Trafikverket (2016a) states that the

characteristic compressive concrete strength ought to be adjusted according to equation 4.1

below.

𝑓𝑐𝑘,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 1.15𝑓𝑐𝑘 − 2(𝑀𝑃𝑎) (4.1)

Creating the new, adjusted, characteristic compressive concrete strength, fck,adjusted = 30.8 MPa.

This increase in compressive strength originates from the fact that the original compressive

strength, measured after 28 days, continues to harden even after the bridge has been constructed

(Thun, Ohlsson & Elfgren, 2006).

The characteristic material parameters are converted into design values using equation 4.2 and

4.3 in accordance with Boverket (2004), paragraph 2.3.

𝑓𝑑 =𝑓𝑘

𝜂𝛾𝑚𝛾𝑛 (4.2)

𝐸𝑑 =𝐸𝑘

𝜂𝛾𝑚𝛾𝑛 (4.3)

Where, for calculations in ULS, the product, 𝜂𝛾𝑚 , can be said to be 1.5 for calculations

regarding strength parameters and 1.2 when calculating in regards to the modulus of elasticity.

The design values for the concrete tensile strength, fctd, the concrete compressive strength, fcd,

and the characteristic modulus of elasticity, Ecd, is calculated using equations 4.2 and 4.3. When

calculating in regards to the compressive concrete strength fck,adjusted is inserted into equation

4.2 instead of fck. The results are presented below in Table 3.

31

Table 3 - Design concrete material parameters.

Concrete class K40

fcd fctd Ecd

[MPa] [MPa] [GPa]

17,1 1,08 22,2

There are three different types of reinforcement classes present in the bridge; KS40, KS40S and

KS60S, all with diameters spanning between 6-16 mm (Trafikverket, 2016c). Characteristic

values for the tensile strength, fyd, and the characteristic modulus of elasticity, Esd, is presented

below in Table 4.

Table 4 - Characteristic reinforcement material parameters (Trafikverket, 2016c).

Reinforcement class fyk Eck

[MPa] [GPa]

KS40 410,0 200,0

KS40S 410,0 200,0

KS60 620,0 200,0

The characteristic material parameters presented in Table 4 are converted into design values

using equation 4.2 and 4.3 in accordance with Boverket (2004), paragraph 2.3. Where, for

calculations in ULS, the product, 𝜂𝛾𝑚 , can be said to be 1.15 for calculations of strength

parameters and 1.05 when calculating in regards to the modulus of elasticity. The calculated

design values are presented below in Table 5.

Table 5 - Reinforcement design parameters.

Reinforcement class fyd Ecd

[MPa] [GPa]

KS40 297,1 158,7

KS40S 297,1 158,7

KS60 449,3 158,7

4.4 Reinforcement The reinforcement quantities, directions and mode of utility are determined using the

reinforcement drawings presented by Trafikverket (2016c). Excerpts from these drawings is

presented in Appendix E. In order to be able to determine the reinforcement quantities,

directions and mode of utility in each section of the bridge a list of the reinforcement types and

modes of utility were created using the drawings presented by Trafikverket (2016c), this list is

presented in Appendix F. The reinforcement strength- and modulus of elasticity is calculated

and presented in paragraph 4.3 for each reinforcement class present in the bridge. The bridge is

32

shear reinforced on a 4,6 m wide strip over the column supports in the middle of the bridge, see

the dashed area on Figure 23 below. The rest of the bridge has no shear reinforcement.

Figure 23 - Shear force reinforcement distribution (Trafikverket, 2016c).

The reinforcement in the connection between the slab and the abutments is presented in Figure

24 and Appendix F, where the indexes, diameters and s-distances of the bars is presented. The

reinforcement is uninterrupted over the corner of the connection, thereby making sure that the

bridge exhibits the structural properties of a slab frame bridge.

Figure 24 - Reinforcement - connection between abutment and slab (Trafikverket, 2016c).

In order to be able to model the bridge accurately in regards to orthotropic and isotropic material

behavior, further discussed and explained in paragraph 3.3.1, the transversal- and longitudinal

reinforcement quantities were summarized and the quotient between the transversal- and

longitudinal reinforcement were calculated, see Table 6.

Table 6 - Transversal and longitudinal reinforcement quantities (Trafikverket, 2016c).

Reinforcement quantities As,tot Distribution width

33

[mm2/m] [m]

Transversal reinforcement span 1131 13,325

Transversal reinforcement support 3035 2

Mean transversal reinforcement 1379 15,325

Longitudinal reinforcement span 3657 13,325

Longitudinal reinforcement support 5054 2

Mean longitudinal reinforcement 3839 15,325

When dividing the mean longitudinal reinforcement with the mean transversal reinforcement

the quotient between them is 2,8. Thus, there is, on average, 2,8 times more reinforcement in

the longitudinal direction compared with the transversal direction, information that will be used

later on when modelling the BRIGADE/Standard model.

34

5 BRIGADE/Standard model

The BRIGADE/Standard model used to calculate the load effects on the bridge is described.

Descriptions of the modelling of the bridge geometry, boundary conditions and material

properties is presented and in addition to this the model verification process is presented.

5.1 Geometry and boundary conditions The bridge is, in the BRIGADE/Standard model, treated as a slab frame bridge where the slab,

abutments and wing walls are modelled using shell elements. The bridge geometry, see Figure

25, is modelled according to the design drawings (Trafikverket, 2016c). In order to be able to

model the boundary conditions as accurately as possible the connection between the abutments

and the slab and the columns and the slab are modeled as monolithic connections.

Figure 25 - BRIGADE/Standard bridge geometry.

5.2 Mesh generation and convergence study In order to generate a different finite element mesh on different parts of the bridge additional

support lines were added to the model – creating six different sectors of the bridge, see Figure

26. Using these sectors different finite element mesh sizes can be generated on the span and

over the supports, making it easier to produce accurate results.

35

Figure 26 - Support lines and mesh generation sections.

The finite element mesh is generated using an iterative process where the finite element sizes

are gradually decreased, creating a finer and finer mesh until the results, in this case the

convergence test were performed for longitudinal moment in the dead weight load case,

converged into a single line, see Figure 27. The finite element mesh sizes used in this iterative

process, where four different element mesh models were used to produce a satisfactory

convergence, are presented in Appendix G. The significance of this process is highlighted in

Figure 27 where it is clear that the results created by the model differ greatly depending on

which element mesh sizes are used.

Figure 27 - Convergence test.

36

As seen in Figure 27 above finite element mesh model 3 and 4 have an almost identical moment

curve, meaning that further refinement of the mesh is unnecessary. Thus, finite element mesh

model 4, presented in Table 7 below where the different sectors stems from the sectors

presented in Figure 26, will be used in the BRIGADE/Standard calculations.

Table 7 - Finite element mesh model 4.

Model 4

Longitudinal direction Transversal direction

Number of

Elements

Section

length

Element

length

Number of

Elements

Section

length

Element

length

Section [pcs] [m] [m] [pcs] [m] [m]

1 8 3 0,38 80 12 0,15

2 24 10,32 0,43 80 12 0,15

3 13 2 0,15 80 12 0,15

4 13 2 0,15 80 12 0,15

5 24 10,32 0,43 80 12 0,15

6 8 3 0,38 80 12 0,15

As seen in Table 7 the mesh sizes differ greatly depending on their location on the bridge model.

A finer mesh is used around the supports - especially the column supports - to limit the risk of

load effect spikes and create results that are more accurate. This increased mesh refinement

around the supports is visualized in Figure 28 below where it is clear that the mesh is

significantly finer around the column supports in the middle of the bridge.

Figure 28 - Finite element mesh on the bridge.

5.3 Material model As presented in paragraph 4.4 and Table 6 the difference between the amount of reinforcement

in the transversal and the longitudinal direction is quite significant. Thus, modeling the bridge

in an isotropic manner would produce unrealistic results, results where the transversal

reinforcement would have a significantly higher grade of utility compared to the longitudinal

reinforcement. However, if the bridge is modelled in an orthotropic manner - as discussed in

paragraph 3.3.1 – the model is able to produce results that are more realistic. In order to produce

a model that, as closely as possible, simulates the real behavior of the concrete slab the modulus

37

of elasticity is scaled using the quotient between the longitudinal- and transversal reinforcement

calculated in paragraph 4.4. As seen in Figure 29 below, the modulus of elasticity in the

longitudinal direction is set as the original 32 GPa, whereas the modulus of elasticity in the

transversal direction is divided with the quotient between the longitudinal- and transversal

reinforcement calculated in paragraph 4.4, resulting in a transversal modulus of elasticity of

11,4 GPa. This division of the transversal modulus of elasticity is done in order to simulate a

realistic orthotropic behavior.

Figure 29 - Material manager - BRIGADE/Standard model.

The shear modulus in the longitudinal- and vertical direction is calculated using the classical

formula, presented in paragraph 3.3.1, equation 3.3. However, as discussed in paragraph 3.3.1,

the shear modulus in the transversal direction must be altered in order to account for the

orthotropic behavior of the slab. The new transversal shear modulus is, as seen in Figure 29,

7,97 GPa, and is calculated using an equation presented by Hober (1923), see equation 3.4 in

paragraph 3.3.1.

5.4 Actions The load effects are calculated using the FEA – software BRIGADE/Standard. The actions on

the bridge are calculated in accordance with Trafikverket (2016a), and then inserted into the

BRIGADE/Standard model. The following loads are considered:

- Self-weight

- Pavement

- Earth pressure

- Surcharge

- Traffic loads

38

- Braking force

The process of calculating these loads and inserting them accurately into the finite element

model is explained in the following paragraphs.

5.4.1 Self-weight

Reinforced concrete has a weight of 24 kN/m3, according to Trafikverket (2016a). The weight

is assigned to the different parts of the bridge and BRIGADE/Standard calculates the self-

weight using the inserted bridge geometry. A geometry inserted in the BRIGADE/Standard

model using drawings from Trafikverket (2016c).

5.4.2 Pavement

The total pavement thickness is, according to Trafikverket (2016c), 90 mm and the pavement

constitutes of asphalt with a weight of 22 kN/m3. The total pavement load is calculated by

multiplying the weight- and the thickness of the pavement, leading to a total pavement load of

1.98 kN/m2.

5.4.3 Earth pressure

The earth pressure on the bridge abutments is calculated in accordance with Trafikverket

(2016a). The soil around the bridge consists of a mixture of sand and gravel, a mixture that for

the basis of this calculation is assumed to be 50 % sand and 50 % gravel. Due to this specific

mixture assumption the mean values for the weight and earth pressure coefficients of sand and

gravel are used in the calculations. See Table 8 for a presentation of the weight and earth

pressure coefficient for sand and gravel along with their calculated mean values. Due to the

bridge location, the ground water is, for finite element calculation purposes, assumed to be well

below the lower part of the abutments.

Table 8 - Material parameters - Earth pressure (Trafikverket, 2016a).

Material ρ Ko Ka Kp

[kN/m3] [-] [-] [-]

Gravel 19 0,46 0,29 3,39

Sand 18 0,38 0,24 4,2

Mean 18,5 0,42 0,27 3,80

5.4.4 Surcharge

Surcharge leads to a horizontal load acting on the bridge; in this case, for capacity calculations

of the superstructure, only double-sided surcharge is considered (Trafikverket, 2016a). The

load intensity is 20 kN/m2 on a width of 6 m and 10 kN/m2 on the remaining part of the bridge.

39

5.4.5 Traffic load

Two different traffic load scenarios are modelled in the BRIGADE/Standard model, using so

called traffic lane lines. One for traffic with vehicles passing the bridge on their own lane, see

Figure 30, and one for traffic passing the bridge in the middle of the carriageway, alone on the

bridge, see Figure 31.

The traffic lanes are modelled as described in paragraph 3.2.2.3. For traffic passing the bridge

on its own lane, the first traffic lane is placed 1,5 m from the inside of the edge beams, see

Figure 30. The BRIGADE/Standard software multiplies the first traffic lane with 1,0 and the

second with 0,8, once again in accordance with the procedure put forth in paragraph 3.2.2.3.

For traffic passing the bridge in the middle of the carriageway, alone on the bridge the traffic

lanes originate from the middle of the carriageway with eccentricities in accordance with the

theory put forth in paragraph 3.2.2.3.

The type vehicles modelled in the BRIGADE/Standard model is modelled with an A - value set

to 120 kN and a B – value set to 210 kN in accordance to Trafikverket (2015). The distance

between the axles in type vehicles j, k and l is set as 25 m, which stems from the fact that the

bridge is located on a highway (Trafikverket, 2016a).

Figure 30 - Traffic lanes for traffic passing the bridge on its own lane.

40

Figure 31 - Traffic lanes for traffic passing the bridge in the middle of the carriageway, alone on the bridge.

5.4.6 Dynamic contribution factor

A dynamic contribution factor, calculated using equation 5.1, is multiplied with every traffic

point load.

𝐷 =180+8(𝑣−10)

20+𝐿[%] (5.1)

Where, v = 80 km/h and the length, L, is calculated using equation 5.2.

𝐿 = 𝑙𝑚 ∗ 1,2 (5.2)

The factor 1,2 is dependent on the number of spans (Trafikverket, 2016a), and the factor lm

corresponds with the span length from the system drawing, see Figure 22. Consequently,

inserting the span length 15.3 m into equation 5.2 leads to an L which equates to 18,4 m.

Inserting the velocity, v, and the calculated factor, L, into equation 5.2 leads to a dynamic

contribution factor equaling to 1,2.

5.4.7 Braking force

The braking force creates a horizontal force acting on the bridge, a force, whose magnitude is

dependent on the bridge length. Trafikverket (2016a) states that the braking force is 70 kN for

bridge lengths up to 20 m and 170 kN for bridge lengths up to 40 m. The length of Värö bridge

is 30,65 m and, in order to obtain the accurate force for that bridge length, the force is linearly

interpolated, see equation 5.3 below.

𝑄𝑏𝑟𝑎𝑘𝑒 = 70 +(170−70)

(40−20)∗ (30,65 − 20) = 123,3𝑘𝑁 (5.3)

41

5.4.8 Load combinations

The load carrying capacity calculation is carried out in load combination A, in accordance with

Trafikverket (2016a). The usage of load combinations for load carrying capacity calculations

are further explained in paragraph 3.2.3.

5.5 Result sections The critical result lines used when extracting the load effects from the BRIGADE/Standard

model, which are presented in Figure 32 and Figure 33, are decided in accordance with the

theory presented in paragraph 3.3.2. The result section line for the moment load carrying

capacity calculation is placed the distance, a, see equation 3.5, from the center of the columns

in order to eliminate the moment spikes that appears directly above the column supports from

the calculation. The result section when analyzing the moment in the connection between the

abutments and the bridge slab is placed on the upper edge of the abutments in order to obtain

the maximum design moment in the connection. The result line sections in regards to shear

forces are positioned at the center of the columns.

The differing traffic load conditions for the load case with traffic on its own lane and traffic in

the middle of the carriageway results in the usage of different result lines for the different load

cases. The result lines on which the load effects are extracted from the BRIGADE/Standard

model is presented in Figure 32 and Figure 33 below. The only differing result line between the

two cases is, as seen in Figure 32 and Figure 33, the result line regarding the longitudinal

moment, dependent on the location of the traffic load lines, which differs between the two load

cases.

Figure 32 - Result lines - Traffic passing the bridge on its own lane.

42

Figure 33 - Result lines - Traffic passing the bridge in the middle of the carriageway, alone on the bridge.

The load effects on the shear force result lines, within the distances presented in paragraph 3.3.2

from the supports, are disregarded in the capacity calculations in order to eliminate the

unrealistic shear force spikes that occurs above the supports. In Figure 34 below, the

disregarded areas for the longitudinal shear force result-line, see Figure 32 and Figure 33, is

indicated by dashed marks. The same general concept for the disregarded areas, although not

presented in this section, applies for the transversal shear result lines presented in Figure 32 and

Figure 33.

Figure 34 - Result sections - longitudinal shear force.

5.6 Result verification As previously discussed in paragraph 3.3, perhaps the most important part of a finite element

analysis is the result verification. A suitable initial step when attempting to verify the results

produced by the finite element model is to make a general analysis of the deformations on the

model to make sure that they appear reasonable. As seen in Figure 35, where the deformations

on the bridge model for the dead weight load case is presented, the deformations on the model

looks reasonable with high deformations, as one would suspect, appearing on the middle of the

span.

43

Figure 35 - Deformed bridge model - dead weight load case.

In order the verify the load effects calculated by the BRIGADE/Standard model a comparison

with the load effects obtained when using the 2-D software FRAME ANALYSIS is performed,

for both moment and shear force. When verifying the results, a load case in which only the dead

weight is affecting the bridge is used. When verifying the moment, a comparison between the

results obtained from BRIGADE/Standard and FRAME ANALYSIS is made for the mid-span

moment and edge-moments. The moment at the column support is heavily affected by the 3-

dimensional behavior in the BRIGADE/Standard model and is thereby not considered when

verifying the results. The moment curves for the dead weight load case are presented in Figure

36 and Figure 37 for the BRIGADE/Standard model and the FRAME ANALYSIS model

respectively.

Figure 36 - BRIGADE/Standard dead weight moment.

44

Figure 37 - FRAME ANALYSIS dead weight moment.

As seen in Table 9 below, where the results of the BRIGADE/Standard and FRAME

ANALYSIS calculations are summarized, the difference between the results is a maximum of

12 %, which is deemed acceptable.

Table 9 - Result verification – moment.

Moment result - verification

Brigade Frame

MRd MRd Difference

[kNm/m] [kNm/m] [%]

Abutment support -204,1 -228,3 11,9

Column support (mid-span) 208,1 194,4 -6,6

When verifying the shear force results, using the same logic as in the moment verification, the

shear forces around the column mid-span supports are disregarded. In Figure 38 and Figure 39,

where the results of the BRIGADE/Standard and FRAME ANALYSIS calculations are

presented, the red dots on the shear force curves are indicating the start of the result section for

longitudinal shear forces (951 mm from the support), see paragraph 3.3.2 and 4.1.8.2 for further

discussion.

45

Figure 38 - BRIGADE/Standard dead weight shear force.

Figure 39 - FRAME ANALYSIS dead weight shear force.

As seen in Table 10 the difference between the shear forces obtained using BRIGADE/Standard

and FRAME ANALYSIS is approximately 2 %, which is deemed highly acceptable.

Table 10 - Result verification - shear force.

Shear force - result verification

Brigade Frame

V,Rd V,Rd Difference

[kN] [kN] [%]

Abutment support -100,8 -103,0 2,0

46

6 Resistance calculations

In this paragraph, examples of moment- and shear force resistance calculations are

demonstrated for the most critical points and result lines on the bridge.

6.1 Moment resistance calculation The most critical result line in regards to moment on the bridge, determined later on in chapter

7, is result line 3, see Figure 32, which represents the lower transversal reinforcement in the

span, and the most critical point in that section is 3 m from the inside of the edge beam, along

the section line, see Figure 40. A moment resistance calculation for the critical point, illustrated

in Figure 40, is carried out in this paragraph. This calculation works as an example for the other

moment resistance calculations, for different result lines, which are presented in Appendix H.

The critical moment point appears for the load case in which the type vehicles are passing the

bridge on their own lane.

Figure 40 - Critical section and critical point – moment.

The calculation is, as previously stated, performed for the critical point, xL = 3 m. The load

effects are calculated using BRIGADE/Standard. Furthermore, the calculation is, as previously

stated, carried out in ultimate limit state under the conservative assumption that the cross-

section is single reinforced (Boverket, 2004). Moreover, the calculation is carried out under the

assumption that the cross-section is normally reinforced, i.e. the reinforcement yields before

the concrete crushes, thus the relation, εs ≥ εsγ, holds true (Boverket, 2004).

The moment calculation is carried out over strip with a width of, b = 1000 mm. As illustrated

in the system drawing, see Figure 22, the height of the slab is h = 700 mm. The transversal

reinforcement in the section consists of one layer of ∅12 KS40 reinforcement with an s-distance

of 200 mm and a concrete cover, c = 30mm (Trafikverket, 2016c). The total amount of tensional

reinforcement over the 1 m strip is As = 565 mm2, an amount calculated using the reinforcement

47

list and drawings presented in Appendix E and F respectively. The distance, d, from the center

of gravity of the reinforcement to the upper edge of the cross-section is calculated using

equation 6.1 below.

𝑑 = ℎ − 𝑐 −∅

2 (6.1)

The material properties of both the reinforcement and the concrete in the section are calculated

and presented in paragraph 4.3. Both the material- and geometrical calculation inputs are

summarized in Table 11 below.

Table 11 - Geometry and material input.

Geometry and Material input

xL [m] 3

b [mm] 1000

h [mm] 700

d [mm] 664

As [mm2] 565

fcd [MPa] 17

fyd [MPa] 297

Ecd [GPa] 159

The first step when performing a moment resistance calculation for a single reinforced cross-

section is to calculate the height of the concrete cross-section compression zone, x, see equation

6.2 (Boverket, 2004).

𝑥 =𝑓𝑦𝑑𝐴𝑠

0,8𝑏𝑓𝑐𝑑 (6.2)

The height calculated for the compression zone is, x = 12,3 mm. The moment resistance, MRd,

is then calculated using equation 6.3 (Boverket, 2004).

𝑀𝑅𝑑 = 𝑓𝑦𝑑𝐴𝑠(𝑑 − 0,4𝑥) (6.3)

The transversal moment resistance for the lower reinforcement on result line 3 is, as calculated

by equation 6.3, MRd = 111 kNm/m. The assumption that the cross-section is normally

reinforced is checked by comparing the reinforcement strain, εs, and the reinforcement yield

strength strain, εsγ, making sure that εs ≥ εsγ. The reinforcement strain, εs, in the cross-section is

calculated using equation 6.4 below, where the ultimate compressive strain of the concrete is,

εcu = 3,5 ‰ (Boverket, 2004). The reinforcement yield-strength-strain, εsγ, is calculated using

equation 6.5 below.

48

𝜀𝑠 = 𝜀𝑐𝑢 (𝑑

𝑥− 1) (6.4)

𝜀𝑠𝛾 =𝑓𝑦𝑑

𝐸𝑠𝑑 (6.5)

The results of these calculations, εs = 186 ‰ and εsγ = 1,9 ‰, confirms that, εs ≥ εsγ, and thus

confirms that the cross-section is normally reinforced and that the original assumption were

appropriate.

A moment resistance calculation for the whole results line (Result line 3), illustrated in Figure

40, is presented in Appendix H. Furthermore, moment resistance calculations, including

moment resistance curves, for the other applicable result lines, see Figure 32 and Figure 33, is

also presented in Appendix H. In order to limit the information presented in the appendices

only the most critical result line cases are presented in Appendix H.

Although not applicable for the specific point calculation carried out in this paragraph the

anchorage length, 50∅, are taken into account when making the moment resistance diagrams

for the different result lines presented in Appendix H.

6.2 Moment resistance calculation - Connection between slab and abutment The moment resistance of the connection between the slab and the abutments is calculated using

the same methodology as in paragraph 6.1. The calculation regards the longitudinally directed

moment over result line 4, see Figure 32 and Figure 33. All of the reinforcement present in the

cross-section has an adequate anchorage length before the result line, thus, the calculation is

carried out using the full resistance of all reinforcement bars.

The geometrical and material properties for the moment resistance calculation regarding the

connection between the slab and the abutments are presented in Table 12.

Table 12 - Geometry and material input - connection between slab and abutments.

Geometry and Material input

h [mm] 700

b [mm] 1000

49

d [mm] 626

As,layer1 [mm2] 1517

As,layer2 [mm2] 1517

As,tot [mm2] 3035

fcd [MPa] 17

fyd [MPa] 449

Ecd [GPa] 159

The moment resistance is calculated using equation 6.2 and 6.3, and the check of whether the

cross-section is normally reinforced is carried out using the same methodology as in paragraph

6.1, using equations 6.4 and 6.5. The results are presented below in Table 13, where the moment

resistance, MRd, is 799 kNm/m and, εs ≥ εsγ, which confirms that the cross-section is normally

reinforced.

Table 13 - Moment resistance - connection between the slab and the abutments.

Moment resistance

x [mm] 99,7

MRd [kNm/m] 799

εcu [‰] 3,5

εs [‰] 185

εsy [‰] 2,8

6.3 Shear force resistance calculation The most critical section line in regards to shear force on the bridge, determined later on in

chapter 7, is result line 6, see Figure 32, which represents the longitudinal shear force. The most

critical point in that section is, xL = 13,0 m, along the longitudinal result line, see Figure 41. A

point which is located just before the shear reinforcement starts to positively affect the

resistance of the cross-section. A shear force resistance calculation for the critical point,

illustrated in Figure 41, is carried out in this paragraph. The critical shear force point appears

for the load case in which the type vehicles are passing the bridge on their own lane. Shear

resistance calculations for the whole result line 6, as well as result line 5, are presented in

Appendix I.

50

Figure 41 - Critical point and critical result section line - shear force.

The shear force calculation is carried out over a strip with a width of, b = 1000 mm. As

illustrated in the system drawing, see Figure 22, the height of the slab is h = 700 mm. When

conducting a shear force calculation, Boverket (2004) states that the reinforcement which

affects the shear resistance calculation is the one that is subject to tensional forces in the specific

cross-section, reinforcement whose quantity is denoted by the term, As0. The total amount of

reinforcement in the tensional part of the 1 m strip, for the specific result section, is As0 = 4233

mm2 (Trafikverket, 2016c). There is no shear reinforcement, whose quantity is denoted by the

term Asv, present at the critical point which is considered in this calculation. The distance, d,

from the center of gravity of the reinforcement to the upper edge of the cross-section is

presented in Table 14 alongside the material properties, calculated in paragraph 4.3, the

geometrical input and the reinforcement quantities.

Table 14 - Geometry and material input - shear force calculation.

Geometry and Material input

xL [m] 13

Lspan [m] 15,3

b [mm] 1000

h [mm] 700

d [mm] 626

As0 [mm2] 4233

Asv [mm2] 0

fcd [MPa] 17

fctd [MPa] 1,08

fyd [MPa] 297

51

The shear resistance, VRd, of a cross-section is calculated using equation 6.6 where, Vc,

represents the shear resistance for a cross-section without shear reinforcement and, Vs,

represents the resistance of the shear reinforcement in the cross-section (Boverket, 2004).

𝑉𝑅𝑑 = 𝑉𝑐 + 𝑉𝑠 (6.6)

The shear resistance of a cross-section without shear reinforcement, Vc, is calculated using

equation 6.7 (Boverket, 2004)

𝑉𝑐 = 𝑏𝑑(𝑓𝑣 + 𝑓𝑣𝑅) (6.7)

The terms b and d in equation 6.7 above is taken from Table 14. The term, fv, represents the

formal shear resistance of the concrete, a resistance that is calculated using equation 6.8.

𝑓𝑣 = 0,30𝜉(1 + 50𝜌)𝑓𝑐𝑡𝑑 (6.8)

An equation where the term, fctd, is taken from Table 14, and the terms, ξ and ρ, is, for this cross-

section, calculated using the equations 6.9 and 6.10 respectively - with input data from Table

14.

𝜉 = 1,3 − 0,4𝑑 (6.9)

𝜌 =𝐴𝑠0

𝑏𝑑≤ 0,02 (6.10)

For points within the distance, 3d, from the support, a positive contribution, denoted by the

term fvR in equation 6.7, due to loads acting on the upper part of the cross-section shall be added

to the shear resistance. That positive contribution, fvR, although not applicable for the point

considered in this calculation, is calculated using equation 6.11 (Svensk Byggtjänst, 1990).

