16
Class 7: Geodesics In this class we will discuss the equation of a geodesic in a curved space, how particles and light rays move in a curved space-time, and how this motion connects to Newton’s Laws

In this class we will discuss the equation of a geodesic in a ...astronomy.swin.edu.au/~cblake/Class7_Geodesics.pdf•A “straight line on a curved surface” is called a geodesic,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Class7:Geodesics

    Inthisclasswewilldiscusstheequationofageodesicinacurvedspace,howparticlesand

    lightraysmoveinacurvedspace-time,andhowthismotionconnectstoNewton’sLaws

  • Class7:Geodesics

    Attheendofthissessionyoushouldbeableto…

    • … recognizethegeodesicequation,whichconnectsthemotionofparticlestothespace-timemetric,usingChristoffelsymbols

    • … calculatetheChristoffel symbolsinsomesimplecases,suchasin2Dspacesortheweak-fieldlimit

    • … recognizethatdifferentparameterscanbeusedtodescribetheworldlineofparticlesandlightrays

    • … understandhowGRconnectstoNewton’sLawsforweakfields,andhowthetimeco-ordinatebehavesinthislimit

  • Geodesics

    • AfundamentalquestionforGeneralRelativitytoansweris,howdoesanobjectmoveinagravitationalfield?

    • Howcanwefindanobject’sworldline𝑥"(𝜏) intermsofitspropertime𝜏,whenfreelyfallingintheEarth’sframe𝑥"?

    https://mathspig.wordpress.com/2014/01/23/2-one-rule-aerial-skiers-cannot-break/

  • Geodesics

    • A“straightlineonacurvedsurface”iscalledageodesic,whichminimizesthedistancebetween2points

    • e.g.,geodesicsonasphericalsurfaceare“greatcircles”

    • InGR,objectstravelonageodesicincurvedspace-time,whichextremizes thepropertimebetween2points

  • Geodesics

    • Thesamemathematicshencedescribesboth thegeometryofcurvedspacesand thegeometryofspace-time

    • ThismathswasEinstein’sbiggestchallengeindevelopingGR!

    https://www.pinterest.com.au/pin/407083253789581007/

  • Geodesicequation

    • Objectsmoveonapathwhichextremizes thepropertime

    • Since𝑑𝑠( = −𝑐(𝑑𝜏(,thepropertimealongapathisgivenintermsofthemetricby,

    - ∫ −𝑑𝑠(��

    � =,- ∫ −𝑔"1𝑑𝑥

    "𝑑𝑥1���

    • Wecanmathematicallyfindthepath𝑥"(𝜏) thatextremizesthevalueofthisintegral.Theresultisthegeodesicequation:

    𝑑(𝑥"

    𝑑𝜏( + Γ56" 𝑑𝑥5

    𝑑𝜏𝑑𝑥6

    𝑑𝜏 = 0

    Γ56" =

    12𝑔

    "1 𝜕6𝑔15 + 𝜕5𝑔61 − 𝜕1𝑔56

  • Geodesicequation

    • What’sthephysicalmeaningof;

    ;?<+ Γ56

    " ;=@

    ;?;=A

    ;?= 0?

    • It’stheequationofmotionoffreely-fallingparticlesinacurvedspace-time.Particlestravellingonageodesicfeelnoforces

    https://www.quantum-bits.org/?p=963

  • Geodesicequation

    • What’sthephysicalmeaningof;

    ;?<+ Γ56

    " ;=@

    ;?;=A

    ;?= 0?

    • Theindices𝜅 and𝜆 aresummedover,hencethisrelationrepresents4differentialequations,whichcanbesolvedtodeterminethepathofaparticlethroughspace-time,𝑥"(𝜏)

    • IfΓ56" = 0,thentheparticlehaszeroacceleration;

    ;?<= 0

    andismovinguniformlyinaninertialframe– so𝜞 = 𝟎 intheabsenceofgravity

    • Hence𝜞𝜿𝝀𝝁 representsa“force”duetogravity,whichis

    curvingthepathoftheparticlethroughspace-time

  • Christoffel symbols

    • ThevaluesofΓ56" aredeterminedbythespace-timemetric

    𝑔"1,asΓ56" = ,

    (𝑔"1 𝜕6𝑔15 + 𝜕5𝑔61 − 𝜕1𝑔56

    • ThisobjectΓ56" issoimportantthatithasaname– the

    Christoffel symbols

    • Whatis𝒈𝝁𝝂?If𝑔"1 iswrittenasamatrix,then𝑔"1 istheinverseofthematrix

    • 𝜕" =,-KKL, KK=, K;N, K;O

    isdifferentiatingthemetricelements

    • Theindex𝜈 issummedover

  • Christoffel symbols

    • Theproblemisthat,sinceeachindexcantakeon4values,Γ56" consistsof4×4×4 = 64 differentfunctionsingeneral!

    • However,itiseasierforthespecialcaseswe’llconsider

    https://www.edvardmunch.org/the-scream.jsp

  • Christoffel symbols

    • Space-timecurvaturetellsmatterhowtomove

    Metric𝑔"1

    ChristoffelsymbolsΓ56

    "Geodesicequations

    Worldline𝑥"(𝜏)

  • Christoffel symbols

    • Thereisacalculational trickwhichcanmakeiteasiertodeterminetheChristoffel symbolsinsomecases…

    • Thegeodesicequationis: ;

    ;?<+ Γ56

    " ;=@

    ;?;=A

    ;?= 0

    • Amathematicallyequivalentversionofthegeodesicequationis:𝑔"1

    ;

  • Motioninaweakfield

    • Animportantspecialcaseisaparticlemovingslowlyinaweak,staticgravitationalfield

    • Inthiscase,thespace-timemetriccanbewritteninthe

    form𝑔"1(𝑥U) = 𝜂"1 + ℎ"1(𝑥U),where𝜂"1 =−1 00 1

    0 00 0

    0 00 0

    1 00 1

    is

    theMinkowski metric,and ℎ"1 ≪ 1 isasmallperturbationwhichdependsonlyonspatialco-ordinates𝑥U,nottime

    • Foraslow-movingparticle,;=Y

    ;?≪ ;=

    Z

    ;?where𝑖 = 1,2,3

  • Motioninaweakfield

    • Usingtheseapproximations,thegeodesicequationsimplythat;

  • Geodesicsforlightrays

    • Foralightray,thereisasubtletywhichwrecksourpreviousderivation– 𝑑𝑠 = 𝑑𝜏 = 0.Wecannotdescribethepathasafunctionof𝜏,since𝜏 = 0 always!(it’sa“nullgeodesic”)

    • Weneedtoparameterizetheworldlinebyadifferentco-ordinatecalledthe“affineparameter”,𝑥"(𝑝)

    • Weendupwiththesameequation,;

    ;e<+ Γ56

    " ;=@

    ;e;=A

    ;e= 0

  • Geodesicsforlightrays

    • It’susefultoconsiderthewavevector 𝑘" = ;=>

    ;e,intermsof

    which;g>

    ;e+ Γ56

    " 𝑘5𝑘6 = 0

    • Inphysicalterms,thewavevector 𝑘" givesthefrequency(𝑘h)anddirectionofmotion(𝑘U)ofthelightray

    • Intheabsenceofagravitationalfield,Γ = 0,hence;g>

    ;e=

    0,hence𝑘" = constant

    • Thegravitationalfield“bends”thelightrayaccordingtoΓ,changingitsdirectionoftravel