61
IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: [email protected], 040 8998 6350 [email protected], 040 8998 2706 Lectures: Tuesday 09.00-11.00 Geb 99, Sem Raum IV (1.OG) Thursday 09.00-11.00 Geb 99, Sem Raum IV (1.OG) Start: 18.02.2014 Course Secretary: Christine Berber O3.095, phone x-6351, E-mail: [email protected]. Class website: http://desy.cfel.de/ultrafast_optics_and_x_rays_division/ teaching/ imprs_summer_semester_2014/lecture_notes

IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: [email protected],

Embed Size (px)

Citation preview

Page 1: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

IMPRS: Ultrafast Source Technologies

1

Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322

Email & phone: [email protected], 040 8998 6350

[email protected], 040 8998 2706

Lectures: Tuesday 09.00-11.00 Geb 99, Sem Raum IV (1.OG)

Thursday 09.00-11.00 Geb 99, Sem Raum IV (1.OG)

Start: 18.02.2014

Course Secretary: Christine Berber

O3.095, phone x-6351, E-mail: [email protected].

Class website: http://desy.cfel.de/ultrafast_optics_and_x_rays_division/

teaching/ imprs_summer_semester_2014/lecture_notes

Page 2: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Recommended Texts:

Fundamentals of Photonics, B.E.A. Saleh and M.C. Teich, Wiley, 1991.

Ultrafast Optics, A. M. Weiner, Hoboken, NJ, Wiley 2009.

Ultrashort Laser Pulse Phenomena, Diels and Rudolph,

Elsevier/Academic Press, 2006

Optics, Hecht and Zajac, Addison and Wesley Publishing Co., 1979.

Principles of Lasers, O. Svelto, Plenum Press, NY, 1998.

Waves and Fields in Optoelectronics, H. A. Haus, Prentice Hall, NJ, 1984.

Prerequisites: Basic course in electrodynamics

Text: Class notes will be distributed in class.

Grade: None

Gratings, Mirrors and Slits: Beamline Design for Soft X-Ray Synchrotron Radiation

Sources,

W. B. Peatman, Gordon and Breach Science Publishers, 1997.

Soft X-ray and Extreme Ultraviolet Radiation, David Attwood, Cambridge University

Press, 1999

General Information

2

Page 3: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Schedule

Lecturer Topic Time Location

Kärtner Classical Optics Tuesday

Feb. 18, 9-11am

Geb. 99

Raum IV, 1.OG

Uphues X-ray Optics Thursday

Feb. 20, 9-11am

Geb. 99

Raum IV, 1.OG

Kärtner Ultrafast Lasers Tuesday

Feb. 25, 9-11am

Geb. 99

Raum IV, 1.OG

Uphues Synchrotron

Radiation

Thursday

Feb. 27, 9-11am

Geb. 99

Raum IV, 1.OG

Kärtner Electron Sources

and Accelerators

Tuesday

Mar. 04, 9-11am

Geb. 99

Raum IV, 1.OG

Uphues High Order

Harmonic Gen.

Thursday

Mar. 06, 9-11am

Geb. 99

Raum IV, 1.OG

3

Page 4: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

4

2 Classical Optics

2.1 Maxwell’s Equations and Helmholtz Equation

2.1.1 Helmholtz Equation

2.1.2 Plane-Wave Solutions (TEM-Waves) and Complex Notation

2.1.3 Poynting Vectors, Energy Density and Intensity

2.2 Paraxial Wave Equation

2.3 Gaussian Beams

2.4 Ray Propagation

2.5 Gaussian Beam Propagation

2.6 Optical Resonators

Classical Optics

Page 5: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

2.1 Maxwell’s Equations of Isotropic Media

Maxwell’s Equations: Differential Form

Material Equations:

Ampere’s Law

Faraday’s Law

Gauss’s Law

No magnetic charge

Polarization

Magnetization

Current due to free charges

Free charge density

Bring Life into Maxwell’s Equations

2. Classical Optics

5

Page 6: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Vector Identity:

Vacuum speed of light:

6

Classical Optics

Page 7: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

No free charges, No currents from free charges, Non magnetic

Every field can be written as the sum of tansverse and longitudinal fields:

Only free charges create a longitudinal electric field:

Pure radiation field

Simplified wave equation:

Wave in vacuum Source term

7

Classical Optics

Page 8: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

2.1.1 Helmholtz Equation

Linear, local medium

dielectric susceptibility

Medium speed of light: with

Refractive Index

8

Page 9: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Real field:

Dispersion relation:

2.1.2 Plane-Wave Solutions (TEM-Waves) and Compl. Notation

Artificial, complex field:

Into wave equation (2.16):

Wavelength

9

Page 10: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

10

TEM-Waves

Page 11: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

What about the magnetic field?