𝑓𝑣𝑅 =𝑓𝑣

1−3𝑑

𝐿𝑠𝑝𝑎𝑛

− 𝑓𝑣 (6.11)

The shear reinforcement component, Vs, of the total shear resistance is calculated using equation

6.12 below, where, s, denotes the distance between the shear reinforcement bars and β denotes

the inclination of the shear cracks.

𝑉𝑠 = 𝐴𝑠𝑣𝑓𝑠𝑣0,9𝑑

𝑠 (sin 𝛽 + cos 𝛽) (6.12)

The result of the shear resistance calculation for this point is presented below in Table 15, where

the total shear resistance amounts to, VRd = 286 kN. The calculated shear resistance, VRd, needs

52

to be lower than the concrete compression failure resistance, VRd,max, calculated using equation

6.13 below. Which gives an upper limit for the shear force capacity.

𝑉𝑅𝑑,𝑚𝑎𝑥 = 0,25𝑏𝑑𝑓𝑐𝑑 (6.13)

As seen in Table 15 below the calculated, VRd, is acceptable as it is smaller than the maximum

shear resistance limit, VRd,max.

Table 15 - Shear resistance.

Shear resistance

ξ [-] 1,05

ρ [-] 0,0068

fv [MPa] 0,456

fvR [MPa] 0

Vc [kN] 286

Vs [kN] 0

VRd [kN] 286

VRd,max [kN] 2676

53

7 Load carrying capacity calculation

In this paragraph, load carrying capacity calculations, in which A/B load limits are calculated,

in regards to both moment and shear forces are presented and carried out for all critical parts of

the bridge.

7.1 Moment load carrying capacity calculation Moment load carrying capacity calculations, in which the design A/B limits are calculated for

each result line on the bridge, are presented in Appendix J for the load case in which the traffic

is passing the bridge on its own lane and Appendix K for vehicles passing the bridge in the

middle of the carriageway, alone on the bridge. In this paragraph, a moment load carrying

capacity calculation will be carried out for the most critical, in regards to moment, B-value

point on the bridge. The full load carrying capacity calculation results are as previously stated

presented in Appendix J and Appendix K respectively. Furthermore, the most relevant and

critical load carrying capacity calculation results are presented and analyzed in paragraph 8.2.

The location of the critical point in regards to moment, as well as the direction of the result line,

is illustrated in Figure 40, and as previously stated in paragraph 6.1, the critical point of the

bridge appears for the load case in which the type vehicles are passing the bridge on their own

lane. The moment effect curve, calculated using BRIGADE/Standard, is, as described in

paragraph 4.2, shifted with the factor al for all result line calculations. Calculations, with shifted

moment effect curves, that are presented in Appendix J and Appendix K.

The moment resistance of the point regarded in this calculation is, as calculated in paragraph

6.1, MRd = 111 kNm/m. As described in paragraph 3.5 the proportionality factor, kB, can be

calculated using equation 7.1.

𝑘𝐵 = 𝑀𝑅𝑑−𝑀𝑝𝑒𝑟𝑚

𝑀𝑡𝑟𝑎𝑓𝑓𝑖𝑐 (7.1)

The moment stemming from the permanent load, Mperm, and the moment stemming from the

traffic load, Mtraffic, are calculated using BRIGADE/Standard for each point- and load case on

the bridge. In regards to the critical point in this calculation the permanent moment is, Mperm =

11,4 kNm/m, and the traffic induced moment is, Mtraffic = 105,5 kNm/m. Inserting these

moments, alongside the moment resistance, MRd, into equation 7.1 results in a proportionality

factor equaling to, kB = 0,944, for this critical point.

The load carrying capacity B - value are then calculated by multiplying the proportionality

factor, kB, with the original input traffic point load value, in this case - for calculations regarding

the B-limit - B = 210 kN, see equation 7.2.

54

𝐵𝑑𝑖𝑚 = 𝑘𝐵 ∗ 𝐵210 (7.2)

Multiplying the proportionality factor with the input B-value, as seen in equation 7.2, produces

the design load carrying capacity B – limit in regards moment on that specific point in the

bridge, which equals to, Bdim = 198 kN.

7.2 Shear force load carrying capacity calculation Shear force load carrying capacity calculations, in which the design A/B limits are calculated

for each result line on the bridge, are presented in Appendix J for the load case in which the

traffic is passing the bridge on its own lane and Appendix K for vehicles passing the bridge in

the middle of the carriageway - alone on the bridge. In this paragraph, a shear force load

carrying capacity calculation will be carried out for the most critical B-value load carrying

capacity point on the bridge. The full load carrying capacity calculation results are as previously

stated presented in Appendix J and Appendix K respectively. Furthermore, the most relevant

and critical load carrying capacity calculation results are presented and analyzed in paragraph

8.3.

The location of the critical point, as well as the direction of the result line, is illustrated in Figure

41, and as previously stated in paragraph 6.3, the critical point of the bridge appears for the load

case in which the type vehicles are passing the bridge on their own lane. As discussed in

paragraph 3.3.2 the critical point in regards to shear force around the supports can appear no

closer to the support than the distance calculated by equation 3.8 for cross-sections without

shear reinforcement and equation 3.9 for cross-sections with shear reinforcement. In this case -

for longitudinal shear forces on result line 6 - the critical points appear no closer than 951 mm

to the abutment supports and 1382 mm to the column supports. Limits that are calculated by

inserting, d = 626 mm, and the respective a – values for the supports into equations 3.8 and 3.9.

These disregarded points on the bridge are, in the full result line load carrying capacity

calculations presented in Appendices J and K, marked red to indicate that they are disregarded.

The shear resistance for the point regarded in this calculation is, as calculated in paragraph 6.3,

VRd = 286 kN/m. As described in paragraph 3.5 the proportionality factor, k, can be calculated

using equation 7.3.

𝑘𝐵 = 𝑉𝑅𝑑−𝑉𝑝𝑒𝑟𝑚

𝑉𝐸𝑑−𝑉𝑝𝑒𝑟𝑚 (7.3)

The shear force stemming from the permanent load, Vperm, and the total shear force, VEd, are

calculated using BRIGADE/Standard for each point- and load case on the bridge. In regards to

the critical point in this calculation the permanent shear force is, Vperm = 153,2 kN/m, and the

total shear force is, VEd = 301,1 kN/m. Inserting these shear forces, alongside the shear force

55

resistance, VRd, into equation 7.3 results in a proportionality factor, k = 0,896, for this critical

point.

The load carrying capacity B - value are then calculated by multiplying the proportionality

factor with the original input traffic point load value, in this case for calculations regarding the

B-limit, B = 210 kN, see equation 7.4.

𝐵𝑑𝑖𝑚 = 𝑘𝐵 ∗ 𝐵210 (7.4)

Multiplying the proportionality factor with the input B-value, as seen in equation 7.4, produces

the design load carrying capacity B - limit in regards shear force on that specific point on the

bridge, which equals to, Bdim = 188 kN.

56

8 Results and Analysis

The results of the load carrying capacity calculations are presented and analyzed for both

moment and shear force cases and a comparison between capacity calculations using the BK1

input A/B – values and BK4 input values is performed.

8.1 Result summary The results of the load carrying capacity calculations are presented in Table 16 and Table 17,

where the design A/B - values for the whole bridge is 178 kN and 188 kN respectively. Design

values that appear for the longitudinal shear force result-section, result line 6, for the load case

in which the type vehicles are passing the bridge on their own lanes. Thus, the load carrying

capacity of the bridge in regards to axle- and bogie load is 17 t and 18 t respectively, load

carrying capacity values that is sufficient for the present BK1 load carrying capacity class, but

not, in regards to the B-value limit, adequate for the proposed new load carrying capacity class,

BK4, where the B – value limit is 21 t.

The design A/B – values in regards to moment is, as seen in Table 16, 234 kN and 198 kN

respectively, values that appear on result line 3 which represents the transversal moment in the

span. The most critical moment load carrying capacity values in regards to bogie load of each

slab moment result line, both in transversal and longitudinal direction, are, as seen in Table 16

and Table 17, 206 kN, 231 kN and 198 kN. Values, whose close proximity to each other in both

the transversal and longitudinal direction indicates that the model was modelled in a correct

and efficient manner in regards to the differing strengths in the longitudinal and transversal

directions for the orthotropic slab, a process that is further explained in paragraph 3.3.1. If the

design A/B – values in one direction, for example the transversal, would have been significantly

lower than the ones in the longitudinal direction the conclusion could be made that the capacity

calculation is incorrect – that the capacity, if the longitudinal and transversal material properties

were modelled correctly, could be higher – and, thus, that the calculated capacity is too

conservative. It is important to note that the modelling of the transversal versus the longitudinal

material properties just is a way to, as closely as possible, simulate the orthotropic behavior of

the slab.

57

Table 16 - Load carrying capacity calculation results - Traffic on own lane.

Traffic – own lane A B

[kN] [kN]

M Upper - Longitudinal direction – Result line 1 327 206

M Lower - Longitudinal direction – Result line 1 462 390

M Upper - Transversal direction – Result line 2 382 231

M Lower - Transversal direction – Result line 3 234 198

Longitudinal shear – Result line 6 178 188

Transversal shear – Result line 5 944 1275

Connection abutment – slab – Result line 4 366 254

Design A/B 178 188

As previously mentioned, and as presented in Table 16 and Table 17, the design load carrying

capacity values for the bridge appears for the load case in which the type vehicles are passing

the bridge on their own lanes. The capacity design A/B – limit values for the load case in which

the vehicles are passing the bridge on their own lane, which is the load case that is meant to

describe normal traffic conditions, are a respective 17 t and 18 t. The capacity design A/B -

limit values for the load case in which the vehicles is passing the bridge, alone, on the middle

of the carriageway is the significantly higher values, 21 t and 25 t respectively.

The, always less critical, A/B - values calculated for the load case in which the vehicles are

passing the bridge, alone, on the middle of the carriageway is calculated in order to get the

bridge capacity for heavier transports. Transports that are so heavy, and occur so seldom, that

the bridge, preferably at nighttime, can be closed for normal traffic – making sure that the heavy

transport can pass the bridge in the middle of the carriageway alone on the bridge, thus,

complying with the rules for that load case.

Table 17 - Load carrying capacity calculation results - Traffic in the middle of the carriageway.

Traffic - middle of carriageway A B

[kN] [kN]

M Upper - Longitudinal direction – Result line 1 527 441

M Lower - Longitudinal direction – Result line 1 741 777

M Upper - Transversal direction – Result line 2 547 487

M Lower - Transversal direction – Result line 3 336 357

Longitudinal shear – Result line 6 214 252

Transversal shear – Result line 5 1400 2070

Connection abutment – slab – Result line 4 789 776

Design A/B 214 252

58

8.2 Moment load carrying capacity calculation The moment load carrying capacity calculation for the upper edge moment on result line 1, and

the critical load case in which the type vehicles are passing the bridge on their own lane resulted

in, as presented in Table 16, the A/B load carrying capacity values 327 kN and 206 kN

respectively. Values that, for result line 1, are significantly more critical than the ones obtained

when making the calculation for the lower edge moment. The capacity calculation moment

curves for the bogie load calculation focusing on the upper edge moment along result line 1 are

presented below in Figure 42 where it can be seen that the critical point for that result line

appears close to the column supports.

The position of this critical point amplifies the importance of the shift of the moment curve due

to the inclined cracks in the cross-section, as well as the importance of proper finite element

result line positioning around supports, as this can greatly affect the calculated design capacity

A/B – limits. Only small changes in the finite element modelling around the supports, both in

regards to mesh sizes and support conditions, can significantly alter the results of the

calculation. As mentioned earlier, the choice of which result line to use can also significantly

alter the results. This clearly demonstrates the innate fragilities and dangers of using a finite

element software’s to calculate the load effects acting on a structure and the great care and

caution which should be used when doing so.

Figure 42 – Load carrying capacity: Bogie load - Result line 1.

The moment load carrying capacity calculation for the upper edge moment on result line 2,

spanning transversally over the column supports, and the critical load case in which the type

vehicles are passing the bridge on their own lane resulted in, as presented in Table 16, the A/B

59

load carrying capacity limit values 382 kN and 231 kN respectively. Values that, for result line

2, are significantly more critical than the ones obtained when making the calculation for the

lower edge moment. The capacity calculation moment-curves for the bogie load calculation

focusing on the upper edge moment along result line 2 are presented below in Figure 43 where

it can be seen that the critical point for that result line appears close to the column supports, or

more specifically, close to column support 1 and 3, i.e. not the middle support.

As in the case for result line 1, presented above in Figure 42, the results for result line 2 clearly

shows the importance of proper result line choices and finite element result verification, as just

a small change in the positioning of the result line significantly alters the calculation results. As

seen below in Figure 43 the moment resistance curve starts a distance from the edge of the

bridge (point 0 in Figure 43 below). This is due to the fact that the reinforcement from the edge

beams is affecting the capacity in a positive manner that is not accounted for in the regular

moment resistance calculation performed in paragraph 6.1, with results presented in Appendix

H. Thus, the first part of the bridge, counting from the edge beams, along result line 2 are not

deemed critical.

Figure 43 – Load carrying capacity calculation: Bogie load - Result line 2.

The moment load carrying capacity calculation for the lower edge moment on result line 3,

spanning transversally over the span, and the critical load case in which the type vehicles are

passing the bridge on their own lane resulted in, as presented in Table 16, the A/B load carrying

capacity limit values 234 kN and 198 kN respectively. Values that, for result line 3, are

60

significantly more critical than the ones obtained when making the calculation for the upper

edge moment and values that are the most critical in regards to moment on the whole bridge.

The capacity calculation moment-curves for the bogie load calculation focusing on the lower

edge moment along result line 3 are presented in Figure 44. Where it can be seen that the critical

point for that result line appears in the middle of the span parallelly between column 1 and 2,

and due to symmetry likewise between column 2 and 3.

As seen below in Figure 44 the moment resistance curve starts a distance from the edge of the

bridge (point 0 in Figure 44 below), this is due to the fact that the reinforcement from the edge

beams is affecting the capacity in a positive manner. Thus, the first part of the bridge, counting

from the edge beams, along result line 3, as previously described, not deemed critical.

Figure 44 – Load carrying capacity calculation: Bogie load - Result line 3.

8.3 Shear force load carrying capacity calculation When extracting the shear force load effects from the BRIGADE/Standard model, different

load combinations, so called envelopes, are used in order to create and simulate different load

situations and critical cases in different parts of the structure. The actions are combined to create

the maximum and minimum shear force in each part of the structure, creating load effect curves

that are called maximum and minimum envelopes. These maximum and minimum envelope

shear force curves create an upper- and lower limit in each part of the cross-section, a limit that

the capacity of the bridge must correspond to both in the minimum- and maximum case. These

61

maximum and minimum envelope shear force curves are plotted in the shear force load carrying

capacity calculation graphs for result line 5 and 6, see Figure 45 and Figure 46.

As for the moment load carrying capacity calculation cases it’s the load case in which the

vehicles are passing the bridge on their own lane that are creating the most critical load carrying

capacity A/B – limits, see Table 16 and Table 17, thus, this paragraph will focus on those cases.

The shear force load carrying capacity calculation for result line 5, spanning transversally -

close to the column supports, and the critical load case in which the type vehicles are passing

the bridge on their own lane resulted in, as presented in Table 16, the A/B load carrying capacity

limit values 944 kN and 1275 kN respectively. Values that, by a significant margin, are higher

and less critical than the ones obtained for the longitudinal shear forces as well as the different

moment cases for result lines 1,2,3 and 4. Results that are reasonable when considering the

short span lengths between the columns in the transversal direction compared to the span

lengths in the longitudinal directions.

The capacity calculation shear force-curves for the bogie load calculation on result line 5 are

presented in Figure 45 where the different min/max envelope curves can be seen. For example,

looking at the max and min envelope for the B-vehicle case, V,Ed_B in Figure 45, it is apparent

that they are symmetrical with differing directions creating a load effect span on both shear

force directions.

The disregarded areas in regards to shear force, discussed in theory in paragraph 3.3.2 and

calculated in paragraph 7.2, is visualized in Figure 45 where it is apparent that the disregarded

parts of the result lines around the supports majorly affects the calculation results.

62

Figure 45 - Transversal shear force: Bogie load – load carrying capacity calculation - Result line 5.

Moving forward to the more critical shear force case – the longitudinal one; the shear force

load carrying capacity calculation for result line 6, spanning longitudinally over the bridge, and

the critical load case in which the type vehicles are passing the bridge on their own lane resulted

in, as presented in Table 16, the A/B load carrying capacity limit values 178 kN and 188 kN

respectively. Values that are the design A/B – values for the whole bridge.

The capacity calculation shear force curves for the bogie load calculation on result line 6 are

presented below in Figure 46, where the different min/max envelope curves can be seen. The

disregarded areas in regards to shear, discussed in theory in paragraph 3.3.2 and calculated in

paragraph 7.2, are visualized in Figure 46 where it is apparent that the disregarded parts of the

result lines around the supports majorly affects the calculation results. There are, as seen in

Figure 46, major shear force spikes close to the column supports that, through the method in

which forces close to the supports are disregarded, are not affecting the calculations. These

shear force spikes underlines the importance of selecting correct result sections when

interpreting the data from finite element models, if this process is done incorrectly major flaws

can occur in the final calculation results.

The critical point on result line 6, and thereby on the whole bridge, appears right when the shear

reinforcement (stirrups) strip over the columns ends, creating, as seen in Figure 46, a big

decrease in the shear force resistance. A more magnified, and thus, more clear figure of this

critical point in regards to shear force is presented in Figure 47.

63

Figure 46 - Longitudinal shear force: Bogie load – load carrying capacity calculation - Result line 6.

Figure 47 - Magnified longitudinal shear force diagram: Bogie load - load carrying capacity calculation - Result line 6

8.4 Comparison between BK1 and BK4 In order to get a better idea of how the proposed introduction of the new BK4 load carrying

capacity class will affect the bridge stock in general, a comparison between the load carrying

capacity A/B values obtained when using the axle- and bogie loads from the BK1 and the

64

proposed load carrying capacity class BK4 in the load carrying capacity calculations is carried

out.

The model used in the previous calculation with traffic load A/B values amounting to a

respective 12 and 21 t are altered and new traffic loads, loads corresponding with the old BK1

load carrying capacity class i.e. A = 12 t and B = 18 t, are inserted into the model and new load

effects are calculated. A summary of the most critical values in regards to both moment and

shear force in both the case in which the BK1 and the case in which the BK4 loads are used are

presented below in Table 18.

Table 18 - Comparison BK1/BK4.

Comparison BK1/BK4 B Difference

[kN] [%]

Moment BK1 (B = 18 t) 197,0

0,66 Moment BK4 (B = 21 t) 198,3

Shear force BK1 (B = 18 t) 186,9

Shear force BK4 (B = 21 t) 188,2 0,70

As seen in Table 18, the difference between the load carrying capacity calculation results when

using the BK1 versus the BK4 input traffic loads are negligible - the difference does not even

amount to one percent.

This negligible difference between the calculations using the different A/B input value comes

from the fact that the input traffic A/B – values that are used to calculate the load effects, and

thereby the proportionality factor, k, for the different models are, in order to calculate the design

A/B – values, multiplied with the proportionality factor, k. This creates a “scale” effect which

makes the difference in the input B-values, in this case 18 t and 21 t respectively, less important

as the result converges to roughly the same values.

This negligible difference means that the evaluation of the bridge stock in regards to the

capacity to withhold the new proposed load carrying capacity class, BK4, gets significantly

easier. This is due to the fact that the up-to-date load carrying capacity calculations regarding

BK1 traffic loads still are applicable to evaluate the impact of the new, proposed, load carrying

capacity class, thus, making it easy for Trafikverket to evaluate the bridges that require

strengthening. To put it in simplistic terms, Trafikverket can simply compare the calculated

A/B – values for the old BK1 load carrying capacity class with the new A/B – limits for the

BK4 load carrying capacity class to get a sense of the bridge in question capabilities to withhold

the new increased traffic load.

65

8.5 Possible strengthening methods Due to the big unknown factors when trying to draw general conclusions on differing bridge

types using this one case study, it is tough to propose strengthening methods with satisfactory

results for various bridge types. However, many bridge types share common properties, so at

least some suggestions can be made that is applicable for multiple bridge types.

One way to limit both the moment and shear force load effects acting on the bridge is to create

a wider support at the column supports. This limits the active span-length and thereby the span

moment and the shear force. It also limits the shear force and moment spikes that occurs over

the column supports. Effects that will increase the allowed design A/B – values, thus, making

the bridge in question, in this case the bridge at highway interchange Värö, perhaps more

suitable for the new proposed load carrying capacity class, BK4. A principle sketch of how this

would affect the column tops can be seen below in Figure 48.

Figure 48 - Principle sketch - widening of column top.

The gradual widening of the column tops can be constructed using different methods with

varying positive, and negative, factors. One method is to use a steel collar which is mounted on

the top of the column, creating a wider bridge slab support in both the transversal- and

longitudinal direction. The advantage of using this method is that it can be mounted quite

swiftly on to the columns, thereby limiting the economic productivity losses that a closed bridge

creates. The disadvantage is high material costs as each steel collar must be designed

specifically for each individual bridge.

Another method is to, using specifically designed molds, cast the concrete in place, thereby

creating the shape presented in Figure 48. Thus, like in the case with the steel collar

strengthening, creating a wider bridge slab support in both the transversal- and longitudinal

direction. The advantage of using this method is that the material costs using concrete is

significantly lower than the material costs for the method in which a steel collar is used.

However, the construction time, and thereby, the productivity traffic losses is higher when

66

casting the concrete in place, perhaps making the steel collar method more advantageous

overall.

67

9 Discussion and conclusions

In this paragraph, the results of the load carrying capacity calculations performed on the bridge

at highway interchange Värö will be discussed and conclusions will be made, both in regards

to the specific bridge studied in this thesis, but also in regards to bridges on the Swedish road

network in general.

9.1 Discussion When the proposal of a new load carrying capacity class, in which the maximum traffic load is

increased to 74 t, was put forth, the suggestion was made to decrease the general safety margin

on the new proposed BK4 road network. A decrease of the safety margin is principally possible,

however, this will mean that the grade of utility is increased which, in turn, decreases the bridge

life length and thus increases the bridge life cycle costs. Drawbacks added to the obvious one -

that the safety of the bridge network is lowered. Thus, Trafikverket came to the conclusion that

the bridges with insufficient A/B – load carrying capacity would need to be strengthened in

order to, with a long term view, cope with the increased traffic loads.

There are approximately 15 000 bridges on the Swedish national road network. An amount that

highlights the importance of proper bridge maintenance and load carrying capacity calculations

on a broader spectrum in order to make sure that the road network is safely- and economically

maintained. Bridges, of which a vast majority will be affected by the increased traffic load if

the Swedish government decides to implement the new BK4 load carrying capacity class on the

whole original BK1 road network. The sheer amount of bridges affected plainly underlines the

importance of load carrying capacity calculations, now and in the future. Preferably calculations

which, in order to account for the 3-D and orthotropic behavior of bridges, are performed using

a modern a finite element modelling software.

The finite element method can be a terrific tool, to both accurately and swiftly analyze the loads

and actions acting on bridges and structures. However, the simplicity and general user

friendliness of modern finite element analysis software can also cause problems and create big

unforeseen risks due to the fact that inexperienced engineers can obtain inaccurate results. It is

integral that, when using a finite element software, the engineer understands, at least at an

elementary level, the theory behind the finite element calculations and recognizes the

importance of proper result verification. If not, the usage of finite element modelling in

calculations can be a significant source of error and thus, lead to increased risks and potential

for hazards.

Small changes regarding for example mesh sizes can greatly affect the results obtained,

especially over supports and around point loads. It is important to perform an extensive

convergence study to make sure that the chosen mesh sizes are accurate. The simulation of the

orthotropic behavior of a concrete bridge slab is also critical as the results can differ

68

significantly between models using, the more common but largely inaccurate, isotropic material

model and models using the more accurate orthotropic material model. Changes in how the

orthotropic material parameters themselves are modelled can also significantly affect the

calculation results obtained by the, in this case BRIGADE/Standard, finite element software.

Another critical aspect, which severely can alter the load effects obtained in the finite element

model, is the choice and interpretation of result section lines, specifically around the supports.

This aspect underlines the importance of proper result interpretation and also underlines the

dangers of using finite element models to calculate the load effects on structures as just small

changes in the location of the result line and the choice of result section around the supports

significantly alters the results.

It is also important to note and take into account that the calculation assumptions used when

performing a load carrying capacity calculation according to Swedish standards, for example

that the cross-sections are single-reinforced or the approaches used when calculating the shear

force capacity, are very conservative. These conservative calculation assumptions used in load

carrying capacity calculations are, of course, creating a wider safety margin in regards to the

calculated capacity A/B – limits. However, the conservative assumptions can also be too

conservative, making the load carrying capacity calculations uneconomical, thus, creating a

balancing act between the economic factors and the safety factors when determining if a bridge

is in need of strengthening.

9.2 Conclusions The load carrying capacity calculations performed on the studied bridge, the bridge at highway

interchange Värö, shows that the capacity of the bridge, both in regards to moment and shear

force is insufficient to meet the new, increased, BK4 A/B – loads. The critical A/B – values for

the whole bridge are 17 t and 18 t respectively, to be compared with the required 12/21 t limit

for the new BK4 load carrying capacity class. Thus, making the load carrying capacity of the

bridge inadequate.

The critical capacity A/B values in regards to shear force, and as previously mentioned for the

whole bridge, are 178 and 188 kN respectively. Values that occurs on the longitudinal shear

force result line at the point where the shear force reinforcement (stirrups) strip over the column

supports ends. The critical capacity A/B values in regards to moment are 234 and 198 kN

respectively. Values that occur on the transversal moment result line in the middle of the span

for the lower edge moment. Both the critical moment- and shear force A/B values appear, as

one would suspect, for the load case in which the type vehicles are passing the bridge on their

own lane.

Due to the differing properties and characteristics of each individual bridge on the Swedish

road network specific load carrying capacity calculations will need to be performed on each

69

individual bridge in order to evaluate its capability to withstand the increased BK4 traffic loads.

Thus, making general statements regarding the effects on the bridge network as a whole difficult

to make. However, as shown in paragraph 8.4, capacity calculations regarding the BK1 load

carrying capacity class can, with sufficient accuracy, be used to check the capability of a bridge

to withstand the new increased traffic loads in the BK4 load carrying capacity class. Thus,

making it easier for Trafikverket to evaluate the strengthening needs for the bridge network as

a whole due to the increased, BK4, traffic loads.

9.3 Suggestions for further research As previously mentioned, general and broad conclusions, based on this one case study,

regarding the effects of the load increase on the Swedish bridge network as a whole are tough

to draw with great conviction. Thus, more studies, both in regards to slab frame bridges, which

are studied in this thesis, and other common Swedish bridge types such as regular slab bridges,

beam bridges and steel girder bridges are required in order to draw conclusions regarding the

effects of the planned load increase on the Swedish bridge network as a whole. Due to the great

structural diversity, even amongst bridges of the same “type” - with the same general

characteristics, extensive studies regarding the various different bridge types present on the

Swedish road network are necessary and important to ensure the safety on the Swedish road

network.

Furthermore, studies regarding how to properly strengthen and reinforce the bridges deemed

unsafe are required. The suggestions put forth in this thesis are just that – suggestions – and

requires calculation based, preferably using finite element software’s in order to get a 3-D view

of the structure, studies to fully analyze their suitability and the advantages and disadvantages

of each method. Studies to find and analyze the suitability of alternate methods to the ones put

forth in this thesis also needs to be performed.