Faraday’s Law:

TEM-Waves

11

Page 12: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Characteristic Impedance

Vacuum Impedance:

Example: EM-Wave polarized along x-axis and propagation along z-direction:

1 ( )r

12

Page 13: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Backwards Traveling Wave

Backwards

13

Page 14: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

2.1.3 Poynting Vector, Energy Density and Intensity

1r relative permittivity:

Example: Plane Wave:

14

Page 15: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

15

A plane wave is described by:

zjkyjkxjkEezyxE zyxx exp~

),,(~

0

Although a plane wave is a useful model, strictly speaking it cannot be

realized in practice, because it fills whole space and carries infinite energy.

22220 zyx kkkk free space wavenumber

Maxwell’s equations are linear, so a sum of solutions is also a solution.

An arbitrary beam can be can be formed as a superposition of multiple plane

waves:

yxzyx dkdkzjkyjkxjkEzyxE

exp

~),,(

~0

22220 zyx kkkk

there is no integral over kz because once kx and ky

are fixed, kz is constrained by dispersion relation

2.2 Paraxial Wave Equation

Page 16: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

16

Figure 2.2: Construction of paraxial beam by superimposing

many plane waves with a dominant k-component in z-direction

Consider a beam which consists of plane waves propagating at small angles

with z axis

z k

y x

zx kk

zy kk

kz can be approximated as

(paraxial approximation)

such a beam

is called a

paraxial beam

Paraxial Beam

Page 17: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

17

yxzyxyx dkdkzjkyjkxjkkkEzyxE

exp),(

~),,(

~0

The beam

can then be expressed as

yxyx

yx

yxzjk

dkdkyjkxjkzk

kkjkkEezyxE

0

22

02

exp),(~

),,(~

0

slowly varying envelope

(changing slowly along z)

quickly varying

carrier wave

Allows to find field distribution at any point in space.

The beam profile is changing as it propagates in free space.

This is called diffraction.

Paraxial Diffraction Integral

Page 18: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

18

From the previous slide

yxyx

yx

yxzjk

dkdkyjkxjkzk

kkjkkEezyxE

0

22

02

exp),(~

),,(~

0

At z=0

yxyxyx dkdkyjkxjkkkEzyxE

exp),(

~)0,,(

~0

This is Fourier integral. Using Fourier transforms:

dxdyyjkxjkzyxEkkE yxyx

exp)0,,(

~

)2(

1),(

~20

Given the field at some plane (e.g. z=0), how to find the field at any z?

)0,,(~

zyxEKnowing can find ),(~0 yx kkE and then ),,(

~zyxE at any z.

Paraxial Diffraction Integral – Finding Field at Arbitrary z

Page 19: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

19

Choose transverse Gaussian distribution of plane wave amplitudes:

called Rayleigh range.

Performing the integration (i.e. taking Fourier transforms of a Gaussian)

with

(Via Fourier transforms, this is equivalent to choosing Gaussian transversal

field distribution at z=0)

Substitution into paraxial diffraction integral gives

2.3 Gaussian Beam

Page 20: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

20

The quantity can be expressed as

)()(

11222 zw

jzRzz

jzz

jzz R

R

R

)/(1 Rjzz

22)(

1

Rzz

z

zR

222 )( R

R

zz

z

zw

where R(z) and w(z) are introduced according to

The pre-factor can be expressed as )/( Rjzzj

))(exp()(

1))(exp(

22zj

zwzzz

zj

jzz

j

RRR

with Rzzz /)(tan

)()(2)(

exp)(

1~),(

~2

02

2

0 zjzR

rjk

zw

r

zwzrE We get

Gaussian Beam

Page 21: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

21

Finally, the field is normalized, giving

)()(2)(

exp)(

14),(

~2

02

20

0 zjzR

rjk

zw

r

zw

PZzrE F

Field of a

Gaussian beam

Normalization means that the total power carried by the beam is P:

Final Expression for Gaussian Beam Field

Page 22: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

22

Gaussian Beams: Spot Size and Rayleigh Range

)()(2)(

exp)(

14),(

~2

02

20

0 zjzR

rjk

zw

r

zw

PZzrE F

Field of a

Gaussian beam

We derived

222 )( R

R

zz

z

zw

2

2 1)(R

Rz

zzzw

Spot size at

z=0 is min 20

2 )0( wzw R

2

0 1)(

Rz

zwzw

We have

Defines transversal

intensity distribution

20w

zR Rayleigh

range

spot size as a

function of z

)(

2exp~),(

2

2

zw

rzrI )(zw

spot size

Page 23: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

23

2

1)(z

zzzR R

Rzzz /arctan)(

22)(

1

Rzz

z

zR

Guoy phase

shift

Gaussian Beams: Phase Distribution

)()(2)(

exp)(

14),(

~2

02

20

0 zjzR

rjk

zw

r

zw

PZzrE F

Field of a

Gaussian beam

We derived

defines phase

distribution We have

Phase fronts (surfaces of constant phase) are parabolic, can be approximated

as spherical for small r. R(z) turns out to be the radius of the sphere.

Radius of

wavefront

curvature

Defines extra phase shift as compared to plane wave

Page 24: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

24

Gaussian Beams: All Equations in One Slide

)()(2)(

exp)(

14),(

~2

02

20

0 zjzR

rjk

zw

r

zw

PZzrE F

Gaussian Beam

Field

0w

2

0 1)(

Rz

zwzw min spot size (z=0)

20w

zR Rayleigh range

Spot size

2

1)(z

zzzR R

Rz

zz arctan)( Guoy phase shift

Radius of wavefront curvature

(2.56)

(2.54)

(2.55)

(2.65)

Page 25: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

25

Intensity Distribution

Figure 2.3: The normalized beam intensity I/I₀ as a function of the radial

distance r at different axial distances: (a) z=0, (b) z=zR (c) z=2zR.

z=0 z=zR z=2zR

Page 26: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

26

Spot Size as a Function of z 2

0 1)(

Rz

zwzwSpot size w(zR)=w0 2At z = zR

Rayleigh range : distance from the

waist at which the spot area doubles

Waist: minimum radius

3 2 1 0 1 2 34

2

0

2

4

4

4

w z( )

w z( )

0

33 z

z.R

0

)(

w

zw)(zw

0w

waist

20w

Rz Rz2 Rz3Rz3 Rz2 Rz 0

zR

Page 27: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

27

Figure 2.5: Gaussian beam and its characteristics

Beam Divergence:

Confocal parameter and depth of focus:

RR z

zw

z

zwzw 0

2

0 1)(

For large z

Divergence

angle Rz

w

z

zw 0)(

Divergence Angle and Confocal Parameter

Smaller spot size →

larger divergence

Page 28: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.4: Normalized beam intensity I(r=0)/I₀ on the beam axis as a function of

propagation distance z.

r=0 Intensity distribution along Z

axis (r=0)

Axial Intensity Distribution

28

Page 29: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

29

Power Confinement

99% of the power is within radius of 1.5 w(z) from the axis

Which fraction of the total power is confined within radius r0 from the axis?

Dependence is

exponential

Page 30: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

30

Figure 2.8: Wavefronts of Gaussian beam

Wavefronts, i.e. surfaces of constant phase, are parabolic

constant

Wavefront

Page 31: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

31

Figure 2.7: Radius of curvature R(z)

Wavefront radius of curvature:

2

1)(z

zzzR R

Wavefront and Radius of Curvature

Page 32: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

32

Comparison to Plane and Spherical Waves

Figure 2.9: Wave fronts of (a) a uniform plane wave, (b) a spherical wave;

(c) a Gaussian beam.

Page 33: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

33

Figure 2.6: Phase delay of Gaussian beam, Guoy-Phase-Shift

Phase delay of Gaussian Beam, Guoy-Phase Shift:

Guoy Phase Shift

Page 34: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

34

Planes of const. Phase

Beam Waist

z/z R

Gaussian Beams: Summary • Solution of wave equation in paraxial approximation

• Wave confined in space and with finite amount of power

• Intensity distribution in any cross-section has the same shape (Gaussian),

only size and magnitude is scaled

• At the waist, the spot size is minimum and wave fronts are flat

• Lasers are usually built to generate Gaussian beams

Page 35: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.10: Description of optical ray propagation by its distance and

inclination from the optical axis.