General studies regarding how to properly model the orthotropic behavior of concrete slabs in

finite element analysis software’s would also be beneficial, both when performing load carrying

capacity calculations like in this thesis, but also for calculations and design regarding new

bridges and structures. Finally, general studies regarding the load carrying capacity calculation

process is required in order to analyze whether the simplifications, and the calculation process

in general, produces accurate and reliable results.

70

10 References

Boverket, (2004). Boverkets handbok om betongkonstruktioner, BBK 04. Karlskrona: Boverket.

ISBN 91-7147-816-7

BRIME, (2001). Bridge Management in Europe, Assessment of Highway Bridges – Final

Report. 4th RTD Framework Programme.

Broo, H., Lundgren, K & Plos, M., (2008). A guide to non-linear finite element modellingo f

shear and torsion in concrete bridges. Department of Civil and Environmental Engineering,

Chalmers University of Technology, Göteborg.

Carlsson, F. (2006). Modelling of Traffic Loads on Bridges: Based on Measurements of Real

Traffic Loads in Sweden. Lund University, Diss. Lund: Lunds universitet, 2006.

COST, (2004). COST 345 Procedures Required for the Assessment of Highway Structures –

Final Report. European Co-operation in the Field of Scientific and Technical Research.

European Commission – Directorate General Transport and Energy.

Davidson, M. (2003). Strukturanalys av brokonstruktioner med finita elementmetoden –

Fördelning av krafter och moment. Brosamverkan Väst, Göteborg.

Huber, M., (1923). The theory of crosswise reinforced ferroconcrete slabs and its application

to various important constructional problems involving rectangular slabs. Der Bauingeniur 4,

12 (1923), 354-360.

Kommunikationsministeriet, (2013). Nya mått och vikter på tunga fordon ger ökad

konkurrenskraft. PM 2013-06-06. Retrieved 29 September, 2016 from

Kommunikationsministeriet, https://www.lvm.fi/sv/-/nya-matt-och-vikter-pa-tunga-fordon-

ger-okad-konkurrenskraft-791804

Kwak, H.G, & Filippou, F.C., (1990). Finite element analysis of reinforced concrete structures

under monotonic load. Research Report of department of Civil Engineering. U.C. Berkeley,

No. UCB/SEMM-90/14; 1990. P. 33-9.ö

Leduc, G., (2009). Longer and Heavier Vehicles – An overview of technical aspects. JRC

Scientific Technical Reports. European Commission. Luxemburg.

Li, Y, & Barbic, J., (2014). Stable Orthotropic Materials. In Symp. On Computer Animation

(SCA), 41-46.

71

MAINLINE (2014). MAINtenance, renewaL and Improvement of rail transport INfrastructure

to reduce Economic and environmental impacts. A European FP7 Research Project during

2011-2014. Some 20 reports are available at http://www.mainline-project.eu/

Nilimaa, J., (2015). Concrete Bridges: Improved Load Capacity. Doctoral Thesis. Luleå: Luleå

University of Technology; 2015, 176 p.

Nilimaa, J., Bagge, B., Häggström, J., Blanksvärd, T., Sas, G., Täljsten, B. & Elfgren, L.,

(2016). More Realistic Codes for Existing Bridges. 19th IABSE Congress Stockholm 21-23

September 2016: Challenges in Design and Construction of an Innovative and Sustainable Built

Environment. Zurich, 2016, pp. 399-407. ISBN 978-3-85748-144-4.

Pacoste, C., Plos, M. & Johansson, M., (2012). Recommendations for finite element analysis

for the design of reinforced concrete slabs. KTH Royal Institute of Technology, Stockholm,

Sverige.

Plos, M., Gylltoft, K., Lundgren., Cervenka J., Herwig , A., Brühwiler, E., … Rosell, E, (2008).

Structural assessment of concrete bridges. Nordic Concrete Research, (2), 99-111.

Rombach, G.A., (2004). Finite element design of concrete structures – Practical problems and

their solutions. Thomas Telford Publishing. London.

Rowley, J. (2002). Using Case Studies in Research. Management research news, 25(1), 16-27.

Ryall, M.J., Parke, G.A.R & Harding, J.E., (2000). Manual of bridge engineering. Thomas

Telford Publishing, London.

Samuelsson, A. & Wiberg N.-E, (1998). The Finite Element Method – Basics. Studentlitteratur,

Lund.

Scanscot Technology AB, (2015a). BRIGADE/Standard Theory Manual. Version 4.3. Scanscot

Technology AB, Sweden.

Scanscot Technology AB, (2015b). BRIGADE/Standard User’s Manual. Version 4.3. Scanscot

Technology AB, Sweden.

Sustainable Bridges, (2007). Guideline for Load and Resistance Assessment of Existing

European Railway Bridges – Advices on the use of advanced methods. Sustainable Bridges.

Sixth Framework Programme.

72

Svensk Byggtjänst, (1990). Betonghandbok. Konstruktion, utgåva 2. Svensk byggtjänst, ISBN:

9789173325332.

SS-EN 1990, (2002) Eurocode 0: Basis of structural design. Stockholm, Sweden, SIS Förlag

AB.

SS-EN 1991-2, (2003) Eurocode 1: Actions on structures – Part 2: Traffic loads on bridges.

Stockholm, Sweden, SIS Förlag AB.

Thun, H., Ohlsson, U., & Elfgren, L., (2006). Concrete strength in old Swedish concrete

bridges. Nordic Concrete Research, ISSN 0800-6377, Vol.35, nr 1-2, 47-60 s.

Trafikverket, (2014a). Tyngre fordon på det allmänna vägnätet – rapportering av

regeringsuppdrag; Pub 2014:102. Trafikverket. (ISBN: 978-91-7467-629-7).

Trafikverket, (2014b). BaTMan - Kodförteckning och beskrivning av brotyper. Borlänge,

Sverige, Trafikverket.

Trafikverket, (2015). Fördjupade analyser av att tillåta tyngre fordon på det allmänna vägnätet

– Rapportering av regeringsuppdrag. Pub 2015:207. Trafikverket. (ISBN: 978-91-7467-847-

5.

Trafikverket, (2016a). Bärighetsberäkning av broar, KRAV. Version 3.0. TDOK 2013:0267.

Trafikverket.

Trafikverket, (2016b). Bärighetsberäkning av broar, RÅD. Version 3.0. TDOK 2013:0273.

Trafikverket.

Trafikverket, (2016c). BaTMan BRO OCH TUNNEL MANAGEMENT. [online] Available at:

http://www.batman.trafikverket.se [Accessed 20 October 2016].

Transportstyrelsen, (2014). Rapport om tyngre och längre fordonståg på det allmänna

vägnätet; Dnr TSV 2014-1419. Transportstyrelsen.

Appendices Appendix A – Map of the initially proposed BK4 road network (Trafikverket, 2014a)

Appendix B – Vehicle limits (Trafikverket, 2016a)

Appendix C – Type vehicles (Trafikverket, 2016a) (Measurements in m)

Appendix D – Load coefficients for each Load combination (Trafikverket, 2016a)

Appendix F – Reinforcement list (Trafikverket, 2016c) Type Index Reinforcement Direction

B 116 44φ16 c265 KS60 Layer 1 Longitudinal upper reinforcement B 117 44φ16 c265 KS60 Layer 1 Longitudinal upper reinforcement B 118 43φ16 c265 KS60 Layer 2 Longitudinal upper reinforcement B 119 43φ16 c265 KS60 Layer 2 Longitudinal upper reinforcement B 166 44φ16 c265 KS60 Layer 1 Longitudinal upper reinforcement B 167 44φ16 c265 KS60 Layer 1 Longitudinal upper reinforcement B 168 43φ16 c265 KS60 Layer 2 Longitudinal upper reinforcement B 169 43φ16 c265 KS60 Layer 2 Longitudinal upper reinforcement A 501 8φ16 c265 KS60 Transversal lower reinforcement A 502 70+70φ12 c200 Falling lengths Transversal lower reinforcement TX 503 BYGL 10x24φ16 c200 KS10 r64 A 504 46φ16 c245 KS60 Layer 1 Longitudinal lower reinforcement A 505 46φ16 c245 KS60 Layer 1 Longitudinal lower reinforcement A 506 46φ16 c245 KS60 Layer 2 Longitudinal lower reinforcement A 507 46φ16 c245 KS60 Layer 2 Longitudinal lower reinforcement

AB 508 Reinforcement hoops along edge beam A 509 2φ10 c300 Falling lenghts Longitudinal lower reinforcement A 510 13φ16 c160 KS60 Layer 1 Transversal upper reinforcement A 511 13φ16 c160 KS60 Layer 2 Transversal upper reinforcement A 512 72+72φ12 c200 KS60 Falling lengths Transversal lower reinforcement A 513 62φ16 c190 KS60 Layer 2 Longitudinal upper reinforcement A 514 62φ16 c190 KS60 Layer 1 Longitudinal upper reinforcement A 515 59φ12 c200 Longitudinal upper reinforcement A 516 1φ16 Falling lengths Longitudinal upper reinforcement

AA 517 Reinforcement hoops along edge beam A 524 44φ16 c265 KS60 Layer 1 Longitudinal upper reinforcement A 525 44φ16 c265 KS60 Layer 1 Longitudinal upper reinforcement

Appendix G – Finite element mesh convergence

Model 1

Longitudinal direction Transversal direction Number of Elements

Section length

Element length

Number of Elements

Section length

Element length

Section [pcs] [m] [m] [pcs] [m] [m] 1 2 3 1,50 10 12 1,2 2 3 10,32 3,44 10 12 1,2 3 2 2 1,00 10 12 1,2 4 2 2 1,00 10 12 1,2 5 3 10,32 3,44 10 12 1,2 6 2 3 1,50 10 12 1,2

Model 2 Longitudinal direction Transversal direction

Number of Elements

Section length

Element length

Number of Elements

Section length

Element length

Section [pcs] [m] [m] [pcs] [m] [m] 1 2 3 1,50 20 12 0,6 2 6 10,32 1,72 20 12 0,6 3 4 2 0,50 20 12 0,6 4 4 2 0,50 20 12 0,6 5 6 10,32 1,72 20 12 0,6 6 2 3 1,50 20 12 0,6

Model 3 Longitudinal direction Transversal direction

Number of Elements

Section length

Element length

Number of Elements

Section length

Element length

Section [pcs] [m] [m] [pcs] [m] [m] 1 4 3 0,75 40 12 0,3 2 12 10,32 0,86 40 12 0,3 3 7 2 0,29 40 12 0,3 4 7 2 0,29 40 12 0,3 5 12 10,32 0,86 40 12 0,3 6 4 3 0,75 40 12 0,3

Model 4

Longitudinal direction Transversal direction Number of Elements

Section length

Element length

Number of Elements

Section length

Element length

Section [pcs] [m] [m] [pcs] [m] [m] 1 8 3 0,38 80 12 0,15 2 24 10,32 0,43 80 12 0,15 3 13 2 0,15 80 12 0,15 4 13 2 0,15 80 12 0,15 5 24 10,32 0,43 80 12 0,15 6 8 3 0,38 80 12 0,15

App

endi

x H

- M

omen

t res

ista

nce

calc

ulat

ions

UL

S M

omen

t res

ista

nce

calc

ulat

ions

, Upp

er r

einf

orce

men

t lon

gitu

dina

l dir

ectio

n

646

626

633

800

16

xL

Laye

r 1

Laye

r 2A

s,lay

er 1

A

s,lay

er 2

As,t

otd

f yd

[mm

][p

cs]

[pcs

][m

m2 ]

[mm

2 ][m

m2 ]

[mm

][M

Pa]

10

11,3

27,

5522

76,2

1517

,437

93,6

6344

9,3

269

67,

557,

5515

17,4

1517

,430

34,9

626

449,

33

2648

7,55

3,77

1517

,475

8,7

2276

,262

644

9,3

437

297,

550,

0015

17,4

0,0

1517

,464

644

9,3

549

003,

770,

0075

8,7

0,0

758,

764

644

9,3

666

125,

630,

0011

32,7

0,0

1132

,764

644

9,3

770

621,

860,

0037

4,0

0,0

374,

064

644

9,3

885

047,

120,

0014

32,2

0,0

1432

,264

644

9,3

990

445,

260,

0010

58,2

0,0

1058

,264

644

9,3

1010

485

5,26

5,26

1058

,210

58,2

2116

,462

644

9,3

1111

025

10,5

310

,53

2116

,421

16,4

4232

,962

644

9,3

CL

1532

510

,53

10,5

321

16,4

2116

,442

32,9

626

449,

3

xLh

bf cd

f yd

E sd

cusy

dA

s,tot

xs

a l (1

,0d)

Nor

mal

ly re

info

rced

?M

Rd

[mm

][m

m]

[mm

][M

Pa]

[MPa

][G

Pa]

[-][-]

[mm

][m

m2 ]

[mm

][-]

[mm

]s >

sy

[kN

m/m

]1

070

010

0017

,144

9,3

158,

70,

0035

0,00

2863

337

93,6

124,

60,

014

633

Yes

993

269

670

010

0017

,144

9,3

158,

70,

0035

0,00

2862

630

34,9

99,7

0,01

862

6Y

es79

93

2648

700

1000

17,1

449,

315

8,7

0,00

350,

0028

626

2276

,274

,80,

026

626

Yes

610

437

2970

010

0017

,144

9,3

158,

70,

0035

0,00

2864

615

17,4

49,8

0,04

264

6Y

es42

75

4900

700

1000

17,1

449,

315

8,7

0,00

350,

0028

646

758,

724

,90,

087

646

Yes

217

666

1270

010

0017

,144

9,3

158,

70,

0035

0,00

2864

611

32,7

37,2

0,05

764

6Y

es32

17

7062

700

1000

17,1

449,

315

8,7

0,00

350,

0028

646

374,

012

,30,

181

646

Yes

108

885

0470

010

0017

,144

9,3

158,

70,

0035

0,00

2864

614

32,2

47,0

0,04

564

6Y

es40

49

9044

700

1000

17,1

449,

315

8,7

0,00

350,

0028

646

1058

,234

,80,

062

646

Yes

301

1010

485

700

1000

17,1

449,

315

8,7

0,00

350,

0028

626

2116

,469

,50,

028

626

Yes

569

1111

025

700

1000

17,1

449,

315

8,7

0,00

350,

0028

626

4232

,913

9,0

0,01

262

6Y

es10

85C

L15

325

700

1000

17,1

449,

315

8,7

0,00

350,

0028

626

4232

,913

9,0

0,01

262

6Y

es10

85

d 1 la

yer [

mm

]d 2

laye

rs [m

m]

d 2 la

yers

with

1 e

xtra

bar

in la

yer 1

[mm

]A

ncho

rage

[mm

]

Sect

ion

Sect

ion

Ref

eren

ce d

iam

eter

[mm

]

Sect

ion

xL

MR

d

[mm

][k

Nm

/m]

10

837,6

0,52

583

6,9

20,69

679

9,2

1,84

879

9,2

32,64

860

9,6

2,92

960

9,6

43,72

942

6,8

4,1

426,8

54,9

216,8

6,26

221

6,8

66,61

212

2,0

77,06

260

,67,41

210

7,7

8,24

410

7,7

88,50

472

,79

9,04

420

2,9

9,30

430

0,5

1010

,485

300,5

1111

,025

476,4

11,285

745,1

11,825

1084

,7CL

15,325

1084

,7

With

anchorageinclud

edMom

entresistance

1200

,0

1000

,0

800,0

600,0

400,0

200,0

0,0

02

46

810

1214

1618

M,Rd[kNm/m]

xL[m

]

MRd

Upp

erreinforcem

entlon

gitudina

ldire

ction

M,Rd

UL

S M

omen

t res

ista

nce

calc

ulat

ions

, low

er r

einf

orce

men

t lon

gitu

dina

l dir

ectio

n - r

esul

t lin

e 1

646

626

800

16

xL

Laye

r 1

Laye

r 2A

s,lay

er 1

A

s,lay

er 2

As,t

otd

f yd

[mm

][p

cs]

[pcs

][m

m2 ]

[mm

2 ][m

m2 ]

[mm

][M

Pa]

10

4,08

4,08

820,7

820,7

1641

,362

644

9,3

211

164,08

8,16

820,7

1641

,324

62,0

626

449,3

326

488,16

8,16

1641

,316

41,3

3282

,662

644

9,3

411

386

8,16

4,08

1641

,382

0,7

2462

,062

644

9,3

512

918

4,08

4,08

820,7

820,7

1641

,362

644

9,3

614

089

4,08

0,00

820,7

0,0

820,7

646

449,3

714

849

4,08

0,00

820,7

0,0

820,7

646

449,3

CL15

325

4,08

0,00

820,7

0,0

820,7

626

449,3

xL

h b

f cdf y

dE s

dcu

syd

As,t

otx

sa l

(1,0

d)N

orm

ally

rein

forc

ed?

MR

d

[mm

][m

m]

[mm

][M

Pa]

[MPa

][G

Pa]

[- ][-]

[mm

][m

m2 ]

[mm

][-]

[mm

]s >

sy

[kN

m/m

]1

070

010

0017

,144

9,3

158,73

0,00

350,00

2862

616

41,3

53,9

0,03

762

6Yes

446

211

1670

010

0017

,144

9,3

158,73

0,00

350,00

2862

624

62,0

80,9

0,02

462

6Yes

657

326

4870

010

0017

,144

9,3

158,73

0,00

350,00

2862

632

82,6

107,8

0,01

762

6Yes

860

411

386

700

1000

17,1

449,3

158,73

0,00

350,00

2862

624

62,0

80,9

0,02

462

6Yes

657

512

918

700

1000

17,1

449,3

158,73

0,00

350,00

2862

616

41,3

53,9

0,03

762

6Yes

446

614

089

700

1000

17,1

449,3

158,73

0,00

350,00

2864

682

0,7

27,0

0,08

064

6Yes

234

714

849

700

1000

17,1

449,3

158,73

0,00

350,00

2864

682

0,7

27,0

0,08

064

6Yes

234

CL15

325

700

1000

17,1

449,3

158,73

0,00

350,00

2862

682

0,7

27,0

0,07

862

6Yes

227

Ref

eren

ce d

iam

eter

[mm

]

Sect

ion

Sect

iond 1

laye

r [m

m]

d 2 la

yers

[mm

]A

ncho

rage

[mm

]

Sect

ion

xL

MR

d

[mm

][k

Nm

/m]

10

153,21

0,52

544

62

1,11

644

61,91

665

73

2,64

865

73,44

886

010

,586

860

411

,386

657

12,118

657

512

,918

446

13,289

446

614

,089

234

714

,849

234

CL15

,325

270

With

anchorageinclud

edMom

entresistance

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1000

,00

02

46

810

1214

1618

M,Rd[kNm/m]

xL[m

]

M,Rdlower

reinforcem

entlon

gitudina

ldire

ction

M,Rd

ULS

Mom

entresistancecalculations,U

pper

reinforcem

enttransversaldirection(Overcolum

nsupp

orts)

662

642

800

16

Sect

ion

xL

Laye

r 1

Laye

r 2A

s,lay

er 1

A

s,lay

er 2

As,t

otd

f yd

[mm

][p

cs]

[pcs

][m

m2 ]

[mm

2 ][m

m2 ]

[mm

][M

Pa]

10

0,00

0,00

0,0

0,0

0,0

642

449,3

225

03,77

3,77

758,7

758,7

1517

,464

244

9,3

337

003,77

3,77

758,7

758,7

1517

,464

244

9,3

438

183,77

0,56

758,7

111,9

870,6

642

449,3

545

003,77

3,22

758,7

646,8

1405

,564

244

9,3

646

183,77

3,77

758,7

758,7

1517

,464

244

9,3

773

823,77

3,77

758,7

758,7

1517

,464

244

9,3

875

003,77

3,22

758,7

646,8

1405

,564

244

9,3

981

823,77

0,56

758,7

111,9

870,6

642

449,3

1083

003,77

3,77

758,7

758,7

1517

,464

244

9,3

1111

750

3,77

3,77

758,7

758,7

1517

,464

244

9,3

1212

000

0,00

0,00

0,0

0,0

0,0

642

449,3

xL

h b

f cdf y

dE s

dcu

syd

As,t

otx

sa l

(1,0

d)N

orm

ally

rein

forc

ed?

MR

d

[mm

][m

m]

[mm

][M

Pa]

[MPa

][G

Pa]

[-][-]

[mm

][m

m2 ]

[mm

][-]

[mm

]s >

sy

[kN

m/m

]1

070

010

0017

,144

9,3

158,7

0,00

350,00

2864

20,0

0,0

642

Yes

02

0,25

700

1000

17,1

449,3

158,7

0,00

350,00

2864

215

17,4

49,8

0,04

264

2Yes

424

33,7

700

1000

17,1

449,3

158,7

0,00

350,00

2864

215

17,4

49,8

0,04

264

2Yes

424

43,81

870

010

0017

,144

9,3

158,7

0,00

350,00

2864

287

0,6

28,6

0,07

564

2Yes

247

54,5

700

1000

17,1

449,3

158,7

0,00

350,00

2864

214

05,5

46,2

0,04

564

2Yes

394

64,61

870

010

0017

,144

9,3

158,7

0,00

350,00

2864

215

17,4

49,8

0,04

264

2Yes

424

77,38

270

010

0017

,144

9,3

158,7

0,00

350,00

2864

215

17,4

49,8

0,04

264

2Yes

424

87,5

700

1000

17,1

449,3

158,7

0,00

350,00

2864

214

05,5

46,2

0,04

564

2Yes

394

98,18

270

010

0017

,144

9,3

158,7

0,00

350,00

2864

287

0,6

28,6

0,07

564

2Yes

247

108,3

700

1000

17,1

449,3

158,7

0,00

350,00

2864

215

17,4

49,8

0,04

264

2Yes

424

1111

,75

700

1000

17,1

449,3

158,7

0,00

350,00

2864

215

17,4

49,8

0,04

264

2Yes

424

1212

700

1000

17,1

449,3

158,7

0,00

350,00

2864

20,0

0,0

642

Yes

0

Sect

iond 1 la

yer [

mm

]d 2

laye

rs [m

m]

Anc

hora

ge [m

m]

Ref

eren

ce d

iam

eter

[mm

]

050100

150

200

250

300

350

400

450

02

46

810

1214

M,Rd[kNm/m]

xL[m

m]

MRd

Upp

erreinforcem

enttransversaldirection(Overcolum

nsupp

orts)

M,Rd

ULS

Mom

entresistancecalculations,Low

erreinforcem

enttransversaldirection(Overspa

n)

664

600

12

Sect

ion

xL

Laye

r 1

Laye

r 2A

s,lay

er 1

A

s,lay

er 2

As,t

otd

f yd

[mm

][p

cs]

[pcs

][m

m2 ]

[mm

2 ][m

m2 ]

[mm

][M

Pa]

145

00,00

0,00

0,0

262,0

262,0

664

297,1

210

505,00

0,00

565,5

0,0

565,5

664

297,1

310

950

5,00

0,00

565,5

0,0

565,5

664

297,1

411

550

0,00

0,00

0,0

262,0

262,0

664

297,1

xLh

bf cd

f yd

E sd

cusy

d A

s,tot

xs

a l (1

,0d)

Nor

mal

ly re

info

rced

?M

Rd

[mm

][m

m]

[mm

][M

Pa]

[MPa

][G

Pa]

[-][-]

[mm

][m

m2 ]

[mm

][-]

[mm

]s >

sy

[kN

m/m

]1

450

700

1000

17,1

297,1

158,7

0,00

350,00

1966

426

2,0

5,7

0,40

566

4Yes

522

1050

700

1000

17,1

297,1

158,7

0,00

350,00

1966

456

5,5

12,3

0,18

666

4Yes

111

310

950

700

1000

17,1

297,1

158,7

0,00

350,00

1966

456

5,5

12,3

0,18

666

4Yes

111

411

550

700

1000

17,1

297,1

158,7

0,00

350,00

1966

426

2,0

5,7

0,40

566

4Yes

52

d 1 la

yer [

mm

]A

ncho

rage

[mm

]R

efer

ence

dia

met

er [m

m]

Sect

ion

0,0

20,0

40,0

60,0

80,0

100,0

120,0

02

46

810

1214

M,Rd[kNm/m]xL

[mm]

MRd

Lower

reinforcem

enttransversaldirection(Overspa

n)

M,Rd

App

endi

x I -

She

ar fo

rce

resi

stan

ce c

alcu

latio

nsU

LS

Shea

r fo

rce

resi

stan

ce c

alcu

latio

ns, T

rans

vers

al d

irec

tion

- Res

ult l

ine

5

xL

L spa

n d

b wf cd

f ctd

f vf v

Rf sv

As0

A

svs

Vc

Vs

VR

dV

dmax

VR

d < V

dmax

[mm

][m

][m

m]

[mm

][M

Pa]

[MPa

][-

][-

][M

Pa]

[MPa

][M

Pa]

[mm

2 ][m

m2 ]

[mm

][k

N]

[kN

][k

N]

[kN

][y

es/n

o]0

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

0,15

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

0,3

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

0,41

81,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

0,41

81,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

0,45

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

0,6

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

0,75

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

0,9

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

1,05

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

1,2

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

1,35

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

1,5

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

1,65

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

1,8

1,8

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

1,95

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

2,1

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

2,25

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

2,4

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

2,55

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

2,7

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

2,85

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

34,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

3,15

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

3,18

24,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

3,18

24,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

3,3

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

3,45

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

3,6

4,2

642

1000

17,1

1,1

1,04

0,00

140,36

20,31

449,3

870,6

1005

,356

042

946

6,0

895

2744

Yes

3,75

4,2

642

1000

17,1

1,1

1,04

0,00

140,36

20,31

449,3

870,6

1005

,356

042

946

6,0

895

2744

Yes

3,9

4,2

642

1000

17,1

1,1

1,04

0,00

140,36

20,31

449,3

870,6

1005

,356

042

946

6,0

895

2744

Yes

4,05

4,2

642

1000

17,1

1,1

1,04

0,00

140,36

20,31

449,3

870,6

1005

,356

042

946

6,0

895

2744

Yes

4,2

4,2

642

1000

17,1

1,1

1,04

0,00

140,36

20,31

449,3

870,6

1005

,356

042

946

6,0

895

2744

Yes

4,35

4,2

642

1000

17,1

1,1

1,04

0,00

140,36

20,31

449,3

870,6

1005

,356

042

946

6,0

895

2744

Yes

4,5

4,2

642

1000

17,1

1,1

1,04

0,00

220,37

60,32

449,3

1405

,510

05,3

560

446

466,0

912

2744

Yes

4,61

84,2

642

1000

17,1

1,1

1,04

0,00

220,37

60,32

449,3

1405

,510

05,3

560

446

466,0

912

2744

Yes

4,61

84,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

4,65

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

4,8

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

4,95

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

5,1

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

5,25

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

5,4

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

5,55

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

5,7

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

5,85

4,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

64,2

642

1000

17,1

1,1

1,04

0,00

240,37

90,32

449,3

1517

,410

05,3

560

450

466,0

916

2744

Yes

890

895

900

905

910

915

920

01

23

45

67

V,Rd[kN/m]

xL[m

]

V Rd

Tran

sversaldire

ction

V,Rd

UL

S Sh

ear

forc

e re

sist

ance

cal

cula

tions

, lon

gitu

dina

l dir

ectio

n - R

esul

t lin

e 6

xL

L spa

n d

b wf cd

f ctd

f vf v

Rf sv

As0

A

svs

Vc

Vs

VR

dV

dmax

VR

d < V

dmax

[mm

][m

][m

m]

[mm

][M

Pa]

[MPa

][-

][-

][M

Pa]

[MPa

][M

Pa]

[mm

2 ][m

m2 ]

[mm

][k

N]

[kN

][k

N]

[kN

][y

es/n

o]0

15,325

626

1000

17,1

1,1

1,05

0,00

480,

424

0,06

297,

130

34,9

0-

302

030

226

76Y

es0,

3815

,325

626

1000

17,1

1,1

1,05

0,00

480,

424

0,06

297,

130

34,9

0-

302

030

226

76Y

es0,

7515

,325

626

1000

17,1

1,1

1,05

0,00

480,

424

0,06

297,

130

34,9

0-

302

030

226

76Y

es0,

951

15,325

626

1000

17,1

1,1

1,05

0,00

480,

424

0,06

297,

130

34,9

0-

302

030

226

76Y

es0,

951

15,325

626

1000

17,1

1,1

1,05

0,00

480,

424

0,06

297,

130

34,9

0-

302

030

226

76Y

es1,

1315

,325

626

1000

17,1

1,1

1,05

0,00

480,

424

0,06

297,

130

34,9

0-

302

030

226

76Y

es1,

515

,325

626

1000

17,1

1,1

1,05

0,00

480,

424

0,06

297,

130

34,9

0-

302

030

226

76Y

es1,

8815

,325

626

1000

17,1

1,1

1,05

0,00

480,

424

0,06

297,

130

34,9

0-

302

030

226

76Y

es1,

8815

,325

626

1000

17,1

1,1

1,05

0,00

480,

424

029

7,1

3034

,90

-26

50

265

2676

Yes

2,02

15,325

626

1000

17,1

1,1

1,05

0,00

480,

424

029

7,1

3034

,90

-26

50

265

2676

Yes

2,02

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

2,25

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

2,63

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

315

,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

315

,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

3,43

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

3,86

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

4,29

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

4,72

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

5,15

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

5,58

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

6,01

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

6,44

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

6,87

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

7,3

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

7,73

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

8,16

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

8,59

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

9,02

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

9,45

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

9,88

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

10,3

115

,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

10,7

415

,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

11,1

715

,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

11,6

15,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

11,8

915

,325

646

1000

17,1

1,1

1,04

0,00

510,

425

029

7,1

3282

,60

-27

40

274

2761

Yes

11,8

915

,325

626

1000

17,1

1,1

1,05

0,00

680,

456

029

7,1

4232

,90

-28

60

286

2676

Yes

12,0

315

,325

626

1000

17,1

1,1

1,05

0,00

680,

456

029

7,1

4232

,90

-28

60

286

2676

Yes

xL

L spa

n d

b wf cd

f ctd

f vf v

Rf sv

As0

A

svs

Vc

Vs

VR

dV

dmax

VR

d < V

dmax

[mm

][m

][m

m]

[mm

][M

Pa]

[MPa

][-

][-

][M

Pa]

[MPa

][M

Pa]

[mm

2 ][m

m2 ]

[mm

][k

N]

[kN

][k

N]

[kN

][y

es/n

o]12

,46

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

029

7,1

4232

,90

-28

60

286

2676

Yes

12,8

915

,325

626

1000

17,1

1,1

1,05

0,00

680,

456

029

7,1

4232

,90

-28

60

286

2676

Yes

13,0

2515

,325

626

1000

17,1

1,1

1,05

0,00

680,

456

029

7,1

4232

,90

-28

60

286

2676

Yes

13,0

2515

,325

626

1000

17,1

1,1

1,05

0,00

680,

456

029

7,1

4232

,935

9,0

200

286

300

586

2676

Yes

13,3

215

,325

626

1000

17,1

1,1

1,05

0,00

680,

456

029

7,1

4232

,935

9,0

200

286

300

586

2676

Yes

13,3

215

,325

626

1000

17,1

1,1

1,05

0,00

680,

456

029

7,1

4232

,935

9,0

200

286

300

586

2676

Yes

13,4

815

,325

626

1000

17,1

1,1

1,05

0,00

680,

456

029

7,1

4232

,935

9,0

200

286

300

586

2676

Yes

13,4

815

,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es13

,63

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es13

,79

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es13

,94

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es13

,94

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es14

,09

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es14

,25

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es14

,415

,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es14

,56

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es14

,71

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es14

,86

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es15

,02

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es15

,17

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es15

,32

15,325

626

1000

17,1

1,1

1,05

0,00

680,

456

0,06

297,

142

32,9

359,

020

032

630

062

626

76Y

es

0

100

200

300

400

500

600

700

02

46

810

1214

1618

V,Rd[kN/m]

xL[m

]

V Rd

Long

itudina

ldire

ction

V,Rd

App

endi

x J

(Cap

acity

cal

cula

tion

- Tra

ffic

on

own

lane

) - C

apac

ity c

alcu

latio

n A

xle

load

(Low

er r

einf

orce

men

t) -

Res

ult l

ine

1

a l[m

]0,63

1

xLM

EdM

perm

Mtraffic

xL+/

a lM

EdM

perm

Mtraffic

MRd

A dim

A[kN]

120

k[]

3,9

[m]

[kNm/m

][kNm/m

][kNm/m

][m

][kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

B[kN]

210

A dim[kN]

462

022

2,0

227,9

11,0

0,6

222,0

227,9

11,0

0,38

161,6

180,0

18,4

0,3

161,6

180,0

18,4

0,75

96,1

127,8

31,7

0,1

96,1

127,8

31,7

219,5

10,9

1313

,51,13

30,5

77,0

46,6

0,5

30,5

77,0

46,6

431,2

10,9

1309

,71,5

30,3

29,4

59,7

0,9

30,3

29,4

59,7

445,7

8,0

955,1

1,88

86,4

14,1

72,3

1,2

86,4

14,1

72,3

480,8

6,5

774,7

2,25

138,0

53,1

84,9

1,6

138,0

53,1

84,9

578,3

6,2

742,3

2,63

184,5

88,0

96,5

2,0

184,5

88,0

96,5

656,6

5,9

707,2

323

1,8

121,0

110,8

2,4

231,8

121,0

110,8

656,6

4,8

580,1

323

3,1

121,2

111,9

2,4

233,1

121,2

111,9

656,6

4,8

574,2

3,43

268,1

150,6

117,5

2,8

268,1

150,6

117,5

695,0

4,6

555,9

3,86

304,5

177,8

126,7

3,2

304,5

177,8

126,7

804,1

4,9

593,1

4,29

335,4

201,0

134,5

3,7

335,4

201,0

134,5

859,6

4,9

587,6

4,72

360,9

220,0

140,9

4,1

360,9

220,0

140,9

859,6

4,5

544,7

5,15

381,2

235,1

146,1

4,5

381,2

235,1

146,1

859,6

4,3

513,0

5,58

396,4

246,2

150,2

4,9

396,4

246,2

150,2

859,6

4,1

490,1

6,01

406,5

253,5

153,0

5,4

406,5

253,5

153,0

859,6

4,0

475,4

6,44

412,1

256,9

155,2

5,8

412,1

256,9

155,2

859,6

3,9

466,0

6,87

413,2

256,6

156,6

6,2

413,2

256,6

156,6

859,6

3,9

462,1

7,3

409,1

252,5

156,6

6,7

409,1

252,5

156,6

859,6

3,9

465,2

7,73

402,6

247,2

155,4

8,4

402,6

247,2

155,4

859,6

3,9

472,9

8,16

393,0

239,4

153,6

8,8

393,0

239,4

153,6

859,6

4,0

484,5

8,59

379,2

227,7

151,5

9,2

379,2

227,7

151,5

859,6

4,2

500,5

9,02

361,3

212,3

149,0

9,7

361,3

212,3

149,0

859,6

4,3

521,3

9,45

338,1

192,9

145,3

10,1

338,1

192,9

145,3

859,6

4,6

550,6

9,88

310,1

169,5

140,5

10,5

310,1

169,5

140,5

859,6

4,9

589,4

10,31

277,6

142,8

134,8

10,9

277,6

142,8

134,8

769,6

4,6

557,9

10,74

240,4

112,6

127,9

11,4

240,4

112,6

127,9

660,4

4,3

514,0

11,17

197,8

78,6

119,3

11,8

197,8

78,6

119,3

656,6

4,8

581,5

11,6

149,3

40,2

109,1

12,2

149,3

40,2

109,1

626,8

5,4

645,3

12,03

95,1

2,8

97,9

12,7

95,1

2,8

97,9

513,5

5,3

633,0

12,46

34,4

50,8

85,2

13,1

34,4

50,8

85,2

445,7

5,8

699,0

12,89

32,9

104,4

71,6

13,5

32,9

104,4

71,6

384,4

6,8

819,2

13,32

92,0

156,4

64,5

14,0

92,0

156,4

64,5

270,7

6,6

795,1

13,32

92,6

156,9

64,3

14,0

92,6

156,9

64,3

270,7

6,6

798,0

13,48

117,9

174,6

56,7

14,1

117,9

174,6

56,7

234,2

7,2

865,4

13,63

142,2

192,4

50,2

14,3

142,2

192,4

50,2

234,2

8,5

1020

,213

,79

162,9

210,4

47,5

14,4

162,9

210,4

47,5

234,2

9,4

1122

,713

,94

186,0

228,8

42,8

14,6

186,0

228,8

42,8

234,2

10,8

1297

,814

,09

210,6

247,8

37,2

14,7

210,6

247,8

37,2

234,2

13,0

1554

,414

,25

234,4

267,7

33,3

14,9

234,4

267,7

33,3

234,2

15,1

1807

,614

,425

9,0

288,9

29,9

15,0

259,0

288,9

29,9

234,2

17,5

2098

,714

,56

281,6

311,6

30,0

15,2

281,6

311,6

30,0

234,2

18,2

2186

,914

,71

317,0

338,6

21,6

15,3

317,0

338,6

21,6

234,2

26,5

3183

,714

,86

356,8

376,4

19,6

15,5

356,8

376,4

19,6

234,2

31,2

3738

,415

,02

416,3

430,4

14,1

15,7

416,3

430,4

14,1

234,2

47,1

5648

,215

,17

475,8

480,1

8,0

15,8

475,8

480,1

8,0

234,2

89,4

1072

2,6

15,32

499,8

517,4

17,6

16,0

499,8

517,4

17,6

234,2

42,8

5136

,3

Capa

city

BRIGAD

EOUTP

UT

Shift

600,0

400,0

200,0

0,0

200,0

400,0

600,0

800,0

1000

,0

02

46

810

1214

1618

M[kNm/m]

xL[m

]

Capa

city

calculationAx

leload

M,Ed

M,Ed(al)

M,Rd

M,perm

Cap

acity

cal

cula

tion

Axl

e lo

ad (U

pper

rei

nfor

cem

ent)

- R

esul

t lin

e 1

a l[m

]0,64

xLM

EdM

perm

Mtraffic

xL+/

a lM

EdM

perm

Mtraffic

MRd

A dim

A[kN]

120

k[]

2,7

[m]

[kNm/m

][kNm/m

][kNm/m

][m

][kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

B[kN]

210

A dim[kN]

327

037

9,4

270,4

109,0

0,6

379,4

270,4

109,0

811,5

5,0

595,7

0,38

324,1

221,0

103,1

1,0

324,1

221,0

103,1

799,2

5,6

673,0

0,75

271,0

177,1

93,9

1,4

271,0

177,1

93,9

799,2

6,6

795,1

1,13

215,2

134,3

81,0

1,8

215,2

134,3

81,0

799,2

8,2

985,6

1,5

159,8

91,9

67,9

2,1

159,8

91,9

67,9

730,8

9,4

1129

,31,88

106,8

51,1

55,7

2,5

106,8

51,1

55,7

640,7

10,6

1269

,42,25

57,4

12,3

45,1

2,9

57,4

12,3

45,1

609,6

13,2

1588

,52,63

12,3

23,9

36,1

3,3

12,3

23,9

36,1

532,5

15,4

1848

,33

29,6

58,7

29,0

3,6

29,6

58,7

29,0

447,9

17,5

2095

,53

29,8

58,9

29,1

29,8

58,9

29,1

3,43

68,2

92,0

23,7

68,2

92,0

23,7

3,86

103,4

123,2

19,8

103,4

123,2

19,8

4,29

133,6

150,7

17,1

133,6

150,7

17,1

4,72

159,3

174,6

15,3

159,3

174,6

15,3

5,15

179,4

194,7

15,3

179,4

194,7

15,3

5,58

194,8

211,1

16,3

194,8

211,1

16,3

6,01

206,4

223,8

17,4

206,4

223,8

17,4

6,44

214,1

232,8

18,7

214,1

232,8

18,7

6,87

217,9

238,1

20,2

217,9

238,1

20,2

7,3

217,8

239,5

21,7

217,8

239,5

21,7

7,73

211,3

234,7

23,3

211,3

234,7

23,3

8,16

199,8

224,9

25,0

199,8

224,9

25,0

8,59

184,6

211,4

26,8

184,6

211,4

26,8

9,02

165,6

194,4

28,8

165,6

194,4

28,8

9,45

142,9

173,7

30,9

142,9

173,7

30,9

9,88

116,3

149,5

33,2

116,3

149,5

33,2

10,31

85,2

120,9

35,8

85,2

120,9

35,8

10,74

50,0

88,8

38,8

50,0

88,8

38,8

11,17

10,6

52,9

42,4

10,5

10,6

52,9

42,4

316,3

8,7

1045

,711

,632

,913

,846

,711

,032

,913

,846

,745

6,3

10,1

1207

,112

,03

80,6

28,4

52,2

11,4

80,6

28,4

52,2

813,3

15,0

1803

,412

,46

132,5

73,5

58,9

11,8

132,5

73,5

58,9

1083

,717

,120

56,8

12,89

188,2

121,2

67,0

12,3

188,2

121,2

67,0

1084

,714

,417

26,2

13,32

250,9

174,8

76,1

12,7

250,9

174,8

76,1

1084

,712

,014

34,8

13,32

252,4

176,2

76,2

12,7

252,4

176,2

76,2

1084

,711

,914

30,9

13,48

281,3

201,0

80,3

12,8

281,3

201,0

80,3

1084

,711

,013

20,8

13,63

311,5

226,5

85,0

13,0

311,5

226,5

85,0

1084

,710

,112

11,6

13,79

343,8

253,3

90,5

13,2

343,8

253,3

90,5

1084

,79,2

1103

,013

,94

378,7

281,7

97,0

13,3

378,7

281,7

97,0

1084

,78,3

993,7

14,09

416,1

312,0

104,1

13,5

416,1

312,0

104,1

1084

,77,4

890,7

14,25

456,7

344,6

112,1

13,6

456,7

344,6

112,1

1084

,76,6

792,3

14,4

500,8

379,6

121,2

13,8

500,8

379,6

121,2

1084

,75,8

698,1

14,56

550,1

418,5

131,6

13,9

550,1

418,5

131,6

1084

,75,1

607,5

14,71

606,1

461,5

144,6

14,1

606,1

461,5

144,6

1084

,74,3

517,2

14,86

661,6

504,3

157,3

14,2

661,6

504,3

157,3

1084

,73,7

442,8

15,02

691,0

532,4

158,7

14,4

691,0

532,4

158,7

1084

,73,5

417,6

15,17

713,0

546,1

166,9

14,5

713,0

546,1

166,9

1084

,73,2

387,3

15,32

750,4

556,1

194,2

14,7

750,4

556,1

194,2

1084

,72,7

326,6

Capa

city

BRIGAD

EOUTP

UT

Shift

1200,0

1000,0

800,0

600,0

400,0

200,0

0,0

200,0

400,0

02

46

810

1214

1618

M[kNm/m]

xL[m

]

Capa

city

calculationAx

leload

M,Ed

M,Ed(al)

M,Ed(al)

M,Rd

M,Rd

M,perm

Cap

acity

cal

cula

tion

Bog

ie lo

ad (L

ower

rei

nfor

cem

ent)

- R

esul

t lin

e 1

a l[m

]0,63

1

xLM

EdM

perm

Mtraffic

xL+/

a lM

EdM

perm

Mtraffic

MRd

B dim

A[kN]

120

k[]

1,86

[m]

[kNm/m

][kNm/m

][kNm/m

][m

][kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

B[kN]

210

B dim[kN]

390

020

5,4

227,9

22,4

0,6

205,4

227,9

22,4

0,38

151,5

180,0

28,6

0,3

151,5

180,0

28,6

0,75

77,2

127,8

50,6

0,1

77,2

127,8

50,6

219,5

6,9

1441

,41,13

4,3

77,0

72,7

0,5

4,3

77,0

72,7

431,2

7,0

1468

,11,5

69,3

29,4

98,7

0,9

69,3

29,4

98,7

445,7

4,8

1010

,61,88

139,3

14,1

125,2

1,2

139,3

14,1

125,2

480,8

3,7

782,8

2,25

203,3

53,1

150,2

1,6

203,3

53,1

150,2

578,3

3,5

734,3

2,63

260,6

88,0

172,6

2,0

260,6

88,0

172,6

656,6

3,3

691,8

332

3,6

121,0

202,6

2,4

323,6

121,0

202,6

656,6

2,6

555,2

332

4,2

121,2

203,0

2,4

324,2

121,2

203,0

656,6

2,6

553,9

3,43

375,3

150,6

224,7

2,8

375,3

150,6

224,7

695,0

2,4

508,7

3,86

425,0

177,8

247,1

3,2

425,0

177,8

247,1

804,1

2,5

532,2

4,29

466,9

201,0

265,9

3,7

466,9

201,0

265,9

859,6

2,5

520,2

4,72

501,4

220,0

281,4

4,1

501,4

220,0

281,4

859,6

2,3

477,3

5,15

529,1

235,1

294,0

4,5

529,1

235,1

294,0

859,6

2,1

446,1

5,58

550,9

246,2

304,7

4,9

550,9

246,2

304,7

859,6

2,0

422,8

6,01

567,7

253,5

314,2

5,4

567,7

253,5

314,2

859,6

1,9

405,1

6,44

577,8

256,9

320,8

5,8

577,8

256,9

320,8

859,6

1,9

394,6

6,87

581,5

256,6

324,9

6,2

581,5

256,6

324,9

859,6

1,9

389,8

7,3

579,4

252,5

326,9

6,7

579,4

252,5

326,9

859,6

1,9

390,0

7,73

574,1

247,2

326,8

8,4

574,1

247,2

326,8

859,6

1,9

393,5

8,16

563,7

239,4

324,4

8,8

563,7

239,4

324,4

859,6

1,9

401,5

8,59

546,9

227,7

319,2

9,2

546,9

227,7

319,2

859,6

2,0

415,7

9,02

524,0

212,3

311,7

9,7

524,0

212,3

311,7

859,6

2,1

436,1

9,45

494,8

192,9

301,9

10,1

494,8

192,9

301,9

859,6

2,2

463,8

9,88

458,9

169,5

289,3

10,5

458,9

169,5

289,3

859,6

2,4

501,0

10,31

416,7

142,8

273,9

10,9

416,7

142,8

273,9

769,6

2,3

480,5

10,74

368,5

112,6

256,0

11,4

368,5

112,6

256,0

660,4

2,1

449,4

11,17

315,1

78,6

236,5

11,8

315,1

78,6

236,5

656,6

2,4

513,3

11,6

254,3

40,2

214,1

12,2

254,3

40,2

214,1

626,8

2,7

575,4

12,03

185,5

2,8

188,3

12,7

185,5

2,8

188,3

513,5

2,7

575,8

12,46

107,8

50,8

158,7

13,1

107,8

50,8

158,7

445,7

3,1

657,1

12,89

23,6

104,4

128,1

13,5

23,6

104,4

128,1

384,4

3,8

801,3

13,32

53,9

156,4

102,5

14,0

53,9

156,4

102,5

270,7

4,2

875,0

13,32

57,0

156,9

99,9

14,0

57,0

156,9

99,9

270,7

4,3

899,0

13,48

86,6

174,6

88,0

14,1

86,6

174,6

88,0

234,2

4,6

975,9

13,63

114,3

192,4

78,1

14,3

114,3

192,4

78,1

234,2

5,5

1147

,113

,79

139,8

210,4

70,6

14,4

139,8

210,4

70,6

234,2

6,3

1322

,313

,94

169,4

228,8

59,4

14,6

169,4

228,8

59,4

234,2

7,8

1636

,614

,09

198,2

247,8

49,6

14,7

198,2

247,8

49,6

234,2

9,7

2041

,214

,25

225,8

267,7

41,9

14,9

225,8

267,7

41,9

234,2

12,0

2514

,314

,425

5,4

288,9

33,5

15,0

255,4

288,9

33,5

234,2

15,6

3282

,114

,56

282,3

311,6

29,2

15,2

282,3

311,6

29,2

234,2

18,7

3920

,014

,71

317,1

338,6

21,5

15,3

317,1

338,6

21,5

234,2

26,6

5594

,914

,86

356,9

376,4

19,5

15,5

356,9

376,4

19,5

234,2

31,4

6589

,315

,02

416,1

430,4

14,3

15,7

416,1

430,4

14,3

234,2

46,5

9766

,815

,17

471,6

480,1

8,5

15,8

471,6

480,1

8,5

234,2

83,9

1761

6,5

15,32

499,4

517,4

18,0

16,0

499,4

517,4

18,0

234,2

41,7

8759

,0

Capa

city

BRIGAD

EOUTP

UT

Shift

600,0

400,0

200,0

0,0

200,0

400,0

600,0

800,0

1000

,0

02

46

810

1214

1618

M[kNm/m]

xL[m

]

Capa

city

calculationBo

gieload

M,Ed

M,Ed(al)

M,Rd

M,perm

Cap

acity

cal

cula

tion

Bog

ie lo

ad (U

pper

rei

nfor

cem

ent)

- R

esul

t lin

e 1

a l[m

]0,64

xLM

EdM

perm

Mtraffic

xL+/

a lM

EdM

perm

Mtraffic

MRd

B dim

A[kN]

120

k[]

0,98

[m]

[kNm/m

][kNm/m

][kNm/m

][m

][kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

B[kN]

210

B dim[kN]

206

054

1,2

270,4

270,8

0,6

541,2

270,4

270,8

811,5

2,0

419,6

0,38

475,4

221,0

254,4

1,0

475,4

221,0

254,4

799,2

2,3

477,3

0,75

405,1

177,1

227,9

1,4

405,1

177,1

227,9

799,2

2,7

573,2

1,13

325,0

134,3

190,7

1,8

325,0

134,3

190,7

799,2

3,5

732,2

1,5

245,8

91,9

153,9

2,1

245,8

91,9

153,9

730,8

4,2

871,8

1,88

175,9

51,1

124,8

2,5

175,9

51,1

124,8

640,7

4,7

992,2

2,25

115,5

12,3

103,1

2,9

115,5

12,3

103,1

609,6

5,8

1216

,62,63

60,9

23,9

84,8

3,3

60,9

23,9

84,8

532,5

6,6

1377

,93

10,9

58,7

69,6

3,6

10,9

58,7

69,6

447,9

7,3

1528

,73

10,8

58,9

69,7

10,8

58,9

69,7

3,43

36,2

92,0

55,7

36,2

92,0

55,7

3,86

77,2

123,2

46,0

77,2

123,2

46,0

4,29

111,3

150,7

39,5

111,3

150,7

39,5

4,72

138,3

174,6

36,3

138,3

174,6

36,3

5,15

157,5

194,7

37,2

157,5

194,7

37,2

5,58

172,4

211,1

38,7

172,4

211,1

38,7

6,01

183,0

223,8

40,9

183,0

223,8

40,9

6,44

188,6

232,8

44,2

188,6

232,8

44,2

6,87

190,3

238,1

47,7

190,3

238,1

47,7

7,3

188,1

239,5

51,4

188,1

239,5

51,4

7,73

179,4

234,7

55,3

179,4

234,7

55,3

8,16

165,5

224,9

59,3

165,5

224,9

59,3

8,59

147,8

211,4

63,6

147,8

211,4

63,6

9,02

126,2

194,4

68,2

126,2

194,4

68,2

9,45

100,6

173,7

73,1

100,6

173,7

73,1

9,88

70,9

149,5

78,6

70,9

149,5

78,6

10,31

36,5

120,9

84,5

36,5

120,9

84,5

10,74

2,2

88,8

91,0

2,2

88,8

91,0

11,17

47,3

52,9

100,3

10,5

47,3

52,9

100,3

316,3

3,7

773,1

11,6

104,4

13,8

118,3

11,0

104,4

13,8

118,3

456,3

4,0

834,6

12,03

169,0

28,4

140,7

11,4

169,0

28,4

140,7

813,3

5,6

1171

,512

,46

240,6

73,5

167,1

11,8

240,6

73,5

167,1

1083

,76,0

1269

,612

,89

318,6

121,2

197,4

12,3

318,6

121,2

197,4

1084

,74,9

1025

,013

,32

405,6

174,8

230,8

12,7

405,6

174,8

230,8

1084

,73,9

827,9

13,32

407,1

176,2

230,9

12,7

407,1

176,2

230,9

1084

,73,9

826,3

13,48

445,0

201,0

244,0

12,8

445,0

201,0

244,0

1084

,73,6

760,6

13,63

484,4

226,5

257,9

13,0

484,4

226,5

257,9

1084

,73,3

698,8

13,79

526,0

253,3

272,7

13,2

526,0

253,3

272,7

1084

,73,0

640,3

13,94

570,0

281,7

288,3

13,3

570,0

281,7

288,3

1084

,72,8

584,9

14,09

617,6

312,0

305,5

13,5

617,6

312,0

305,5

1084

,72,5

531,2

14,25

669,1

344,6

324,6

13,6

669,1

344,6

324,6

1084

,72,3

478,8

14,4

726,1

379,6

346,5

13,8

726,1

379,6

346,5

1084

,72,0

427,3

14,56

791,3

418,5

372,8

13,9

791,3

418,5

372,8

1084

,71,8

375,3

14,71

869,7

461,5

408,1

14,1

869,7

461,5

408,1

1084

,71,5

320,7

14,86

956,1

504,3

451,8

14,2

956,1

504,3

451,8

1084

,71,3

269,8

15,02

1003

,053

2,4

471,1

14,4

1003

,053

2,4

471,1

1084

,71,2

246,2

15,17

1036

,054

6,1

489,5

14,5

1036

,054

6,1

489,5

1084

,71,1

231,1

15,32

1096

,055

6,1

539,7

14,7

1096

,055

6,1

539,7

1084

,71,0

205,7

Capa

city

BRIGAD

EOUTP

UT

Shift

1200,0

1000,0

800,0

600,0

400,0

200,0

0,0

200,0

400,0

02

46

810

1214

1618

M[kNm/m]

xL[m

]

Capa

city

calculationBo

gieload

M,Ed

M,Ed(al)

M,Ed(al)

M,Rd

M,Rd

M,perm

Cap

acity

cal

cula

tion

Axl

e lo

ad (U

pper

rei

nfor

cem

ent)

- R

esul

t lin

e 2

a l[m

]0,64

2

xLM

EdM

perm

Mtraffic

xL+/

a lM

EdM

perm

Mtraffic

MRd

A dim

A[kN]

120

k[]

3,18

[m]

[kNm/m

][kNm/m

][kNm/m

][m

][kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

B[kN]

210

A dim[kN]

382

02,4

0,7

1,7

0,15

7,5

2,1

5,4

0,3

15,5

5,0

10,5

0,45

28,5

12,0

16,5

0,6

49,8

24,0

25,8

0,75

72,6

37,9

34,7

0,1

72,6

37,9

34,7

183,2

4,2

502,9

0,9

93,8

53,1

40,7

0,3

93,8

53,1

40,7

424,0

9,1

1094

,71,05

118,0

71,9

46,1

0,4

118,0

71,9

46,1

424,0

7,6

915,9

1,2

148,1

95,6

52,5

0,6

148,1

95,6

52,5

424,0

6,3

750,2

1,35

194,4

130,4

64,1

0,7

194,4

130,4

64,1

424,0

4,6

550,0

1,5

235,4

162,3

73,1

0,9

235,4

162,3

73,1

424,0

3,6

429,4

1,65

246,7

170,0

76,7

1,0

246,7

170,0

76,7

424,0

3,3

397,3

1,65

246,7

138,7

76,6

2,3

246,7

170,0

76,7

424,0

3,3

397,3

1,8

232,1

153,4

78,7

2,4

232,1

153,4

78,7

424,0

3,4

412,5

1,95

257,0

180,5

76,5

2,6

257,0

180,5

76,5

424,0

3,2

381,9

2,1

244,5

171,7

72,8

2,7

244,5

171,7

72,8

424,0

3,5

415,9

2,25

202,9

138,6

64,3

2,9

202,9

138,6

64,3

424,0

4,4

533,0

2,4

156,4

102,4

54,0

3,0

156,4

102,4

54,0

424,0

6,0

714,7

2,55

125,4

77,1

48,4

3,2

125,4

77,1

48,4

424,0

7,2

860,7

2,7

101,2

56,4

44,8

3,3

101,2

56,4

44,8

424,0

8,2

984,4

2,85

82,0

39,6

42,3

3,5

82,0

39,6

42,3

424,0

9,1

1089

,43

66,5

25,8

40,7

3,6

66,5

25,8

40,7

424,0

9,8

1174

,13,15

53,7

14,2

39,5

3,8

53,7

14,2

39,5

286,0

6,9

825,2

3,3

43,1

4,4

38,7

3,9

43,1

4,4

38,7

247,0

6,3

751,6

3,45

34,3

3,9

38,2

3,6

27,1

10,8

37,9

3,75

21,3

16,4

37,7

3,9

16,8

20,9

37,7

4,05

18,1

19,7

37,8

4,2

23,9

14,2

38,1

4,35

31,0

7,5

38,5

4,5

39,8

0,6

39,1

3,9

39,8

0,6

39,1

247,0

6,3

755,6

4,65

50,3

10,3

40,0

4,0

50,3

10,3

40,0

290,0

7,0

839,2

4,8

62,9

21,7

41,2

4,2

62,9

21,7

41,2

323,0

7,3

878,2

4,95

78,1

35,4

42,7

4,3

78,1

35,4

42,7

355,0

7,5

897,7

5,1

96,9

52,0

44,9

4,5

96,9

52,0

44,9

389,0

7,5

900,8

5,25

120,4

72,6

47,8

4,6

120,4

72,6

47,8

424,0

7,4

882,0

5,4

149,9

97,9

52,1

4,8

149,9

97,9

52,1

424,1

6,3

752,1

5,55

194,5

134,1

60,4

4,9

194,5

134,1

60,4

424,1

4,8

576,4

5,7

234,0

167,2

66,8

5,1

234,0

167,2

66,8

424,1

3,8

461,4

5,85

244,4

175,4

69,0

5,2

244,4

175,4

69,0

424,1

3,6

432,6

5,85

244,4

175,4

69,0

6,5

244,4

175,4

69,0

424,1

3,6

432,6

621

7,1

147,2

69,9

6,6

217,1

147,2

69,9

424,1

4,0

475,6

Capa

city

BRIGAD

EOUTP

UT

Shift

450,0

400,0

350,0

300,0

250,0

200,0

150,0

100,0

50,0 0,0

50,0

01

23

45

67

M[kNm/m]

xL[m

]

Capa

city

calculationAx

leload

M,Ed

M,Ed(al)

M,Ed(al)

M,Ed(al)

M,Ed(al)

M,Rd

M,Rd

M,perm

Cap

acity

cal

cula

tion

Bog

ie lo

ad (U

pper

rei

nfor

cem

ent)

- R

esul

t lin

e 2

a l[m

]0,64

2

xLM

EdM

perm

Mtraffic

xL+/

a lM

EdM

perm

Mtraffic

MRd

B dim

A[kN]

120

k[]

1,10

[m]

[kNm/m

][kNm/m

][kNm/m

][m

][kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

B[kN]

210

B dim[kN]

231

02,7

0,7

2,1

0,15

17,4

2,1

15,2

0,3

34,8

5,0

29,8

0,45

59,8

12,0

47,8

0,6

99,6

24,0

75,6

0,75

139,8

37,9

101,9

0,1

139,8

37,9

101,9

183,2

1,4

299,4

0,9

173,3

53,1

120,3

0,3

173,3

53,1

120,3

424,0

3,1

647,5

1,05

209,3

71,9

137,4

0,4

209,3

71,9

137,4

424,0

2,6

538,1

1,2

251,9

95,6

156,4

0,6

251,9

95,6

156,4

424,0

2,1

441,0

1,35

324,3

130,4

194,0

0,7

324,3

130,4

194,0

424,0

1,5

317,8

1,5

386,6

162,3

224,3

0,9

386,6

162,3

224,3

424,0

1,2

245,0

1,65

400,6

170,0

230,5

1,0

400,6

170,0

230,5

424,0

1,1

231,4

1,65

400,6

170,0

230,5

2,3

400,6

170,0

230,5

424,0

1,1

231,4

1,8

370,5

153,4

217,1

2,4

370,5

153,4

217,1

424,0

1,2

261,8

1,95

383,3

180,5

202,8

2,6

383,3

180,5

202,8

424,0

1,2

252,1

2,1

352,9

171,7

181,2

2,7

352,9

171,7

181,2

424,0

1,4

292,4

2,25

291,7

138,6

153,1

2,9

291,7

138,6

153,1

424,0

1,9

391,5

2,4

231,6

102,4

129,2

3,0

231,6

102,4

129,2

424,0

2,5

522,7

2,55

192,1

77,1

115,0

3,2

192,1

77,1

115,0

424,0

3,0

633,5

2,7

162,1

56,4

105,7

3,3

162,1

56,4

105,7

424,0

3,5

730,4

2,85

141,6

39,6

102,0

3,5

141,6

39,6

102,0

424,0

3,8

791,4

312

5,4

25,8

99,7

3,6

125,4

25,8

99,7

424,0

4,0

839,2

3,15

112,2

14,2

98,1

3,8

112,2

14,2

98,1

286,0

2,8

582,0

3,3

101,4

4,4

97,1

3,9

101,4

4,4

97,1

247,0

2,5

525,0

3,45

92,6

3,9

96,5

3,6

85,4

10,8

96,2

3,75

79,7

16,4

96,1

3,9

75,5

20,9

96,4

4,05

77,2

19,7

96,9

4,2

83,3

14,2

97,5

4,35

91,0

7,5

98,5

4,5

100,3

0,6

99,7

3,9

100,3

0,6

99,7

247,0

2,5

519,0

4,65

111,5

10,3

101,3

4,0

111,5

10,3

101,3

290,0

2,8

579,9

4,8

125,0

21,7

103,3

4,2

125,0

21,7

103,3

323,0

2,9

612,5

4,95

141,2

35,4

105,7

4,3

141,2

35,4

105,7

355,0

3,0

634,9

5,1

160,9

52,0

108,9

4,5

160,9

52,0

108,9

389,0

3,1

649,8

5,25

186,0

72,6

113,4

4,6

186,0

72,6

113,4

424,0

3,1

650,8

5,4

218,4

97,9

120,6

4,8

218,4

97,9

120,6

424,1

2,7

568,1

5,55

278,3

134,1

144,2

4,9

278,3

134,1

144,2

424,1

2,0

422,3

5,7

331,0

167,2

163,8

5,1

331,0

167,2

163,8

424,1

1,6

329,3

5,85

344,1

175,4

168,6

5,2

344,1

175,4

168,6

424,1

1,5

309,8

5,85

344,1

175,4

168,6

6,5

344,1

175,4

168,6

424,1

1,5

309,8

631

4,4

147,2

167,2

6,6

314,4

147,2

167,2

424,1

1,7

347,8

Capa

city

BRIGAD

EOUTP

UT

Shift

450,0

400,0

350,0

300,0

250,0

200,0

150,0

100,0

50,0 0,0

50,0

01

23

45

67

M[kNm/m]

xL[m

]

Capa

city

calculationBo

gieload

M,Ed

M,Ed(al)

M,Ed(al)

M,Ed(al)

M,Rd

M,Ed(al)

M,Rd

M,perm

Cap

acity

cal

cula

tion

Axl

e lo

ad (L

ower

rei

nfor

cem

ent)

- R

esul

t lin

e 3

a l[m

]0,66

4

xLM

EdM

perm

Mtraffic

xL+/

a lM

EdM

perm

Mtraffic

MRd

A dim

A[kN]

120

k[]

1,95

[m]

[kNm/m

][kNm/m

][kNm/m

][m

][kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

B[kN]

210

A dim[kN]

230

1,1

0,4

1,5

0,15

10,6

3,8

6,8

0,3

20,0

7,1

12,9

0,45

28,1

9,6

18,5

0,6

38,9

13,2

25,7

0,75

48,1

16,2

31,9

0,9

51,3

17,1

34,3

1,05

52,7

17,0

35,7

1,2

53,7

16,5

37,2

0,5

53,7

16,5

37,2

111,0

2,5

304,6

1,35

52,5

15,9

36,6

0,7

52,5

15,9

36,6

111,0

2,6

312,0

1,5

52,5

15,3

37,2

0,8

52,5

15,3

37,2

111,0

2,6

308,7

1,65

52,7

14,8

38,0

1,0

52,7

14,8

38,0

111,0

2,5

304,3

1,8

52,8

14,3

38,5

1,1

52,8

14,3

38,5

111,0

2,5

301,6

1,95

53,1

13,8

39,3

1,3

53,1

13,8

39,3

111,0

2,5

296,6

2,1

53,7

13,4

40,3

1,4

53,7

13,4

40,3

111,0

2,4

290,5

2,25

54,3

13,1

41,3

1,6

54,3

13,1

41,3

111,0

2,4

284,7

2,4

57,4

12,7

44,7

1,7

57,4

12,7

44,7

111,0

2,2

263,8

2,55

57,5

12,4

45,2

1,9

57,5

12,4

45,2

111,0

2,2

262,2

2,7

58,2

12,0

46,2

2,0

58,2

12,0

46,2

111,0

2,1

257,1

2,85

58,1

11,7

46,4

2,2

58,1

11,7

46,4

111,0

2,1

256,6

358

,611

,447

,22,3

58,6

11,4

47,2

111,0

2,1

253,1

3,15

61,1

11,1

50,1

2,5

61,1

11,1

50,1

111,0

2,0

239,6

3,3

61,7

10,7

51,0

4,0

61,7

10,7

51,0

111,0

2,0

236,1

3,45

62,1

10,4

51,7

4,1

62,1

10,4

51,7

111,0

1,9

233,7

3,6

61,6

10,1

51,6

4,3

61,6

10,1

51,6

111,0

2,0

234,8

3,75

61,3

9,7

51,5

4,4

61,3

9,7

51,5

111,0

2,0

235,8

3,9

60,4

9,4

51,0

4,6

60,4

9,4

51,0

111,0

2,0

238,9

4,05

59,9

9,0

50,8

4,7

59,9

9,0

50,8

111,0

2,0

240,7

4,2

59,5

8,7

50,8

4,9

59,5

8,7

50,8

111,0

2,0

241,9

4,35

58,7

8,3

50,4

5,0

58,7

8,3

50,4

111,0

2,0

244,4

4,5

58,1

8,0

50,1

5,2

58,1

8,0

50,1

111,0

2,1

246,9

4,65

57,6

7,7

50,0

5,3

57,6

7,7

50,0

111,0

2,1

248,3

4,8

56,9

7,3

49,6

5,5

56,9

7,3

49,6

111,0

2,1

250,8

4,95

56,3

7,0

49,4

5,6

56,3

7,0

49,4

111,0

2,1

252,9

5,1

55,7

6,6

49,1

5,8

55,7

6,6

49,1

111,0

2,1

255,3

5,25

55,5

6,3

49,2

5,9

55,5

6,3

49,2

111,0

2,1

255,4

5,4

55,2

6,0

49,2

6,1

55,2

6,0

49,2

111,0

2,1

256,2

5,55

54,4

5,7

48,7

6,2

54,4

5,7

48,7

111,0

2,2

259,6

5,7

54,6

5,4

49,2

6,4

54,6

5,4

49,2

111,0

2,1

257,5

5,85

53,8

5,1

48,8

6,5

53,8

5,1

48,8

111,0

2,2

260,6

653

,14,9

48,2

6,7

53,1

4,9

48,2

111,0

2,2

264,0

Capa

city

BRIGAD

EOUTP

UT

Shift

20,0 0,0

20,0

40,0

60,0

80,0

100,0

120,0

01

23

45

67

M[kNm/m]

xL[m

]

Capa

city

calculationAx

leload

M,Ed

M,Ed(al)

M,Rd

M,perm

Cap

acity

cal

cula

tion

Bog

ie lo

ad (L

ower

rei

nfor

cem

ent)

- R

esul

t lin

e 3

a l [m

]0,

664

xLM

Ed

Mpe

rmM

traf

ficxL

+/-

a lM

Ed

Mpe

rmM

traf

ficM

Rd

Bdi

mA

[kN

]12

0k

[-]

0,94

[m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][m

][k

Nm

/m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][-

][k

N]

B [k

N]

210

Bdi

m [k

N]

198

02,

3-0

,42,

7-

--

--

--

0,15

18,8

3,8

15,0

--

--

--

-0,

336

,27,

129

,1-

--

--

--

0,45

51,1

9,6

41,5

--

--

--

-0,

672

,513

,259

,3-

--

--

--

0,75

90,3

16,2

74,1

--

--

--

-0,

995

,717

,178

,6-

--

--

--

1,05

97,9

17,0

81,0

--

--

--

-1,

297

,516

,581

,00,

597

,516

,581

,011

1,0

1,2

245,

01,

3596

,515

,980

,60,

796

,515

,980

,611

1,0

1,2

247,

81,

596

,415

,381

,10,

896

,415

,381

,111

1,0

1,2

248,

01,

6597

,414

,882

,61,

097

,414

,882

,611

1,0

1,2

244,

71,

899

,114

,384

,81,

199

,114

,384

,811

1,0

1,1

239,

61,

9510

1,2

13,8

87,4

1,3

101,

213

,887

,411

1,0

1,1

233,

62,

110

5,0

13,4

91,6

1,4

105,

013

,491

,611

1,0

1,1

223,

72,

2510

8,4

13,1

95,4

1,6

108,

413

,195

,411

1,0

1,0

215,

72,

411

0,5

12,7

97,8

1,7

110,

512

,797

,811

1,0

1,0

211,

12,

5511

1,8

12,4

99,5

1,9

111,

812

,499

,511

1,0

1,0

208,

22,

711

4,3

12,0

102,

32,

011

4,3

12,0

102,

311

1,0

1,0

203,

22,

8511

5,3

11,7

103,

62,

211

5,3

11,7

103,

611

1,0

1,0

201,

33

116,

911

,410

5,5

2,3

116,

911

,410

5,5

111,

00,

919

8,3

3,15

116,

511

,110

5,5

2,5

116,

511

,110

5,5

111,

00,

919

9,0

3,3

116,

510

,710

5,8

4,0

116,

510

,710

5,8

111,

00,

919

9,0

3,45

115,

810

,410

5,4

4,1

115,

810

,410

5,4

111,

01,

020

0,5

3,6

113,

410

,110

3,3

4,3

113,

410

,110

3,3

111,

01,

020

5,2

3,75

111,

39,

710

1,6

4,4

111,

39,

710

1,6

111,

01,

020

9,4

3,9

109,

89,

410

0,4

4,6

109,

89,

410

0,4

111,

01,

021

2,6

4,05

108,

39,

099

,34,

710

8,3

9,0

99,3

111,

01,

021

5,7

4,2

106,

58,

797

,94,

910

6,5

8,7

97,9

111,

01,

021

9,6

4,35

104,

88,

396

,45,

010

4,8

8,3

96,4

111,

01,

122

3,6

4,5

103,

98,

095

,95,

210

3,9

8,0

95,9

111,

01,

122

5,6

4,65

102,

27,

794

,55,

310

2,2

7,7

94,5

111,

01,

122

9,6

4,8

101,

07,

393

,75,

510

1,0

7,3

93,7

111,

01,

123

2,3

4,95

100,

77,

093

,75,

610

0,7

7,0

93,7

111,

01,

123

3,1

5,1

99,0

6,6

92,3

5,8

99,0

6,6

92,3

111,

01,

123

7,4

5,25

97,9

6,3

91,6

5,9

97,9

6,3

91,6

111,

01,

124

0,1

5,4

97,9

6,0

91,9

6,1

97,9

6,0

91,9

111,

01,

124

0,0

5,55

98,1

5,7

92,4

6,2

98,1

5,7

92,4

111,

01,

123

9,3

5,7

96,3

5,4

90,9

6,4

96,3

5,4

90,9

111,

01,

224

4,0

5,85

95,5

5,1

90,5

6,5

95,5

5,1

90,5

111,

01,

224

6,0

697

,04,

992

,26,

797

,04,

992

,211

1,0

1,2

241,

8

BR

IGA

DE

OU

TPU

TSh

iftC

apac

ity

20,0 0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

01

23

45

67

M[kNm/m]

xL[m

]

Capa

city

calculationBo

gieload

M,Ed

M,Ed(al)

M,Rd

M,perm

Cap

acity

cal

cula

tion

Axl

e- a

nd b

ogie

load

- R

esul

t lin

e 4

A[kN]

120

Classification

B[kN]

210

MRd

MEd

Mpe

rmM

traffic

kA d

im

[kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

799

501,8

357

144,8

3,1

366

MRd

MEd

Mpe

rmM

traffic

kB d

im

[kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

799

723,3

357

366,3

1,2

254

Cap

acity

cal

cula

tion

Shea

r fo

rce

- Res

ult l

ine

5

A[kN]

120

k A[]

7,9

k B[]

6,1

B[kN]

210

A dim[kN]

944

B dim[kN]

1275

Relativ

elength

Capa

city

xLV,Rd

V Ed_

A(m

ax)

V Ed_

B(m

ax)

V perm(m

ax)

V Ed_

A(m

in)

V Ed_

B(m

in)

V perm(m

in)

K A(m

ax)

K A(m

in)

K B(m

ax)

K B(m

in)

K A(dim

)K B

(dim

)A d

imB d

im

[m]

[kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][]

[][]

[][]

[][kN]

[kN]

091

61,2

1,3

4,3

5,0

5,6

4,3

302,9

1290

,731

3,9

673,5

302,9

313,9

3634

4,7

6592

5,9

0,15

916

14,8

14,0

6,7

8,7

11,2

6,7

42,9

470,9

44,5

202,8

42,9

44,5

5144

,093

45,1

0,3

916

13,4

12,4

15,7

29,1

37,2

15,8

31,9

67,6

33,2

42,2

31,9

33,2

3833

,669

64,5

0,42

916

5,8

4,4

33,2

99,8

115,8

33,6

24,3

13,3

25,2

10,7

13,3

10,7

1597

,422

53,3

0,42

916

5,8

4,4

33,2

99,8

115,8

33,6

24,3

13,3

25,2

10,7

13,3

10,7

0,45

916

3,7

2,2

38,0

119,1

137,2

38,4

22,9

10,9

23,7

8,9

10,9

8,9

0,6

916

30,7

31,8

64,9

148,4

181,4

65,8

28,7

10,3

29,6

7,3

10,3

7,3

0,75

916

56,4

57,5

91,0

176,5

225,2

92,4

29,1

9,8

30,1

6,2

9,8

6,2

0,9

916

91,0

91,9

124,4

217,4

283,4

126,7

31,1

8,7

32,0

5,0

8,7

5,0

1,05

916

137,0

137,5

167,4

283,6

360,4

171,1

35,6

6,6

36,2

3,9

6,6

3,9

1,2

916

169,0

170,2

224,6

357,8

461,0

231,1

20,5

5,4

21,0

3,0

5,4

3,0

1,35

916

267,6

267,9

316,7

478,2

624,5

327,5

25,1

3,9

25,3

2,0

3,9

2,0

1,5

916

416,6

411,5

458,3

683,4

914,0

482,9

32,9

2,2

29,4

1,0

2,2

1,0

1,65

916

1020

,096

4,1

1055

,014

50,0

2064

,011

00,0

56,3

0,5

21,7

0,2

0,5

0,2

1,8

916

130,7

180,3

15,4

68,7

101,6

15,2

7,8

11,1

5,5

8,0

7,8

5,5

1,95

916

1486

,020

71,0

1130

,010

62,0

1027

,010

85,0

0,6

87,0

0,2

34,5

0,6

0,2

2,1

916

710,8

982,0

513,7

475,4

454,7

488,9

2,0

104,0

0,9

41,1

2,0

0,9

2,25

916

515,6

707,6

359,4

334,8

329,5

348,4

3,6

92,9

1,6

66,9

3,6

1,6

2,4

916

398,2

542,3

264,7

237,5

237,2

258,0

4,9

57,2

2,3

56,4

4,9

2,3

2,55

916

327,6

442,9

207,0

157,5

158,5

203,1

5,9

24,5

3,0

25,1

5,9

3,0

2,7

916

290,6

372,9

165,5

113,8

115,2

162,9

6,0

22,0

3,6

22,6

6,0

3,6

2,85

916

253,9

322,4

133,8

80,3

81,8

132,1

6,5

20,2

4,1

20,8

6,5

4,1

391

622

6,3

283,4

108,1

33,6

35,9

106,8

6,8

14,0

4,6

14,4

6,8

4,6

3,15

916

178,9

226,3

86,3

10,7

13,3

85,4

9,0

13,4

5,9

13,9

9,0

5,9

3,18

916

174,0

219,5

82,2

6,3

9,0

81,4

9,1

13,3

6,1

13,8

9,1

6,1

3,18

916

174,0

219,5

82,2

6,3

9,0

81,4

9,1

13,3

6,1

13,8

9,1

6,1

1089

,412

74,9

3,3

916

156,0

194,4

67,2

9,6

6,8

66,5

9,6

12,9

6,7

13,4

9,6

6,7

1146

,114

00,3

3,45

916

136,2

167,1

49,9

4,5

2,8

49,4

10,0

17,9

7,4

18,5

10,0

7,4

1203

,115

50,5

3,6

895

100,4

122,9

33,7

21,5

21,8

33,5

12,9

16,9

9,7

16,8

12,9

9,7

1551

,020

29,2

3,75

895

82,8

99,6

18,4

37,9

40,4

18,2

13,6

16,3

10,8

15,6

13,6

10,8

1633

,522

68,4

3,9

895

65,3

78,9

3,4

54,1

59,7

3,4

14,4

15,7

11,8

14,3

14,4

11,8

1727

,824

80,3

4,05

895

50,3

58,7

11,5

89,4

99,8

11,6

14,7

11,4

12,9

10,0

11,4

10,0

1364

,221

03,7

4,2

895

57,0

61,3

26,7

104,7

122,8

27,0

11,0

11,2

10,5

9,1

11,0

9,1

1321

,419

02,8

4,35

895

39,3

40,0

42,6

122,9

146,3

43,0

11,4

10,7

11,4

8,3

10,7

8,3

1280

,617

33,2

4,5

912

20,6

18,3

59,7

166,3

189,4

60,3

12,1

8,0

12,5

6,6

8,0

6,6

964,4

1385

,74,62

912

9,1

10,9

74,5

181,7

212,6

75,3

15,1

7,9

15,5

6,1

7,9

6,1

943,8

1280

,14,62

916

9,1

10,9

74,5

181,7

212,6

75,3

15,1

7,9

15,6

6,1

7,9

6,1

4,65

916

17,2

18,9

78,5

185,9

218,9

79,4

16,2

7,9

16,7

6,0

7,9

6,0

4,8

916

40,9

42,6

99,9

211,2

252,9

101,1

17,2

7,4

17,7

5,4

7,4

5,4

4,95

916

68,6

70,0

125,1

223,2

275,9

126,8

18,4

8,2

18,9

5,3

8,2

5,3

5,1

916

116,2

117,0

155,9

260,0

327,9

158,6

27,0

7,5

27,5

4,5

7,5

4,5

5,25

916

160,0

160,7

196,2

310,1

394,8

200,2

30,7

6,5

31,3

3,7

6,5

3,7

5,4

916

220,3

220,8

251,2

382,3

489,8

258,1

37,8

5,3

38,4

2,8

5,3

2,8

5,55

916

320,1

320,1

342,3

522,8

677,1

353,5

56,7

3,3

56,7

1,7

3,3

1,7

5,7

916

442,8

442,5

484,1

721,7

941,9

509,4

33,9

1,9

33,6

0,9

1,9

0,9

5,85

916

1081

,010

67,0

1089

,015

20,0

2019

,011

35,0

250,6

0,6

91,1

0,2

0,6

0,2

691

611

9,5

153,3

0,5

118,2

151,7

0,5

7,7

7,7

6,0

6,0

7,7

6,0

MAX

MIN

Factor

KCa

pacity

calculation

2500

,0

2000

,0

1500

,0

1000

,0

500,0

0,0

500,0

1000

,0

1500

,0

2000

,0

2500

,0

01

23

45

67

V[kN/m]

xL[m

]

Tran

sversalshe

arforce

Capa

city

calculation

V,Ed

_A(M

AX)

V,Ed

_B(M

AX)

V,pe

rm(M

AX)

V,Ed

_A(m

in)

V,Ed

_B(M

IN)

V,pe

rm(m

in)

V,Rd

V,Rd

Cap

acity

cal

cula

tion

hear

forc

e - R

esul

t lin

e 6

A[kN]

120

k A[]

1,5

k B[]

0,9

B[kN]

210

A dim[kN]

178

B dim[kN]

188

Relativ

elength

Capa

city

xLV,Rd

V Ed_

A(m

ax)

V Ed_

B(m

ax)

V perm(m

ax)

V Ed_

A(m

in)

V Ed_

B(m

in)

V perm(m

in)

K A(m

ax)

K A(m

in)

K B(m

ax)

K B(m

in)

K A(dim

)K B

(dim

)A d

imB d

im

[m]

[kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][]

[][]

[][]

[][kN]

[kN]

030

284

,583

,112

9,9

291,3

366,7

135,0

9,5

1,1

9,2

0,7

1,1

0,7

0,38

302

100,7

98,5

125,7

244,3

314,4

130,7

17,1

1,5

15,8

0,9

1,5

0,9

0,75

302

72,7

71,4

117,0

226,6

289,6

121,7

9,5

1,7

9,2

1,1

1,7

1,1

0,95

130

267

,366

,011

2,6

219,4

279,7

117,1

9,1

1,8

8,9

1,1

1,8

1,1

0,95

130

267

,366

,011

2,6

219,4

279,7

117,1

9,1

1,8

8,9

1,1

1,8

1,1

217,4

239,3

1,13

302

62,4

61,2

108,7

213,0

270,9

113,1

8,9

1,9

8,7

1,2

1,9

1,2

227,3

251,9

1,5

302

54,2

53,1

101,1

201,1

255,2

105,4

8,6

2,1

8,4

1,3

2,1

1,3

247,0

276,1

1,88

302

46,7

45,7

93,8

190,2

240,9

98,0

8,4

2,2

8,2

1,4

2,2

1,4

266,0

300,3

1,88

265

46,7

45,7

93,8

190,2

240,9

98,0

7,6

1,8

7,5

1,2

1,8

1,2

217,8

245,9

2,02

265

44,0

42,7

91,1

186,2

235,8

95,3

7,6

1,9

7,4

1,2

1,9

1,2

224,4

254,0

2,02

274

44,0

42,7

91,1

186,2

235,8

95,3

7,8

2,0

7,5

1,3

2,0

1,3

236,2

267,4

2,25

274

39,6

37,7

86,6

179,7

227,5

90,8

7,7

2,1

7,4

1,3

2,1

1,3

247,6

281,8

2,63

274

32,7

29,5

79,5

169,7

214,8

83,7

7,6

2,2

7,1

1,5

2,2

1,5

265,8

305,2

327

418

,213

,976

,019

3,5

237,7

80,1

6,1

1,7

5,6

1,2

1,7

1,2

205,5

258,7

327

412

,97,5

68,4

186,3

227,8

72,5

6,2

1,8

5,6

1,3

1,8

1,3

212,7

272,8

3,43

274

20,3

14,4

64,3

146,7

186,9

68,4

7,7

2,6

6,8

1,7

2,6

1,7

315,4

364,8

3,86

274

4,2

2,0

56,1

130,0

168,1

60,2

6,4

3,1

5,7

2,0

3,1

2,0

368,0

416,6

4,29

274

5,6

12,6

48,0

114,0

150,0

52,0

6,0

3,6

5,3

2,3

3,6

2,3

430,1

476,2

4,72

274

11,4

19,3

39,7

103,9

135,0

43,8

6,1

3,8

5,3

2,5

3,8

2,5

459,8

530,5

5,15

274

17,5

26,2

31,5

97,3

126,2

35,5

6,2

3,9

5,3

2,6

3,9

2,6

463,9

552,7

5,58

274

23,7

33,9

23,2

90,6

117,5

27,2

6,3

3,9

5,2

2,7

3,9

2,7

467,6

574,6

6,01

274

30,0

41,8

15,0

84,1

108,9

18,9

6,4

3,9

5,1

2,8

3,9

2,8

470,3

595,9

6,44

274

40,5

56,9

6,7

77,9

100,7

10,6

6,0

3,9

4,4

2,9

3,9

2,9

470,0

614,5

6,87

274

56,2

73,0

1,7

66,6

87,4

2,3

5,0

4,2

3,8

3,2

4,2

3,2

507,3

670,9

7,3

274

72,7

89,8

10,1

50,1

69,1

6,1

4,2

5,0

3,3

3,7

4,2

3,3

506,2

695,9

7,73

274

84,5

102,7

18,5

34,2

51,5

14,6

3,9

5,9

3,0

4,4

3,9

3,0

465,2

637,7

8,16

274

90,7

111,4

27,0

23,1

36,2

23,0

3,9

6,4

2,9

5,0

3,9

2,9

465,3

615,0

8,59

274

97,6

120,5

35,5

16,5

27,7

31,6

3,8

6,4

2,8

5,2

3,8

2,8

461,9

590,0

9,02

274

104,6

129,8

44,2

9,8

19,0

40,3

3,8

6,3

2,7

5,3

3,8

2,7

457,2

564,4

9,45

274

111,9

139,6

53,1

3,1

10,3

49,1

3,8

6,2

2,6

5,4

3,8

2,6

451,1

536,8

9,88

274

122,5

156,0

62,1

3,6

1,9

58,1

3,5

6,1

2,3

5,5

3,5

2,3

421,6

474,5

10,31

274

139,9

173,8

71,5

14,1

9,8

67,4

3,0

6,4

2,0

5,9

3,0

2,0

355,7

416,2

10,74

274

158,4

194,6

81,3

32,1

28,2

77,1

2,5

7,8

1,7

7,2

2,5

1,7

300,3

357,6

11,17

274

174,8

213,6

91,7

50,1

46,0

87,4

2,2

9,7

1,5

8,7

2,2

1,5

263,7

314,5

11,6

274

185,0

227,1

103,1

65,4

64,6

98,5

2,1

11,3

1,4

11,0

2,1

1,4

250,8

289,8

11,89

274

193,6

238,0

111,7

72,9

72,7

106,9

2,0

11,2

1,3

11,1

2,0

1,3

238,3

270,2

11,89

286

193,6

238,0

111,7

72,9

72,7

106,9

2,1

11,6

1,4

11,5

2,1

1,4

255,2

289,3

12,03

286

197,7

243,3

115,9

76,5

76,6

110,9

2,1

11,5

1,3

11,6

2,1

1,3

249,1

280,0

12,46

286

213,6

263,5

130,9

89,2

90,4

125,4

1,9

11,4

1,2

11,7

1,9

1,2

224,7

245,2

12,89

286

234,6

291,1

149,8

107,4

108,8

143,3

1,6

12,0

1,0

12,4

1,6

1,0

192,4

202,0

13,025

286

242,5

301,1

153,2

103,5

105,1

146,5

1,5

10,1

0,9

10,5

1,5

0,89

617

8,0

188,2

13,025

586

242,5

301,1

153,2

103,5

105,1

146,5

4,8

17,1

2,9

17,7

4,8

2,9

581,4

614,7

13,32

586

259,9

323,0

160,5

95,0

97,2

153,4

4,3

12,7

2,6

13,2

4,3

2,6

514,0

550,2

13,32

586

290,3

363,4

178,8

137,0

138,0

170,5

3,7

22,6

2,2

23,3

3,7

2,2

438,5

463,5

MAX

MIN

Factor

KCa

pacity

calculation

Relativ

elength

Capa

city

xLV,Rd

V Ed_

A(m

ax)

V Ed_

B(m

ax)

V perm(m

ax)

V Ed_

A(m

in)

V Ed_

B(m

in)

V perm(m

in)

K A(m

ax)

K A(m

in)

K B(m

ax)

K B(m

in)

K A(dim

)K B

(dim

)A d

imB d

im

[m]

[kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][]

[][]

[][]

[][kN]

[kN]

13,48

586

289,0

366,3

184,9

131,8

133,1

176,0

3,9

17,2

2,2

17,8

3,9

2,2

462,6

464,6

13,48

626

289,0

366,3

184,9

131,8

133,1

176,0

4,2

18,1

2,4

18,7

4,2

2,4

508,6

510,8

13,63

626

340,7

424,3

198,0

105,8

108,5

188,1

3,0

9,9

1,9

10,2

3,0

1,9

360,0

397,3

13,79

626

328,0

419,2

213,8

170,7

171,2

202,3

3,6

26,2

2,0

26,6

3,6

2,0

433,3

421,6

13,94

626

404,2

506,0

232,9

158,0

159,4

219,4

2,3

13,8

1,4

14,1

2,3

1,4

275,5

302,4

13,94

626

404,2

506,0

232,9

158,0

159,4

219,4

2,3

13,8

1,4

14,1

2,3

1,4

14,09

626

391,0

505,2

256,9

205,5

205,5

240,6

2,8

24,7

1,5

24,7

2,8

1,5

14,25

626

425,9

559,3

287,6

231,5

230,9

267,3

2,4

25,0

1,2

24,5

2,4

1,2

14,4

626

512,7

664,9

328,6

225,3

225,2

302,3

1,6

12,1

0,9

12,0

1,6

0,9

14,56

626

555,9

737,9

385,9

327,7

303,7

350,4

1,4

43,0

0,7

20,9

1,4

0,7

14,71

626

722,2

952,2

471,0

368,5

349,5

420,4

0,6

20,2

0,3

14,8

0,6

0,3

14,86

626

862,0

1169

,061

0,3

488,8

422,0

534,0

0,1

25,7

0,0

10,4

0,1

0,0

15,02

626

1194

,016

49,0

863,8

662,6

550,2

739,7

0,7

17,7

0,3

7,2

0,7

0,3

15,17

626

2172

,029

73,0

1592

,012

63,0

1086

,013

84,0

1,7

16,6

0,7

6,7

1,7

0,7

15,32

626

2874

,039

40,0

2155

,017

50,0

1539

,018

95,0

2,1

17,4

0,9

7,1

2,1

0,9

MAX

MIN

Factor

KCa

pacity

calculation

Cap

acity

cal

cula

tion

(Tra

ffic

in th

e m

iddl

e of

the

carr

iage

way

)A

xle

load

(Low

er r

einf

orce

men

t) -

Res

ult l

ine

1

a l [m

]0,64

xLM

Ed

Mpe

rmM

traf

ficxL

+/-

a lM

Ed

Mpe

rmM

traf

ficM

Rd

kA

dim

A [k

N]

120

k [-

]6,2

[m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][m

][k

Nm

/m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][-

][k

N]

B [k

N]

210

Adi

m [k

N]

741

020

1,3

204,2

5,4

0,6

201,3

204,2

5,4

0,38

150,8

157,5

12,5

0,3

150,8

157,5

12,5

0,75

86,5

112,5

26,0

0,1

86,5

112,5

26,0

219,5

12,8

1533

,61,13

34,5

70,3

35,8

0,5

34,5

70,3

35,8

431,2

14,0

1682

,81,5

13,5

30,6

44,1

0,9

13,5

30,6

44,1

445,7

10,8

1297

,21,88

58,2

6,5

51,7

1,2

58,2

6,5

51,7

480,8

9,2

1100

,02,25

99,7

41,0

58,8

1,6

99,7

41,0

58,8

578,3

9,1

1097

,12,63

138,1

72,9

65,2

2,0

138,1

72,9

65,2

656,6

8,9

1073

,83

180,3

103,4

76,9

2,4

180,3

103,4

76,9

656,6

7,2

863,4

318

1,6

103,7

77,9

2,4

181,6

103,7

77,9

656,6

7,1

851,9

3,43

209,1

132,2

76,9

2,8

209,1

132,2

76,9

695,0

7,3

878,3

3,86

241,1

159,0

82,1

3,2

241,1

159,0

82,1

804,1

7,9

942,7

4,29

268,8

182,3

86,6

3,7

268,8

182,3

86,6

859,6

7,8

938,7

4,72

292,2

201,9

90,4

4,1

292,2

201,9

90,4

859,6

7,3

873,6

5,15

311,3

217,9

93,4

4,5

311,3

217,9

93,4

859,6

6,9

824,6

5,58

326,0

230,2

95,8

4,9

326,0

230,2

95,8

859,6

6,6

788,8

6,01

336,4

238,9

97,5

5,4

336,4

238,9

97,5

859,6

6,4

763,7

6,44

342,7

243,9

98,7

5,8

342,7

243,9

98,7

859,6

6,2

748,3

6,87

344,8

245,3

99,5

6,2

344,8

245,3

99,5

859,6

6,2

741,0

7,3

342,5

243,0

99,5

6,7

342,5

243,0

99,5

859,6

6,2

743,4

7,73

336,1

237,0

99,1

8,4

336,1

237,0

99,1

859,6

6,3

754,2

8,16

326,0

227,4

98,6

8,8

326,0

227,4

98,6

859,6

6,4

769,7

8,59

311,7

214,2

97,6

9,2

311,7

214,2

97,6

859,6

6,6

793,9

9,02

293,4

197,3

96,0

9,7

293,4

197,3

96,0

859,6

6,9

827,8

9,45

270,9

177,0

93,9

10,1

270,9

177,0

93,9

859,6

7,3

872,1

9,88

244,6

153,4

91,3

10,5

244,6

153,4

91,3

859,6

7,7

928,6

10,31

214,9

127,0

87,9

10,9

214,9

127,0

87,9

769,6

7,3

876,8

10,74

181,6

97,7

83,9

11,4

181,6

97,7

83,9

660,4

6,7

804,7

11,17

144,5

65,7

78,8

11,8

144,5

65,7

78,8

656,6

7,5

900,1

11,6

103,9

30,7

73,2

12,2

103,9

30,7

73,2

626,8

8,1

977,4

12,03

60,1

6,8

67,0

12,7

60,1

6,8

67,0

513,5

7,8

932,5

12,46

13,2

46,8

60,0

13,1

13,2

46,8

60,0

445,7

8,2

984,7

12,89

36,3

88,7

52,4

13,5

36,3

88,7

52,4

384,4

9,0

1083

,213

,32

80,5

131,6

51,1

14,0

80,5

131,6

51,1

270,7

7,9

944,9

13,32

83,1

131,9

48,8

14,0

83,1

131,9

48,8

270,7

8,2

989,6

13,48

102,7

148,1

45,4

14,1

102,7

148,1

45,4

234,2

8,4

1009

,613

,63

122,1

164,4

42,3

14,3

122,1

164,4

42,3

234,2

9,4

1130

,513

,79

142,0

181,1

39,1

14,4

142,0

181,1

39,1

234,2

10,6

1275

,313

,94

161,2

198,2

37,0

14,6

161,2

198,2

37,0

234,2

11,7

1401

,614

,09

183,2

216,0

32,8

14,7

183,2

216,0

32,8

234,2

13,7

1646

,114

,25

204,7

234,9

30,3

14,9

204,7

234,9

30,3

234,2

15,5

1860

,314

,422

7,6

254,6

27,0

15,0

227,6

254,6

27,0

234,2

18,1

2175

,714

,56

252,7

276,7

24,0

15,2

252,7

276,7

24,0

234,2

21,3

2553

,514

,71

283,4

303,6

20,3

15,3

283,4

303,6

20,3

234,2

26,6

3187

,014

,86

326,0

342,1

16,1

15,5

326,0

342,1

16,1

234,2

35,9

4306

,215

,02

386,4

398,4

12,0

15,7

386,4

398,4

12,0

234,2

52,5

6305

,015

,17

446,7

450,3

6,7

15,8

446,7

450,3

6,7

234,2

102,1

1225

2,5

15,32

484,9

488,5

6,7

16,0

484,9

488,5

6,7

234,2

107,4

1288

2,5

Cap

acity

BR

IGA

DE

OU

TPU

TSh

ift

600,0

400,0

200,0

0,0

200,0

400,0

600,0

800,0

1000,0

05

1015

20

M[kNm/m]

xL[m

]

Capa

city

calculationAx

leload

M,Ed

M,Ed(al)

M,Rd

M,perm

Cap

acity

cal

cula

tion

(Tra

ffic

in th

e m

iddl

e of

the

carr

iage

way

) Axl

e lo

ad (U

pper

rei

nfor

cem

ent)

- R

esul

t lin

e 1

a l [m

]0,64

xLM

Ed

Mpe

rmM

traf

ficxL

+/-

a lM

Ed

Mpe

rmM

traf

ficM

Rd

kA

dim

A [k

N]

120

k [-

]4,4

[m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][m

][k

Nm

/m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][-

][k

N]

B [k

N]

210

Adi

m [k

N]

527

031

0,5

249,7

60,8

0,6

310,5

249,7

60,8

811,5

9,2

1108

,90,38

258,5

202,1

56,5

1,0

258,5

202,1

56,5

799,2

10,6

1269

,30,75

206,1

155,1

51,1

1,4

206,1

155,1

51,1

799,2

12,6

1513

,11,13

153,8

110,2

43,6

1,8

153,8

110,2

43,6

799,2

15,8

1898

,51,5

104,6

68,4

36,2

2,1

104,6

68,4

36,2

730,8

18,3

2194

,51,88

59,2

29,6

29,6

2,5

59,2

29,6

29,6

640,7

20,7

2481

,02,25

17,2

6,5

23,7

2,9

17,2

6,5

23,7

609,6

26,0

3119

,52,63

21,3

40,0

18,7

3,3

21,3

40,0

18,7

532,5

30,6

3667

,73

57,4

72,2

14,7

3,6

57,4

72,2

14,7

447,9

35,3

4234

,23

57,6

72,4

14,7

57,6

72,4

14,7

3,43

90,8

102,8

12,0

90,8

102,8

12,0

3,86

125,5

131,4

10,9

125,5

131,4

10,9

4,29

146,0

156,5

10,5

146,0

156,5

10,5

4,72

167,5

178,0

10,5

167,5

178,0

10,5

5,15

185,0

195,8

10,9

185,0

195,8

10,9

5,58

198,6

210,1

11,5

198,6

210,1

11,5

6,01

208,5

220,7

12,2

208,5

220,7

12,2

6,44

214,6

227,7

13,0

214,6

227,7

13,0

6,87

217,1

230,9

13,9

217,1

230,9

13,9

7,3

215,8

230,5

14,7

215,8

230,5

14,7

7,73

210,9

226,4

15,5

210,9

226,4

15,5

8,16

202,2

218,6

16,4

202,2

218,6

16,4

8,59

189,9

207,1

17,2

189,9

207,1

17,2

9,02

173,8

191,8

18,0

173,8

191,8

18,0

9,45

153,9

172,8

18,9

153,9

172,8

18,9

9,88

130,1

150,1

20,0

130,1

150,1

20,0

10,31

101,3

122,8

21,5

101,3

122,8

21,5

10,74

67,8

91,3

23,5

67,8

91,3

23,5

11,17

29,3

55,6

26,3

10,5

29,3

55,6

26,3

316,3

14,2

1698

,811

,613

,916

,029

,911

,013

,916

,029

,945

6,3

15,8

1897

,612

,03

61,8

27,5

34,3

11,4

61,8

27,5

34,3

813,3

22,9

2747

,412

,46

114,8

75,2

39,6

11,8

114,8

75,2

39,6

1083

,725

,530

56,2

12,89

173,2

127,5

45,7

12,3

173,2

127,5

45,7

1084

,721

,025

15,1

13,32

234,7

182,3

52,5

12,7

234,7

182,3

52,5

1084

,717

,220

64,2

13,32

235,8

183,3

52,5

12,7

235,8

183,3

52,5

1084

,717

,220

61,2

13,48

261,1

205,9

55,2

12,8

261,1

205,9

55,2

1084

,715

,919

11,5

13,63

288,0

229,0

59,0

13,0

288,0

229,0

59,0

1084

,714

,517

41,3

13,79

316,4

253,3

63,1

13,2

316,4

253,3

63,1

1084

,713

,215

81,9

13,94

346,5

279,1

67,5

13,3

346,5

279,1

67,5

1084

,711

,914

33,3

14,09

378,8

306,6

72,2

13,5

378,8

306,6

72,2

1084

,710

,812

93,4

14,25

413,6

336,3

77,3

13,6

413,6

336,3

77,3

1084

,79,7

1161

,514

,445

1,7

368,8

82,9

13,8

451,7

368,8

82,9

1084

,78,6

1036

,114

,56

494,3

405,2

89,1

13,9

494,3

405,2

89,1

1084

,77,6

915,7

14,71

541,6

445,8

95,8

14,1

541,6

445,8

95,8

1084

,76,7

800,4

14,86

589,5

486,3

103,3

14,2

589,5

486,3

103,3

1084

,75,8

695,2

15,02

619,5

512,6

106,9

14,4

619,5

512,6

106,9

1084

,75,4

642,2

15,17

636,1

524,0

112,0

14,5

636,1

524,0

112,0

1084

,75,0

600,8

15,32

657,6

531,8

125,8

14,7

657,6

531,8

125,8

1084

,74,4

527,4

Cap

acity

BR

IGA

DE

OU

TPU

TSh

ift

1200,0

1000,0

800,0

600,0

400,0

200,0

0,0

200,0

400,0

05

1015

20

M[kNm/m]

xL[m

]

Capa

city

calculationAx

leload

M,Ed

M,Ed(al)

M,Ed(al)

M,Rd

M,Rd

Cap

acity

cal

cula

tion

(Tra

ffic

in th

e m

iddl

e of

the

carr

iage

way

) Bog

ie lo

ad (L

ower

rei

nfor

cem

ent)

- R

esul

t lin

e 1

a l [m

]0,64

xLM

Ed

Mpe

rmM

traf

ficxL

+/-

a lM

Ed

Mpe

rmM

traf

ficM

Rd

kB

dim

A [k

N]

120

k [-

]2,1

[m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][m

][k

Nm

/m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][-

][k

N]

B [k

N]

210

Bdi

m [k

N]

777

019

9,0

204,2

9,8

0,6

199,0

204,2

9,8

0,38

149,3

157,5

15,3

0,3

149,3

157,5

15,3

0,75

79,5

112,5

33,0

0,1

79,5

112,5

33,0

219,5

10,1

2113

,51,13

23,8

70,3

46,5

0,5

23,8

70,3

46,5

431,2

10,8

2266

,21,5

28,2

30,6

58,8

0,9

28,2

30,6

58,8

445,7

8,1

1701

,71,88

77,9

6,5

71,5

1,2

77,9

6,5

71,5

480,8

6,6

1394

,02,25

124,7

41,0

83,8

1,6

124,7

41,0

83,8

578,3

6,4

1346

,82,63

167,8

72,9

95,0

2,0

167,8

72,9

95,0

656,6

6,1

1291

,03

215,4

103,4

112,0

2,4

215,4

103,4

112,0

656,6

4,9

1037

,33

216,4

103,7

112,7

2,4

216,4

103,7

112,7

656,6

4,9

1030

,33,43

251,3

132,2

119,1

2,8

251,3

132,2

119,1

695,0

4,7

992,3

3,86

288,4

159,0

129,4

3,2

288,4

159,0

129,4

804,1

5,0

1046

,84,29

320,5

182,3

138,2

3,7

320,5

182,3

138,2

859,6

4,9

1029

,24,72

347,5

201,9

145,6

4,1

347,5

201,9

145,6

859,6

4,5

948,6

5,15

369,8

217,9

151,9

4,5

369,8

217,9

151,9

859,6

4,2

887,2

5,58

387,3

230,2

157,1

4,9

387,3

230,2

157,1

859,6

4,0

841,4

6,01

400,0

238,9

161,1

5,4

400,0

238,9

161,1

859,6

3,9

809,1

6,44

407,9

243,9

163,9

5,8

407,9

243,9

163,9

859,6

3,8

788,9

6,87

411,1

245,3

165,8

6,2

411,1

245,3

165,8

859,6

3,7

778,1

7,3

409,6

243,0

166,6

6,7

409,6

243,0

166,6

859,6

3,7

777,3

7,73

403,4

237,0

166,4

8,4

403,4

237,0

166,4

859,6

3,7

785,8

8,16

392,6

227,4

165,2

8,8

392,6

227,4

165,2

859,6

3,8

803,7

8,59

376,8

214,2

162,7

9,2

376,8

214,2

162,7

859,6

4,0

833,1

9,02

356,6

197,3

159,2

9,7

356,6

197,3

159,2

859,6

4,2

873,7

9,45

331,8

177,0

154,8

10,1

331,8

177,0

154,8

859,6

4,4

926,0

9,88

302,6

153,4

149,3

10,5

302,6

153,4

149,3

859,6

4,7

993,3

10,31

269,3

127,0

142,4

10,9

269,3

127,0

142,4

769,6

4,5

947,6

10,74

231,6

97,7

134,0

11,4

231,6

97,7

134,0

660,4

4,2

882,0

11,17

190,4

65,7

124,7

11,8

190,4

65,7

124,7

656,6

4,7

995,2

11,6

144,5

30,7

113,8

12,2

144,5

30,7

113,8

626,8

5,2

1100

,012

,03

95,9

6,8

102,8

12,7

95,9

6,8

102,8

513,5

5,1

1062

,912

,46

44,0

46,8

90,8

13,1

44,0

46,8

90,8

445,7

5,4

1139

,212

,89

11,3

88,7

77,4

13,5

11,3

88,7

77,4

384,4

6,1

1284

,113

,32

64,4

131,6

67,2

14,0

64,4

131,6

67,2

270,7

6,0

1257

,713

,32

66,2

131,9

65,7

14,0

66,2

131,9

65,7

270,7

6,1

1286

,613

,48

89,2

148,1

58,9

14,1

89,2

148,1

58,9

234,2

6,5

1362

,413

,63

108,7

164,4

55,7

14,3

108,7

164,4

55,7

234,2

7,2

1502

,313

,79

131,4

181,1

49,7

14,4

131,4

181,1

49,7

234,2

8,4

1753

,813

,94

153,1

198,2

45,1

14,6

153,1

198,2

45,1

234,2

9,6

2012

,114

,09

177,3

216,0

38,7

14,7

177,3

216,0

38,7

234,2

11,6

2441

,114

,25

199,9

234,9

35,1

14,9

199,9

234,9

35,1

234,2

13,4

2809

,014

,422

4,8

254,6

29,8

15,0

224,8

254,6

29,8

234,2

16,4

3450

,414

,56

252,6

276,7

24,1

15,2

252,6

276,7

24,1

234,2

21,2

4444

,514

,71

284,0

303,6

19,6

15,3

284,0

303,6

19,6

234,2

27,4

5762

,214

,86

326,8

342,1

15,3

15,5

326,8

342,1

15,3

234,2

37,7

7925

,615

,02

387,0

398,4

11,4

15,7

387,0

398,4

11,4

234,2

55,6

1167

3,8

15,17

446,9

450,3

6,4

15,8

446,9

450,3

6,4

234,2

107,2

2251

6,7

15,32

484,9

488,5

6,7

16,0

484,9

488,5

6,7

234,2

108,5

2278

8,0

BR

IGA

DE

OU

TPU

TSh

iftC

apac

ity

600,0

400,0

200,0

0,0

200,0

400,0

600,0

800,0

1000

,0

05

1015

20

M[kNm/m]

xL[m

]

Capa

city

calculationBo

gieload

M,Ed

M,Ed(al)

M,Rd

M,perm

Cap

acity

cal

cula

tion

(Tra

ffic

in th

e m

iddl

e of

the

carr

iage

way

) Bog

ie lo

ad (U

pper

rei

nfor

cem

ent)

- R

esul

t lin

e 1

a l [m

]0,64

xLM

Ed

Mpe

rmM

traf

ficxL

+/-

a lM

Ed

Mpe

rmM

traf

ficM

Rd

kB

dim

A [k

N]

120

k [-

]2,1

[m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][m

][k

Nm

/m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][-

][k

N]

B [k

N]

210

dim

[kN

]44

10

377,9

249,7

128,2

0,6

377,9

249,7

128,2

811,5

4,4

920,3

0,38

314,1

202,1

112,0

1,0

314,1

202,1

112,0

799,2

5,3

1119

,50,75

252,4

155,1

97,3

1,4

252,4

155,1

97,3

799,2

6,6

1389

,51,13

189,9

110,2

79,7

1,8

189,9

110,2

79,7

799,2

8,6

1816

,11,5

133,0

68,4

64,6

2,1

133,0

68,4

64,6

730,8

10,3

2153

,91,88

82,6

29,6

53,0

2,5

82,6

29,6

53,0

640,7

11,5

2423

,32,25

36,4

6,5

42,9

2,9

36,4

6,5

42,9

609,6

14,4

3016

,62,63

5,5

40,0

34,5

3,3

5,5

40,0

34,5

532,5

16,6

3488

,63

44,4

72,2

27,7

3,6

44,4

72,2

27,7

447,9

18,8

3938

,73

44,6

72,4

27,8

44,6

72,4

27,8

3,43

81,2

102,8

21,6

81,2

102,8

21,6

3,86

113,6

131,4

17,8

113,6

131,4

17,8

4,29

138,2

156,5

18,2

138,2

156,5

18,2

4,72

158,9

178,0

19,1

158,9

178,0

19,1

5,15

175,6

195,8

20,2

175,6

195,8

20,2

5,58

188,5

210,1

21,6

188,5

210,1

21,6

6,01

197,6

220,7

23,1

197,6

220,7

23,1

6,44

203,0

227,7

24,6

203,0

227,7

24,6

6,87

204,8

230,9

26,2

204,8

230,9

26,2

7,3

202,8

230,5

27,7

202,8

230,5

27,7

7,73

197,1

226,4

29,3

197,1

226,4

29,3

8,16

187,7

218,6

30,9

187,7

218,6

30,9

8,59

174,5

207,1

32,5

174,5

207,1

32,5

9,02

157,6

191,8

34,2

157,6

191,8

34,2

9,45

136,7

172,8

36,1

136,7

172,8

36,1

9,88

111,8

150,1

38,2

111,8

150,1

38,2

10,31

81,9

122,8

40,9

81,9

122,8

40,9

10,74

47,2

91,3

44,2

47,2

91,3

44,2

11,17

7,4

55,6

48,2

10,5

7,4

55,6

48,2

316,3

7,7

1619

,311

,637

,216

,053

,211

,037

,216

,053

,245

6,3

8,9

1865

,612

,03

91,0

27,5

63,5

11,4

91,0

27,5

63,5

813,3

12,4

2597

,412

,46

151,9

75,2

76,7

11,8

151,9

75,2

76,7

1083

,713

,227

62,1

12,89

219,0

127,5

91,5

12,3

219,0

127,5

91,5

1084

,710

,521

96,9

13,32

289,9

182,3

107,6

12,7

289,9

182,3

107,6

1084

,78,4

1761

,213

,32

291,0

183,3

107,7

12,7

291,0

183,3

107,7

1084

,78,4

1757

,613

,48

320,2

205,9

114,3

12,8

320,2

205,9

114,3

1084

,77,7

1614

,613

,63

350,1

229,0

121,1

13,0

350,1

229,0

121,1

1084

,77,1

1483

,913

,79

381,6

253,3

128,3

13,2

381,6

253,3

128,3

1084

,76,5

1360

,913

,94

415,2

279,1

136,1

13,3

415,2

279,1

136,1

1084

,75,9

1243

,114

,09

451,2

306,6

144,6

13,5

451,2

306,6

144,6

1084

,75,4

1130

,014

,25

490,4

336,3

154,1

13,6

490,4

336,3

154,1

1084

,74,9

1019

,914

,453

3,9

368,8

165,2

13,8

533,9

368,8

165,2

1084

,74,3

910,1

14,56

583,5

405,2

178,3

13,9

583,5

405,2

178,3

1084

,73,8

800,3

14,71

640,6

445,8

194,8

14,1

640,6

445,8

194,8

1084

,73,3

688,8

14,86

702,9

486,3

216,6

14,2

702,9

486,3

216,6

1084

,72,8

580,2

15,02

741,4

512,6

228,8

14,4

741,4

512,6

228,8

1084

,72,5

525,1

15,17

762,9

524,0

238,9

14,5

762,9

524,0

238,9

1084

,72,3

492,9

15,32

795,1

531,8

263,3

14,7

795,1

531,8

263,3

1084

,72,1

441,0

Cap

acity

BR

IGA

DE

OU

TPU

TSh

ift

1200,0

1000,0

800,0

600,0

400,0

200,0

0,0

200,0

400,0

05

1015

20

M[kNm/m]

xL[m

]

Capa

city

calculationBo

gieload

M,Ed

M,Ed(al)

M,Ed(al)

M,Rd

M,Rd

Cap

acity

cal

cula

tion

(Tra

ffic

in th

e m

iddl

e of

the

carr

iage

way

) Axl

e lo

ad (U

pper

rei

nfor

cem

ent)

- R

esul

t lin

e 2

a l [m

]0,64

2xL

ME

dM

perm

Mtr

affic

xL +

/- a l

ME

dM

perm

Mtr

affic

MR

dk

Adi

mA

[kN

]12

0k

[-]

4,56

[m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][m

][k

Nm

/m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][-

][k

N]

B [k

N]

210

Adi

m [k

N]

547

00,8

0,7

0,2

0,15

4,5

2,1

2,4

0,3

9,7

5,1

4,6

0,45

19,3

12,1

7,3

0,6

35,6

24,1

11,5

0,75

53,7

38,1

15,6

0,1

53,7

38,1

15,6

183,2

9,3

1113

,30,9

72,0

53,3

18,7

0,3

72,0

53,3

18,7

424,0

19,8

2377

,71,05

93,7

72,1

21,6

0,4

93,7

72,1

21,6

424,0

16,3

1954

,91,2

121,0

95,7

25,3

0,6

121,0

95,7

25,3

424,0

13,0

1555

,21,35

162,1

130,6

31,5

0,7

162,1

130,6

31,5

424,0

9,3

1118

,41,5

199,9

162,8

37,1

0,9

199,9

162,8

37,1

424,0

7,0

845,3

1,65

209,5

170,5

39,0

1,0

209,5

170,5

39,0

424,0

6,5

780,6

1,65

209,5

170,5

39,0

2,3

209,5

170,5

39,0

424,0

6,5

780,6

1,8

194,6

153,4

41,2

2,4

194,6

153,4

41,2

424,0

6,6

788,2

1,95

224,4

181,0

43,4

2,6

224,4

181,0

43,4

424,0

5,6

671,6

2,1

216,1

172,2

43,9

2,7

216,1

172,2

43,9

424,0

5,7

688,8

2,25

177,0

138,9

38,1

2,9

177,0

138,9

38,1

424,0

7,5

897,2

2,4

132,7

102,6

30,1

3,0

132,7

102,6

30,1

424,0

10,7

1281

,32,55

104,7

77,3

27,4

3,2

104,7

77,3

27,4

424,0

12,7

1518

,52,7

82,1

56,6

25,5

3,3

82,1

56,6

25,5

424,0

14,4

1727

,02,85

64,2

39,8

24,4

3,5

64,2

39,8

24,4

424,0

15,8

1892

,53

49,6

26,0

23,6

3,6

49,6

26,0

23,6

424,0

16,9

2024

,83,15

37,4

14,3

23,1

3,8

37,4

14,3

23,1

286,0

11,8

1413

,23,3

27,2

4,5

22,8

3,9

27,2

4,5

22,8

247,0

10,7

1278

,73,45

18,8

3,8

22,6

3,6

11,9

10,7

22,6

3,75

6,3

16,4

22,7

3,9

2,0

20,9

22,9

4,05

3,6

19,6

23,2

4,2

9,6

14,1

23,7

4,35

17,0

7,3

24,3

4,5

25,9

0,8

25,1

3,9

25,9

0,8

25,1

247,0

9,8

1178

,74,65

36,6

10,5

26,1

4,0

36,6

10,5

26,1

290,0

10,7

1286

,94,8

49,4

22,0

27,3

4,2

49,4

22,0

27,3

323,0

11,0

1321

,14,95

64,7

35,7

29,0

4,3

64,7

35,7

29,0

355,0

11,0

1321

,65,1

83,5

52,4

31,1

4,5

83,5

52,4

31,1

389,0

10,8

1299

,05,25

106,7

72,9

33,8

4,6

106,7

72,9

33,8

424,0

10,4

1248

,35,4

135,6

98,1

37,4

4,8

135,6

98,1

37,4

424,1

8,7

1044

,85,55

177,6

134,5

43,1

4,9

177,6

134,5

43,1

424,1

6,7

806,7

5,7

217,8

167,9

49,9

5,1

217,8

167,9

49,9

424,1

5,1

615,8

5,85

230,5

176,1

54,4

5,2

230,5

176,1

54,4

424,1

4,6

547,0

5,85

230,5

176,1

54,4

6,5

230,5

176,1

54,4

424,1

4,6

547,0

620

3,4

147,3

56,1

6,6

203,4

147,3

56,1

424,1

4,9

591,9

BR

IGA

DE

OU

TPU

TSh

iftC

apac

ity

450,0

400,0

350,0

300,0

250,0

200,0

150,0

100,0

50,0 0,0

01

23

45

67

M[kNm/m]

xL[m

]

Capa

city

calculationAx

leload

M,Ed

M,Ed(al)

M,Ed(al)

M,Ed(al)

M,Ed(al)

M,Rd

M,Rd

Cap

acity

cal

cula

tion

(Tra

ffic

in th

e m

iddl

e of

the

carr

iage

way

) Bog

ie lo

ad (U

pper

rei

nfor

cem

ent)

- R

esul

t lin

e 2

a l [m

]0,

664

xLM

Ed

Mpe

rmM

traf

ficxL

+/-

a lM

Ed

Mpe

rmM

traf

ficM

Rd

kdi

mA

[kN

]12

0k

[-]

2,32

[m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][m

][k

Nm

/m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][-

][k

N]

B [k

N]

210

dim

[kN

]48

70

0,9

0,7

0,2

0,15

5,7

2,1

3,6

0,3

11,9

5,1

6,8

0,45

22,4

12,1

10,4

0,6

40,0

24,1

15,9

0,75

59,8

38,1

21,8

0,1

59,8

38,1

21,8

183,2

6,7

1400

,90,9

79,3

53,3

26,1

0,3

79,3

53,3

26,1

424,0

14,2

2986

,31,05

102,3

72,1

30,2

0,4

102,3

72,1

30,2

424,0

11,6

2445

,21,2

131,2

95,7

35,5

0,6

131,2

95,7

35,5

424,0

9,2

1941

,41,35

177,3

130,6

46,7

0,7

177,3

130,6

46,7

424,0

6,3

1319

,61,5

221,7

162,8

58,8

0,9

221,7

162,8

58,8

424,0

4,4

932,4

1,65

232,5

170,5

62,0

1,0

232,5

170,5

62,0

424,0

4,1

858,9

1,65

232,5

170,5

62,0

2,3

232,5

170,5

62,0

424,0

4,1

858,9

1,8

221,4

153,4

68,0

2,4

221,4

153,4

68,0

424,0

4,0

835,7

1,95

261,9

181,0

80,9

2,6

261,9

181,0

80,9

424,0

3,0

631,0

2,1

255,6

172,2

83,3

2,7

255,6

172,2

83,3

424,0

3,0

634,8

2,25

210,1

138,9

71,3

2,9

210,1

138,9

71,3

424,0

4,0

840,3

2,4

155,7

102,6

53,1

3,0

155,7

102,6

53,1

424,0

6,1

1270

,62,55

125,5

77,3

48,2

3,2

125,5

77,3

48,2

424,0

7,2

1511

,02,7

101,8

56,6

45,2

3,3

101,8

56,6

45,2

424,0

8,1

1708

,52,85

83,1

39,8

43,3

3,5

83,1

39,8

43,3

424,0

8,9

1864

,03

67,9

26,0

41,9

3,6

67,9

26,0

41,9

424,0

9,5

1994

,93,15

55,1

14,3

40,8

3,8

55,1

14,3

40,8

286,0

6,7

1398

,13,3

44,5

4,5

40,0

3,9

44,5

4,5

40,0

247,0

6,1

1273

,93,45

35,6

3,8

39,4

3,6

28,3

10,7

39,0

3,75

22,3

16,4

38,7

3,9

17,7

20,9

38,6

4,05

19,0

19,6

38,6

4,2

24,7

14,1

38,7

4,35

31,8

7,3

39,1

4,5

40,4

0,8

39,6

3,9

40,4

0,8

39,6

247,0

6,2

1306

,34,65

51,1

10,5

40,5

4,0

51,1

10,5

40,5

290,0

6,9

1448

,14,8

64,1

22,0

42,1

4,2

64,1

22,0

42,1

323,0

7,1

1501

,34,95

80,0

35,7

44,3

4,3

80,0

35,7

44,3

355,0

7,2

1514

,25,1

100,3

52,4

48,0

4,5

100,3

52,4

48,0

389,0

7,0

1474

,15,25

127,8

72,9

54,9

4,6

127,8

72,9

54,9

424,0

6,4

1343

,75,4

163,4

98,1

65,2

4,8

163,4

98,1

65,2

424,1

5,0

1049

,35,55

217,6

134,5

83,1

4,9

217,6

134,5

83,1

424,1

3,5

732,1

5,7

267,7

167,9

99,9

5,1

267,7

167,9

99,9

424,1

2,6

538,8

5,85

283,1

176,1

107,0

5,2

283,1

176,1

107,0

424,1

2,3

486,7

5,85

283,1

176,1

107,0

6,5

283,1

176,1

107,0

424,1

2,3

486,7

625

8,0

147,3

110,8

6,6

258,0

147,3

110,8

424,1

2,5

524,6

Cap

acity

BR

IGA

DE

OU

TPU

TSh

ift

450,0

400,0

350,0

300,0

250,0

200,0

150,0

100,0

50,0 0,0

01

23

45

67

M[kNm/m]

xL[m

]

Capa

city

calculationBo

gieload

M,Ed

M,Ed(al)

M,Ed(al)

M,Ed(al)

M,Ed(al)

M,Rd

M,Rd

Cap

acity

cal

cula

tion

(Tra

ffic

in th

e m

iddl

e of

the

carr

iage

way

) Axl

e lo

ad (L

ower

rei

nfor

cem

ent)

- R

esul

t lin

e 3

a l [m

]0,

664

xLM

Ed

Mpe

rmM

traf

ficxL

+/-

a lM

Ed

Mpe

rmM

traf

ficM

Rd

kA

dim

A [k

N]

120

k [-

]2,

80[m

][k

Nm

/m]

[kN

m/m

][k

Nm

/m]

[m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][k

Nm

/m]

[-]

[kN

]B

[kN

]21

0A

dim

[kN

]33

60

0,2

0,4

0,2

0,15

5,9

3,8

2,2

0,3

11,3

7,1

4,2

0,45

16,1

9,6

6,5

0,6

23,1

13,2

9,9

0,75

29,1

16,2

12,9

0,9

31,5

17,1

14,4

1,05

32,3

17,0

15,3

1,2

32,4

16,5

15,8

0,5

32,4

16,5

15,8

111,0

6,0

716,1

1,35

32,2

15,9

16,3

0,7

32,2

15,9

16,3

111,0

5,8

701,6

1,5

32,0

15,3

16,7

0,8

32,0

15,3

16,7

111,0

5,7

686,8

1,65

31,9

14,8

17,2

1,0

31,9

14,8

17,2

111,0

5,6

672,6

1,8

31,9

14,3

17,6

1,1

31,9

14,3

17,6

111,0

5,5

658,4

1,95

32,0

13,8

18,2

1,3

32,0

13,8

18,2

111,0

5,3

640,7

2,1

32,3

13,4

18,9

1,4

32,3

13,4

18,9

111,0

5,2

620,9

2,25

32,6

13,1

19,5

1,6

32,6

13,1

19,5

111,0

5,0

601,5

2,4

33,0

12,7

20,3

1,7

33,0

12,7

20,3

111,0

4,8

581,4

2,55

33,5

12,4

21,1

1,9

33,5

12,4

21,1

111,0

4,7

561,0

2,7

34,0

12,0

22,0

2,0

34,0

12,0

22,0

111,0

4,5

540,6

2,85

34,6

11,7

22,9

2,2

34,6

11,7

22,9

111,0

4,3

520,8

335

,311

,423

,92,3

35,3

11,4

23,9

111,0

4,2

499,3

3,15

36,2

11,1

25,1

2,5

36,2

11,1

25,1

111,0

4,0

477,8

3,3

37,2

10,7

26,5

2,6

37,2

10,7

26,5

111,0

3,8

453,9

3,45

38,8

10,4

28,4

2,8

38,8

10,4

28,4

111,0

3,5

424,6

3,6

41,3

10,1

31,2

2,9

41,3

10,1

31,2

111,0

3,2

387,9

3,75

44,2

9,7

34,5

3,1

44,2

9,7

34,5

111,0

2,9

352,2

3,9

45,3

9,4

35,9

3,2

45,3

9,4

35,9

111,0

2,8

339,8

4,05

45,2

9,0

36,2

3,4

45,2

9,0

36,2

111,0

2,8

338,5

4,2

45,2

8,7

36,5

3,5

45,2

8,7

36,5

111,0

2,8

335,9

4,35

44,0

8,3

35,7

5,0

44,0

8,3

35,7

111,0

2,9

345,3

4,5

43,3

8,0

35,3

5,2

43,3

8,0

35,3

111,0

2,9

349,9

4,65

42,6

7,7

35,0

5,3

42,6

7,7

35,0

111,0

3,0

354,5

4,8

43,2

7,3

35,8

5,5

43,2

7,3

35,8

111,0

2,9

347,1

4,95

43,2

7,0

36,2

5,6

43,2

7,0

36,2

111,0

2,9

344,9

5,1

43,1

6,6

36,5

5,8

43,1

6,6

36,5

111,0

2,9

343,4

5,25

43,1

6,3

36,8

5,9

43,1

6,3

36,8

111,0

2,8

341,1

5,4

42,1

6,0

36,1

6,1

42,1

6,0

36,1

111,0

2,9

349,4

5,55

41,8

5,7

36,1

6,2

41,8

5,7

36,1

111,0

2,9

350,1

5,7

42,1

5,4

36,7

6,4

42,1

5,4

36,7

111,0

2,9

345,0

5,85

42,1

5,1

37,0

6,5

42,1

5,1

37,0

111,0

2,9

343,7

641

,44,9

36,6

6,7

41,4

4,9

36,6

111,0

2,9

348,3

Cap

acity

BR

IGA

DE

OU

TPU

TSh

ift

20,0 0,0

20,0

40,0

60,0

80,0

100,0

120,0

01

23

45

67

M[kNm/m]

xL[m

]

Capa

city

calculationAx

leload

M,Ed

M,Ed(al)

M,Rd

M,perm

Cap

acity

cal

cula

tion

(Tra

ffic

in th

e m

iddl

e of

the

carr

iage

way

) Bog

ie lo

ad (L

ower

rei

nfor

cem

ent)

- R

esul

t lin

e 3

a l [m

]0,

664

xLM

Ed

Mpe

rmM

traf

ficxL

+/-

a lM

Ed

Mpe

rmM

traf

ficM

Rd

kB

dim

A [k

N]

120

k [-

]1,

70[m

][k

Nm

/m]

[kN

m/m

][k

Nm

/m]

[m]

[kN

m/m

][k

Nm

/m]

[kN

m/m

][k

Nm

/m]

[-]

[kN

]B

[kN

]21

0B

dim

[kN

]35

70

0,1

0,4

0,3

0,15

7,0

3,8

3,3

0,3

13,4

7,1

6,3

0,45

19,6

9,6

10,0

0,6

28,8

13,2

15,6

0,75

36,5

16,2

20,3

0,9

39,9

17,1

22,8

1,05

41,2

17,0

24,2

1,2

41,6

16,5

25,1

0,5

41,6

16,5

25,1

111,0

3,8

791,6

1,35

41,6

15,9

25,8

0,7

41,6

15,9

25,8

111,0

3,7

775,4

1,5

41,7

15,3

26,4

0,8

41,7

15,3

26,4

111,0

3,6

761,0

1,65

41,8

14,8

27,1

1,0

41,8

14,8

27,1

111,0

3,6

747,1

1,8

42,0

14,3

27,8

1,1

42,0

14,3

27,8

111,0

3,5

731,7

1,95

42,4

13,8

28,6

1,3

42,4

13,8

28,6

111,0

3,4

713,8

2,1

42,9

13,4

29,5

1,4

42,9

13,4

29,5

111,0

3,3

695,8

2,25

43,4

13,1

30,4

1,6

43,4

13,1

30,4

111,0

3,2

677,3

2,4

44,2

12,7

31,5

1,7

44,2

12,7

31,5

111,0

3,1

655,0

2,55

45,6

12,4

33,2

1,9

45,6

12,4

33,2

111,0

3,0

624,1

2,7

47,0

12,0

35,0

2,0

47,0

12,0

35,0

111,0

2,8

593,8

2,85

49,0

11,7

37,3

2,2

49,0

11,7

37,3

111,0

2,7

559,2

351

,311

,439

,92,3

51,3

11,4

39,9

111,0

2,5

524,6

3,15

53,8

11,1

42,8

2,5

53,8

11,1

42,8

111,0

2,3

490,6

3,3

56,5

10,7

45,8

2,6

56,5

10,7

45,8

111,0

2,2

459,6

3,45

60,4

10,4

50,0

2,8

60,4

10,4

50,0

111,0

2,0

422,5

3,6

63,4

10,1

53,4

2,9

63,4

10,1

53,4

111,0

1,9

397,1

3,75

66,5

9,7

56,8

3,1

66,5

9,7

56,8

111,0

1,8

374,4

3,9

67,8

9,4

58,4

3,2

67,8

9,4

58,4

111,0

1,7

365,4

4,05

67,6

9,0

58,5

3,4

67,6

9,0

58,5

111,0

1,7

365,8

4,2

67,5

8,7

58,8

3,5

67,5

8,7

58,8

111,0

1,7

365,6

4,35

67,8

8,3

59,4

3,7

67,8

8,3

59,4

111,0

1,7

362,7

4,5

68,6

8,0

60,6

3,8

68,6

8,0

60,6

111,0

1,7

356,9

4,65

68,3

7,7

60,6

4,0

68,3

7,7

60,6

111,0

1,7

358,0

4,8

68,3

7,3

61,0

4,1

68,3

7,3

61,0

111,0

1,7

357,0

4,95

68,1

7,0

61,1

4,3

68,1

7,0

61,1

111,0

1,7

357,6

5,1

67,7

6,6

61,1

4,4

67,7

6,6

61,1

111,0

1,7

358,9

5,25

67,3

6,3

61,0

4,6

67,3

6,3

61,0

111,0

1,7

360,4

5,4

66,6

6,0

60,6

4,7

66,6

6,0

60,6

111,0

1,7

364,0

5,55

66,3

5,7

60,7

4,9

66,3

5,7

60,7

111,0

1,7

364,6

5,7

66,4

5,4

61,0

5,0

66,4

5,4

61,0

111,0

1,7

363,5

5,85

66,2

5,1

61,2

5,2

66,2

5,1

61,2

111,0

1,7

363,8

666

,14,9

61,2

5,3

66,1

4,9

61,2

111,0

1,7

363,9

BR

IGA

DE

OU

TPU

TSh

iftC

apac

ity

20,0 0,0

20,0

40,0

60,0

80,0

100,0

120,0

01

23

45

67

M[kNm/m]

xL[m

]

Capa

city

calculationBo

gieload

M,Ed

M,Ed(al)

M,Rd

M,perm

Cap

acity

cal

cula

tion

(Tra

ffic

in th

e m

iddl

e of

the

carr

iage

way

) Axl

e- a

nd b

ogie

load

- R

esul

t lin

e 4

A[kN]

120

Classification

B[kN]

210

MRd

MEd

Mpe

rmM

traffic

kA d

im

[kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

799

425,5

358,5

676,6

789

MRd

MEd

Mpe

rmM

traffic

kB d

im

[kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

799

477,8

358,5

119,3

3,7

776

Cap

acity

cal

cula

tion

(Tra

ffic

in th

e m

iddl

e of

the

carr

iage

way

) She

ar fo

rce

- Res

ult l

ine

5

A[kN]

120

k A[]

11,7

k B[]

9,9

B[kN]

210

A dim[kN]

1400

B dim[kN]

2070

Relativ

elength

Capa

city

xLV,Rd

V Ed_

A(m

ax)

V Ed_

B(m

ax)

V perm(m

ax)

V Ed_

A(m

in)

V Ed_

B(m

in)

V perm(m

in)

K A(m

ax)

K A(m

in)

K B(m

ax)

K B(m

in)

K A(dim

)K B

(dim

)A d

imB d

im

[m]

[kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][]

[][]

[][]

[][kN]

[kN]

091

64,1

4,1

4,3

4,6

4,7

4,3

7075

,626

96,0

4278

,224

76,3

2696

,024

76,3

3235

24,4

5200

12,8

0,15

916

6,5

6,4

6,7

7,5

7,7

6,7

5152

,312

19,9

2994

,410

03,1

1219

,910

03,1

1463

83,3

2106

48,2

0,3

916

15,4

15,4

15,7

17,9

18,9

15,8

3449

,143

0,5

2660

,729

0,2

430,5

290,2

5165

7,7

6094

7,8

0,42

916

32,8

32,8

33,2

38,3

41,1

33,6

2721

,618

7,4

2342

,511

6,7

187,4

116,7

2248

4,2

2451

1,5

0,42

916

32,8

32,8

33,2

38,3

41,1

33,6

2721

,618

7,4

2342

,511

6,7

187,4

116,7

0,45

916

37,6

37,5

37,9

43,8

47,2

38,4

2577

,016

1,8

2270

,210

0,0

161,8

100,0

0,6

916

64,3

64,2

64,8

75,2

81,3

65,8

1815

,590

,015

81,2

54,6

90,0

54,6

0,75

916

90,2

90,0

90,9

105,7

114,5

92,4

1397

,861

,711

70,3

37,2

61,7

37,2

0,9

916

123,3

123,0

124,3

145,3

157,6

126,7

1039

,842

,479

9,9

25,5

42,4

25,5

1,05

916

166,4

165,3

167,2

196,3

213,0

171,1

1353

,429

,556

9,9

17,8

29,5

17,8

1,2

916

222,9

220,3

224,2

265,7

287,9

231,1

876,7

19,8

292,2

12,1

19,8

12,1

1,35

916

313,9

308,4

316,1

377,1

408,4

327,5

559,8

11,9

160,0

7,3

11,9

7,3

1,5

916

446,1

433,6

456,9

559,3

607,0

482,9

127,1

5,7

58,9

3,5

5,7

3,5

1,65

916

1033

,010

12,0

1052

,012

71,0

1383

,011

00,0

103,6

1,1

49,2

0,7

1,1

0,7

1,8

916

57,6

111,1

15,4

1,1

1,1

15,0

21,3

57,8

9,4

57,8

21,3

9,4

1,95

916

1326

,015

23,0

1130

,010

77,0

1076

,010

82,0

1,1

399,5

0,5

332,9

1,1

0,5

2,1

916

605,9

700,9

513,7

484,2

482,7

487,4

4,4

438,4

2,1

298,5

4,4

2,1

2,25

916

424,7

487,5

359,4

346,0

345,8

347,7

8,5

743,1

4,3

664,9

8,5

4,3

2,4

916

315,3

360,6

264,7

256,2

254,7

257,5

12,9

902,3

6,8

418,9

12,9

6,8

2,55

916

249,5

284,0

207,0

200,6

200,4

202,9

16,7

486,3

9,2

447,4

16,7

9,2

2,7

916

202,9

229,9

165,5

160,4

160,2

162,7

20,1

468,8

11,6

431,3

20,1

11,6

2,85

916

168,0

189,2

133,8

129,4

128,7

131,9

22,9

419,0

14,1

327,3

22,9

14,1

391

614

0,7

157,2

108,1

103,6

102,3

106,8

24,8

319,5

16,4

227,2

24,8

16,4

3,15

916

118,8

131,3

86,3

81,6

79,0

85,3

25,5

266,2

18,4

158,6

25,5

18,4

3,18

916

115,1

126,8

82,2

77,4

74,5

81,3

25,3

255,0

18,7

146,8

25,3

18,7

3,18

916

115,1

126,8

82,2

77,4

74,5

81,3

25,3

255,0

18,7

146,8

25,3

18,7

3036

,339

22,0

3,3

916

101,7

110,4

67,2

62,0

57,9

66,5

24,6

220,2

19,6

114,7

24,6

19,6

2948

,341

21,2

3,45

916

89,8

94,4

49,9

44,1

38,5

49,4

21,7

184,8

19,4

88,7

21,7

19,4

2601

,040

84,4

3,6

895

93,5

94,3

33,7

27,3

20,1

33,4

14,4

152,2

14,2

69,6

14,4

14,2

1729

,429

85,6

3,75

895

76,8

75,0

18,4

11,1

2,2

18,2

15,0

128,5

15,5

56,9

15,0

15,5

1801

,032

53,6

3,9

895

60,2

57,9

3,4

29,1

32,4

3,3

15,7

27,7

16,4

25,2

15,7

16,4

1884

,434

38,8

4,05

895

44,4

42,3

11,5

81,7

87,4

11,6

16,2

12,6

16,9

11,7

12,6

11,7

1513

,824

50,1

4,2

895

9,6

10,5

26,7

98,8

108,2

27,0

54,0

12,1

56,8

10,7

12,1

10,7

1449

,822

44,8

4,35

895

21,5

22,6

42,6

116,1

129,5

43,0

44,4

11,7

46,8

9,9

11,7

9,9

1399

,820

70,0

4,5

912

31,1

32,3

59,7

103,8

122,7

60,3

34,0

19,6

35,5

13,7

19,6

13,7

2350

,728

67,3

4,62

912

22,2

24,2

74,5

113,7

136,9

75,3

18,9

21,8

19,6

13,6

18,9

13,6

2266

,628

52,0

4,62

916

22,2

24,2

74,5

113,7

136,9

75,3

19,0

21,9

19,7

13,6

19,0

13,6

4,65

916

19,8

22,0

78,5

116,4

140,8

79,4

16,9

22,6

17,6

13,6

16,9

13,6

4,8

916

43,1

45,3

99,9

135,4

165,8

101,1

17,9

23,7

18,6

12,6

17,9

12,6

4,95

916

70,3

72,3

125,0

205,7

241,9

126,8

19,0

10,0

19,7

6,9

10,0

6,9

5,1

916

139,5

140,1

155,8

243,4

288,2

158,6

65,7

8,9

68,2

5,8

8,9

5,8

5,25

916

193,1

193,1

196,0

293,0

349,8

200,2

383,3

7,7

383,3

4,8

7,7

4,8

5,4

916

246,4

246,5

251,0

362,4

435,4

258,1

253,6

6,3

259,2

3,7

6,3

3,7

5,55

916

334,7

334,9

341,8

455,8

556,7

353,5

177,1

5,5

182,2

2,8

5,5

2,8

5,7

916

444,4

445,7

482,9

637,4

783,7

509,4

36,3

3,2

37,6

1,5

3,2

1,5

5,85

916

1083

,010

83,0

1087

,014

04,0

1728

,011

35,0

500,6

0,8

500,6

0,4

0,8

0,4

691

611

2,4

134,0

0,5

111,3

132,6

0,3

8,2

8,2

6,9

6,9

8,2

6,9

MAX

MIN

Factor

KCa

pacity

calculation

Cap

acity

cal

cula

tion

(Tra

ffic

in th

e m

iddl

e of

the

carr

iage

way

) She

ar fo

rce

- Res

ult l

ine

6

A[kN]

120

k A[]

1,8

k B[]

1,2

B[kN]

210

A dim[kN]

214

B dim[kN]

252

Relativ

elength

Capa

city

xLV,Rd

V Ed_

A(m

ax)

V Ed_

B(m

ax)

V perm(m

ax)

V Ed_

A(m

in)

V Ed_

B(m

in)

V perm(m

in)

K A(m

ax)

K A(m

in)

K B(m

ax)

K B(m

in)

K A(dim

)K B

(dim

)A d

imB d

im

[m]

[kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][]

[][]

[][]

[][kN]

[kN]

030

285

,485

,212

9,9

275,7

325,2

135,4

9,7

1,2

9,7

0,9

1,2

0,9

0,38

302

101,6

100,6

125,7

229,1

274,3

131,0

17,8

1,7

17,1

1,2

1,7

1,2

0,75

302

73,6

73,4

117,0

212,2

252,2

122,1

9,7

2,0

9,6

1,4

2,0

1,4

0,95

130

268

,268

,011

2,6

205,4

243,6

117,6

9,3

2,1

9,3

1,5

2,1

1,5

0,95

130

268

,268

,011

2,6

205,4

243,6

117,6

9,3

2,1

9,3

1,5

2,1

1,5

252,5

307,9

1,13

302

63,3

63,2

108,7

199,3

235,9

113,5

9,1

2,2

9,0

1,5

2,2

1,5

264,1

324,0

1,5

302

55,1

55,1

101,1

188,1

222,2

105,7

8,8

2,4

8,8

1,7

2,4

1,7

286,4

354,5

1,88

302

47,6

47,7

93,8

177,7

209,6

98,3

8,6

2,6

8,6

1,8

2,6

1,8

308,3

385,0

1,88

265

47,6

47,7

93,8

177,7

209,6

98,3

7,8

2,1

7,8

1,5

2,1

1,5

252,3

315,1

2,02

265

44,9

44,6

91,1

174,0

205,1

95,5

7,7

2,2

7,7

1,5

2,2

1,5

259,8

325,3

2,02

274

44,9

44,6

91,1

174,0

205,1

95,5

7,9

2,3

7,9

1,6

2,3

1,6

273,5

342,4

2,25

274

40,5

39,7

86,6

167,8

197,8

91,0

7,8

2,4

7,7

1,7

2,4

1,7

286,4

360,4

2,63

274

33,6

31,6

79,5

158,3

186,6

83,9

7,7

2,6

7,4

1,9

2,6

1,9

307,0

389,2

327

419

,116

,376

,018

2,2

210,1

80,3

6,2

1,9

5,9

1,5

1,9

1,5

228,4

313,8

327

414

,310

,568

,417

5,5

201,9

72,7

6,3

2,0

5,9

1,6

2,0

1,6

235,2

327,5

3,43

274

21,9

18,0

64,3

136,3

161,9

68,6

8,0

3,0

7,3

2,2

3,0

2,2

364,4

462,8

3,86

274

6,3

2,1

56,1

120,1

144,8

60,4

6,6

3,6

6,1

2,5

3,6

2,5

429,6

531,9

4,29

274

3,0

7,6

48,0

104,5

128,2

52,1

6,3

4,2

5,8

2,9

4,2

2,9

509,0

613,2

4,72

274

8,3

13,5

39,7

95,0

114,8

43,9

6,5

4,5

5,9

3,2

4,5

3,2

540,8

682,3

5,15

274

13,9

19,7

31,5

88,8

107,3

35,6

6,7

4,5

6,0

3,3

4,5

3,3

538,7

699,2

5,58

274

19,7

26,0

23,2

82,6

100,0

27,4

6,9

4,5

6,0

3,4

4,5

3,4

536,0

713,9

6,01

274

25,5

33,0

15,0

76,6

92,8

19,1

7,2

4,4

6,0

3,5

4,4

3,5

532,4

727,1

6,44

274

35,5

47,1

6,7

71,0

86,0

10,8

6,7

4,4

5,2

3,5

4,4

3,5

525,1

735,5

6,87

274

50,8

62,2

1,7

60,1

74,2

2,4

5,5

4,7

4,5

3,8

4,7

3,8

565,3

795,6

7,3

274

66,8

77,8

10,1

44,0

57,3

6,0

4,7

5,6

3,9

4,4

4,7

3,9

558,6

818,5

7,73

274

78,1

90,1

18,5

28,6

41,1

14,4

4,3

6,7

3,6

5,2

4,3

3,6

514,7

749,8

8,16

274

83,8

97,1

27,0

18,0

27,0

22,9

4,3

7,3

3,5

6,0

4,3

3,5

521,8

740,6

8,59

274

90,1

104,6

35,5

11,9

19,8

31,4

4,4

7,1

3,5

6,0

4,4

3,5

524,7

725,9

9,02

274

96,7

112,4

44,2

5,7

12,4

40,1

4,4

6,9

3,4

6,0

4,4

3,4

526,0

708,5

9,45

274

103,5

120,5

53,1

0,6

5,0

48,9

4,4

6,7

3,3

6,0

4,4

3,3

526,3

688,8

9,88

274

113,6

134,6

62,1

6,7

2,3

57,9

4,1

6,5

2,9

6,0

4,1

2,9

494,5

614,7

10,31

274

130,4

152,5

71,5

16,7

13,5

67,2

3,4

6,8

2,5

6,4

3,4

2,5

413,1

525,6

10,74

274

148,4

171,6

81,3

34,2

31,1

76,9

2,9

8,2

2,1

7,7

2,9

2,1

345,1

448,7

11,17

274

164,1

188,7

91,7

51,5

47,9

87,2

2,5

10,1

1,9

9,2

2,5

1,9

302,7

395,3

11,6

274

173,6

200,0

103,1

66,1

65,4

98,3

2,4

11,6

1,8

11,3

2,4

1,8

291,3

370,9

11,89

274

181,6

209,4

111,7

73,1

72,9

106,7

2,3

11,4

1,7

11,3

2,3

1,7

279,3

349,3

11,89

286

181,6

209,4

111,7

73,1

72,9

106,7

2,5

11,7

1,8

11,6

2,5

1,8

299,0

374,0

12,03

286

185,4

214,0

115,9

76,5

76,6

110,7

2,4

11,6

1,7

11,6

2,4

1,7

293,2

363,6

12,46

286

200,2

231,5

130,9

89,1

90,4

125,2

2,2

11,4

1,5

11,8

2,2

1,5

268,1

323,2

12,89

286

219,9

254,7

149,8

107,4

109,0

143,1

1,9

12,0

1,3

12,6

1,9

1,3

232,7

272,1

13,025

286

227,6

263,7

153,2

103,5

105,4

146,2

1,8

10,1

1,2

10,6

1,8

1,2

213,7

251,8

13,025

586

227,6

263,7

153,2

103,5

105,4

146,2

5,8

17,1

3,9

17,9

5,8

3,9

697,9

822,4

13,32

586

244,5

283,5

160,5

95,0

97,4

153,1

5,1

12,7

3,5

13,3

5,1

3,5

608,2

726,9

13,32

586

273,5

318,8

178,8

137,2

138,5

170,1

4,3

23,0

2,9

23,9

4,3

2,9

516,3

611,1

MAX

MIN

Factor

KCa

pacity

calculation

Relativ

elength

Capa

city

xLV,Rd

V Ed_

A(m

ax)

V Ed_

B(m

ax)

V perm(m

ax)

V Ed_

A(m

in)

V Ed_

B(m

in)

V perm(m

in)

K A(m

ax)

K A(m

in)

K B(m

ax)

K B(m

in)

K A(dim

)K B

(dim

)A d

imB d

im

[m]

[kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][]

[][]

[][]

[][kN]

[kN]

13,48

586

271,8

320,1

184,9

132,0

133,7

175,6

4,6

17,5

3,0

18,2

4,6

3,0

554,2

623,4

13,48

626

271,8

320,1

184,9

132,0

133,7

175,6

5,1

18,4

3,3

19,1

5,1

3,3

609,3

685,4

13,63

626

322,5

374,4

198,0

106,1

109,2

187,6

3,4

10,0

2,4

10,4

3,4

2,4

412,7

509,7

13,79

626

308,6

365,0

213,8

171,2

172,1

201,7

4,3

27,1

2,7

28,0

4,3

2,7

521,9

572,7

13,94

626

383,3

446,3

232,9

158,7

160,7

218,8

2,6

14,1

1,8

14,5

2,6

1,8

313,8

387,0

13,94

626

383,3

446,3

232,9

158,7

160,7

218,8

2,6

14,1

1,8

14,5

2,6

1,8

14,09

626

368,4

438,9

256,9

206,5

207,3

239,7

3,3

26,1

2,0

26,7

3,3

2,0

14,25

626

400,9

484,1

287,6

233,0

233,5

266,2

3,0

26,9

1,7

27,3

3,0

1,7

14,4

626

484,5

578,0

328,6

227,5

229,1

300,9

1,9

12,6

1,2

12,9

1,9

1,2

14,56

626

523,2

634,5

385,9

331,2

329,8

348,4

1,7

56,7

1,0

52,4

1,7

1,0

14,71

626

682,7

823,7

471,0

374,0

372,2

417,6

0,7

23,9

0,4

23,0

0,7

0,4

14,86

626

811,0

998,9

610,3

517,4

496,0

529,7

0,1

94,0

0,0

34,3

0,1

0,0

15,02

626

1121

,014

02,0

863,8

710,6

669,1

732,6

0,9

61,8

0,4

21,4

0,9

0,4

15,17

626

2047

,025

38,0

1592

,013

40,0

1285

,013

72,0

2,1

62,4

1,0

23,0

2,1

1,0

15,32

626

2711

,033

71,0

2155

,018

43,0

1829

,018

80,0

2,7

67,7

1,3

49,1

2,7

1,3

MAX

MIN

Factor

KCa

pacity

calculation

Cap

acity

cal

cula

tion

Res

ult l

ine

3 -

Che

ck w

ith 1

8 t b

ogie

load

a l[m

]0,66

4

xLM

EdM

perm

Mtraffic

xL+/

a lM

EdM

perm

Mtraffic

MRd

B dim

A[kN]

120

k[]

1,09

[m]

[kNm/m

][kNm/m

][kNm/m

][m

][kNm/m

][kNm/m

][kNm/m

][kNm/m

][]

[kN]

B[kN]

180

B dim[kN]

197

0,00

1,9

0,4

2,3

0,15

16,7

3,8

12,9

0,30

32,1

7,1

25,0

0,45

45,3

9,6

35,7

0,60

64,3

13,2

51,1

0,75

80,0

16,2

63,8

0,90

84,8

17,1

67,7

1,05

86,7

17,0

69,8

1,20

86,3

16,5

69,9

0,5

86,3

16,5

69,9

111,0

1,4

243,5

1,35

85,4

15,9

69,5

0,7

85,4

15,9

69,5

111,0

1,4

246,3

1,50

85,2

15,3

69,9

0,8

85,2

15,3

69,9

111,0

1,4

246,4

1,65

86,0

14,8

71,3

1,0

86,0

14,8

71,3

111,0

1,4

243,1

1,80

87,4

14,3

73,2

1,1

87,4

14,3

73,2

111,0

1,3

238,0

1,95

89,2

13,8

75,4

1,3

89,2

13,8

75,4

111,0

1,3

232,1

2,10

92,5

13,4

79,1

1,4

92,5

13,4

79,1

111,0

1,2

222,2

2,25

95,3

13,1

82,3

1,6

95,3

13,1

82,3

111,0

1,2

214,3

2,40

97,1

12,7

84,4

1,7

97,1

12,7

84,4

111,0

1,2

209,8

2,55

98,2

12,4

85,8

1,9

98,2

12,4

85,8

111,0

1,1

206,9

2,70

100,2

12,0

88,2

2,0

100,2

12,0

88,2

111,0

1,1

202,0

2,85

101,1

11,7

89,4

2,2

101,1

11,7

89,4

111,0

1,1

200,0

3,00

102,4

11,4

91,0

2,3

102,4

11,4

91,0

111,0

1,1

197,0

3,15

102,0

11,1

91,0

2,5

102,0

11,1

91,0

111,0

1,1

197,7

3,30

102,0

10,7

91,3

4,0

102,0

10,7

91,3

111,0

1,1

197,7

3,45

101,4

10,4

91,0

4,1

101,4

10,4

91,0

111,0

1,1

199,1

3,60

99,3

10,1

89,2

4,3

99,3

10,1

89,2

111,0

1,1

203,7

3,75

97,4

9,7

87,7

4,4

97,4

9,7

87,7

111,0

1,2

207,8

3,90

96,2

9,4

86,8

4,6

96,2

9,4

86,8

111,0

1,2

210,8

4,05

94,8

9,0

85,8

4,7

94,8

9,0

85,8

111,0

1,2

213,9

4,20

93,3

8,7

84,6

4,9

93,3

8,7

84,6

111,0

1,2

217,6

4,35

91,8

8,3

83,4

5,0

91,8

8,3

83,4

111,0

1,2

221,5

4,50

91,1

8,0

83,1

5,2

91,1

8,0

83,1

111,0

1,2

223,2

4,65

89,6

7,7

81,9

5,3

89,6

7,7

81,9

111,0

1,3

227,1

4,80

88,6

7,3

81,2

5,5

88,6

7,3

81,2

111,0

1,3

229,7

4,95

88,3

7,0

81,3

5,6

88,3

7,0

81,3

111,0

1,3

230,4

5,10

86,8

6,6

80,1

5,8

86,8

6,6

80,1

111,0

1,3

234,5

5,25

85,7

6,3

79,4

5,9

85,7

6,3

79,4

111,0

1,3

237,3

5,40

85,8

6,0

79,8

6,1

85,8

6,0

79,8

111,0

1,3

237,0

5,55

85,9

5,7

80,2

6,2

85,9

5,7

80,2

111,0

1,3

236,3

5,70

84,3

5,4

78,9

6,4

84,3

5,4

78,9

111,0

1,3

241,0

5,85

83,6

5,1

78,5

6,5

83,6

5,1

78,5

111,0

1,3

242,8

6,00

84,9

4,9

80,0

6,7

84,9

4,9

80,0

111,0

1,3

238,8

Capa

city

BRIGAD

EOUTP

UT

Shift

20,0 0,0

20,0

40,0

60,0

80,0

100,0

120,00,

001,00

2,00

3,00

4,00

5,00

6,00

7,00

M[kNm/m]

xL[m

]

Capa

city

calculationBo

gieload

(18t)

M,Ed

M,Ed(al)

M,Rd

M,perm

Cap

acity

cal

cula

tion

Shea

r fo

rce

- R

esul

t lin

e 6

- Che

ck w

ith 1

8 t b

ogie

load

A[kN]

120

k A[]

1,5

k B[]

1,0

B[kN]

180

A dim[kN]

178

B dim[kN]

187

Relativ

elength

Capa

city

xLV,Rd

V Ed_

A(m

ax)

V Ed_

B(m

ax)

V perm(m

ax)

V Ed_

A(m

in)

V Ed_

B(m

in)

V perm(m

in)

K A(m

ax)

K A(m

in)

K B(m

ax)

K B(m

in)

K A(dim

)K B

(dim

)A d

imB d

im

[m]

[kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][]

[][]

[][]

[][kN]

[kN]

030

284

,589

,712

9,9

291,3

334,0

135,0

9,5

1,1

10,8

0,8

1,1

0,8

0,38

302

100,7

102,3

125,7

244,3

288,5

130,7

17,1

1,5

18,3

1,1

1,5

1,1

0,75

302

72,7

77,8

117,0

226,6

266,1

121,7

9,5

1,7

10,7

1,3

1,7

1,3

0,95

130

267

,372

,511

2,6

219,4

256,9

117,1

9,1

1,8

10,4

1,3

1,8

1,3

0,95

130

267

,372

,511

2,6

219,4

256,9

117,1

9,1

1,8

10,4

1,3

1,8

1,3

217,4

238,5

1,13

302

62,4

67,9

108,7

213,0

248,8

113,1

8,9

1,9

10,1

1,4

1,9

1,4

227,3

251,0

1,5

302

54,2

59,9

101,1

201,1

234,3

105,4

8,6

2,1

9,8

1,5

2,1

1,5

247,0

275,0

1,88

302

46,7

52,5

93,8

190,2

221,0

98,0

8,4

2,2

9,6

1,7

2,2

1,7

266,0

299,1

1,88

265

46,7

52,5

93,8

190,2

221,0

98,0

7,6

1,8

8,7

1,4

1,8

1,4

217,8

244,9

2,02

265

44,0

46,9

91,1

186,2

216,3

95,3

7,6

1,9

8,1

1,4

1,9

1,4

224,4

253,0

2,02

274

44,0

46,9

91,1

186,2

216,3

95,3

7,8

2,0

8,3

1,5

2,0

1,5

236,2

266,3

2,25

274

39,6

37,7

86,6

179,7

208,5

90,8

7,7

2,1

7,4

1,6

2,1

1,6

247,6

280,6

2,63

274

32,7

29,5

79,5

169,7

196,6

83,7

7,6

2,2

7,1

1,7

2,2

1,7

265,8

303,8

327

418

,213

,976

,019

3,5

215,6

80,1

6,1

1,7

5,6

1,4

1,7

1,4

205,5

257,9

327

412

,97,5

68,4

186,3

206,0

72,5

6,2

1,8

5,6

1,5

1,8

1,5

212,7

272,0

3,43

274

20,3

21,4

64,3

146,7

170,4

68,4

7,7

2,6

7,9

2,0

2,6

2,0

315,4

363,2

3,86

274

4,2

6,2

56,1

130,0

153,1

60,2

6,4

3,1

6,6

2,3

3,1

2,3

368,0

414,7

4,29

274

5,6

4,0

48,0

114,0

136,3

52,0

6,0

3,6

6,2

2,6

3,6

2,6

430,1

474,5

4,72

274

11,4

10,9

39,7

103,9

122,3

43,8

6,1

3,8

6,2

2,9

3,8

2,9

459,8

528,2

5,15

274

17,5

18,1

31,5

97,3

113,5

35,5

6,2

3,9

6,2

3,1

3,9

3,1

463,9

550,9

5,58

274

23,7

25,8

23,2

90,6

104,8

27,2

6,3

3,9

6,1

3,2

3,9

3,2

467,6

573,1

6,01

274

30,0

33,8

15,0

84,1

96,2

18,9

6,4

3,9

5,9

3,3

3,9

3,3

470,3

594,5

6,44

274

40,5

48,0

6,7

77,9

88,0

10,6

6,0

3,9

5,1

3,4

3,9

3,4

470,0

613,5

6,87

274

56,2

63,0

1,7

66,6

75,3

2,3

5,0

4,2

4,4

3,7

4,2

3,7

507,3

670,1

7,3

274

72,7

78,6

10,1

50,1

58,4

6,1

4,2

5,0

3,9

4,3

4,2

3,9

506,2

694,2

7,73

274

84,5

90,9

18,5

34,2

42,1

14,6

3,9

5,9

3,5

5,1

3,9

3,5

465,2

636,1

8,16

274

90,7

99,6

27,0

23,1

27,7

23,0

3,9

6,4

3,4

5,9

3,9

3,4

465,3

613,1

8,59

274

97,6

108,6

35,5

16,5

19,2

31,6

3,8

6,4

3,3

6,0

3,8

3,3

461,9

588,1

9,02

274

104,6

117,9

44,2

9,8

10,6

40,3

3,8

6,3

3,1

6,2

3,8

3,1

457,2

562,0

9,45

274

111,9

127,6

53,1

3,1

1,8

49,1

3,8

6,2

3,0

6,3

3,8

3,0

451,1

534,2

9,88

274

122,5

143,0

62,1

3,6

6,7

58,1

3,5

6,1

2,6

6,5

3,5

2,6

421,6

472,1

10,31

274

139,9

159,6

71,5

14,1

18,0

67,4

3,0

6,4

2,3

6,9

3,0

2,3

355,7

414,2

10,74

274

158,4

178,9

81,3

32,1

35,2

77,1

2,5

7,8

2,0

8,4

2,5

2,0

300,3

355,9

11,17

274

174,8

196,7

91,7

50,1

51,9

87,4

2,2

9,7

1,7

10,2

2,2

1,7

263,7

313,0

11,6

274

185,0

209,9

103,1

65,4

69,4

98,5

2,1

11,3

1,6

12,8

2,1

1,6

250,8

288,4

11,89

274

193,6

220,6

111,7

72,9

77,5

106,9

2,0

11,2

1,5

13,0

2,0

1,5

238,3

268,8

11,89

286

193,6

220,6

111,7

72,9

77,5

106,9

2,1

11,6

1,6

13,4

2,1

1,6

255,2

287,8

12,03

286

197,7

225,7

115,9

76,5

81,5

110,9

2,1

11,5

1,5

13,5

2,1

1,5

249,1

278,4

12,46

286

213,6

245,3

130,9

89,2

95,3

125,4

1,9

11,4

1,4

13,7

1,9

1,4

224,7

243,6

12,89

286

234,6

271,8

149,8

107,4

113,6

143,3

1,6

12,0

1,1

14,4

1,6

1,1

192,4

200,6

13,025

286

242,5

280,9

153,2

103,5

110,9

146,5

1,5

10,1

1,0

12,2

1,5

1,0

178,0

186,9

13,025

586

242,5

280,9

153,2

103,5

110,9

146,5

4,8

17,1

3,4

20,6

4,8

3,4

581,4

610,4

13,32

586

259,9

300,7

160,5

95,0

105,1

153,4

4,3

12,7

3,0

15,3

4,3

3,0

514,0

546,6

13,32

586

290,3

338,0

178,8

137,0

142,5

170,5

3,7

22,6

2,6

27,0

3,7

2,6

438,5

460,7

MAX

MIN

Factor

KCa

pacity

calculation

Relativ

elength

Capa

city

xLV,Rd

V Ed_

A(m

ax)

V Ed_

B(m

ax)

V perm(m

ax)

V Ed_

A(m

in)

V Ed_

B(m

in)

V perm(m

in)

K A(m

ax)

K A(m

in)

K B(m

ax)

K B(m

in)

K A(dim

)K B

(dim

)A d

imB d

im

[m]

[kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][kN/m

][]

[][]

[][]

[][kN]

[kN]

13,48

586

289,0

341,4

184,9

131,8

139,1

176,0

3,9

17,2

2,6

20,7

3,9

2,6

462,6

461,6

13,48

626

289,0

341,4

184,9

131,8

139,1

176,0

4,2

18,1

2,8

21,7

4,2

2,8

508,6

507,5

13,63

626

340,7

393,1

198,0

105,8

119,7

188,1

3,0

9,9

2,2

11,9

3,0

2,2

360,0

395,0

13,79

626

328,0

391,0

213,8

170,7

175,5

202,3

3,6

26,2

2,3

30,9

3,6

2,3

433,3

418,9

13,94

626

404,2

468,2

232,9

158,0

167,8

219,4

2,3

13,8

1,7

16,4

2,3

1,7

275,5

300,8

13,94

626

404,2

468,2

232,9

158,0

167,8

219,4

2,3

13,8

1,7

16,4

2,3

1,7

14,09

626

391,0

471,1

256,9

205,5

210,2

240,6

2,8

24,7

1,7

28,5

2,8

1,7

14,25

626

425,9

521,9

287,6

231,5

235,8

267,3

2,4

25,0

1,4

28,4

2,4

1,4

14,4

626

512,7

618,6

328,6

225,3

235,8

302,3

1,6

12,1

1,0

14,0

1,6

1,0

14,56

626

555,9

689,7

385,9

327,7

310,1

350,4

1,4

43,0

0,8

24,2

1,4

0,8

14,71

626

722,2

886,0

471,0

368,5

359,3

420,4

0,6

20,2

0,4

17,1

0,6

0,4

14,86

626

862,0

1093

,061

0,3

488,8

437,4

534,0

0,1

25,7

0,0

12,0

0,1

0,0

15,02

626

1194

,015

42,0

863,8

662,6

576,2

739,7

0,7

17,7

0,4

8,4

0,7

0,4

15,17

626

2172

,027

84,0

1592

,012

63,0

1127

,013

84,0

1,7

16,6

0,8

7,8

1,7

0,8

15,32

626

2874

,036

97,0

2155

,017

50,0

1588

,018

95,0

2,1

17,4

1,0

8,2

2,1

1,0

MAX

MIN

Factor

KCa

pacity

calculation

About the Author

Fredrik Forsberg was born in Skellefteå, Sweden, on

December 29th, 1991. He attended primary and

secondary school in his hometown, Skellefteå. Then

he proceeded to study civil engineering at Luleå

University of Technology. After an exchange

semester in Hong Kong, he went back to Luleå to

pursue a master’s degree in structural engineering.

He wrote his master thesis at the engineering

consultant firm Ramböll. He has then proceeded to

start his professional career as a structural engineer

at the engineering consultant company, Sweco in

Stockholm.