Z

r’1

r2

r’2r1

12

Optical

System

35

2.4 Ray Propagation

Page 36: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.11: Snell’s law for paraxial rays.

Z

r’1r2

r’2

r1

1 2

n1 n2

2

1

36

Ray Matrix: Transition medium 1 to 2

M =1 0

0 1

æ

èçç

ö

ø÷÷

Page 37: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.12: Free space propagation

Z

r’1

r2

r’2

r1

1 2

L

37

Ray Matrix: Propagation over Distance L

Page 38: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.13: Ray propagation through a medium with refractive index n.

Z

r’1 r2

r’2

r1

1 2

L

38

Prop. in Medium with Index n over Distance L

Page 39: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.14: Derivation of ABCD-matrix of a thin plano-convex lens.

Z

r’1 r2

r’2

r1

n1n2

0

R

39

Thin Plano-convex Lens

for

Page 40: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

f

r1

z

40

Biconvex Lens and Focussing

Figure 2.15: Imaging of parallel rays through a lens with focal length f

Biconvex Lens M =

1 0

-1

f1

æ

è

ççç

ö

ø

÷÷÷

Page 41: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.16: Derivation of Ray matrix for concave mirror with Radius R.

Z

r’1

r2

r’2

r1

0

-R

r’1

41

Concave Mirror with ROC R

Page 42: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

42

Table of Ray Matrices

Page 43: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.17: Gauss’ lens formula.

fr1

z

d1 d2

r2

I II

43

Application: Gauss’ Lens Formula

Page 44: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

44

An Image is formed?

Page 45: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.18: Gaussian beam transformation by ABCD law.

45

Gaussian Beam Propagation

28 CHAPTER 2. CLASSICAL OPTICS

ABCD-marix is given by

2 =1 +

1 +(2.83)

where 1 and 2 are the beam parameters at the input and the output planes

of the optical system or component, see Figure 2.18

Figure 2.18: Gaussian beam transformation by ABCD law, [6], p. 99.

To proove this law, we realize that it is true for the case of free space

propagation, i.e. pure di raction, comparing (2.83) with (2.53) and (2.70). If

we can proove that it is additionally true for a thin lens, then we are finished,

because every ABCD matrix (2x2 matrix) can be written as a product of a

lower and upper triangular matrix (LR-decomposition) like the one for free

space propagation and the thin lens. Note, the action of the lens is identical

to the action of free space propagation, but in the Fourier-domain. In the

Fourier domain the Gaussian beam parameter is replaced by its inverse (2.46)

e0( ) =

( )exp 0

µ2 + 2

2 ( )

¶¸(2.84)

e0( ) = 2 exp ( )

µ 2 + 2

2 0

¶¸(2.85)

But the inverse q-parameter transforms according to (2.83)

1

2

=

1

1+

1

1+

(2.86)

which leads for a thin lens to

1

2

=1

1

1(2.87)

28 CHAPTER 2. CLASSICAL OPTICS

ABCD-marix is given by

2 =1 +

1 +(2.83)

where 1 and 2 are the beam parameters at the input and the output planes

of the optical system or component, see Figure 2.18

Figure 2.18: Gaussian beam transformation by ABCD law, [6], p. 99.

To proove this law, we realize that it is true for the case of free space

propagation, i.e. pure di raction, comparing (2.83) with (2.53) and (2.70). If

we can proove that it is additionally true for a thin lens, then we are finished,

because every ABCD matrix (2x2 matrix) can be written as a product of a

lower and upper triangular matrix (LR-decomposition) like the one for free

space propagation and the thin lens. Note, the action of the lens is identical

to the action of free space propagation, but in the Fourier-domain. In the

Fourier domain the Gaussian beam parameter is replaced by its inverse (2.46)

e0( ) =

( )exp 0

µ2 + 2

2 ( )

¶¸(2.84)

e0( ) = 2 exp ( )

µ 2 + 2

2 0

¶¸(2.85)

But the inverse q-parameter transforms according to (2.83)

1

2

=

1

1+

1

1+

(2.86)

which leads for a thin lens to

1

2

=1

1

1(2.87)

Page 46: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.19: Focussing of a Gaussian beam by a lens.

d1 d2

zR1 zR2

46

Telescope

Page 47: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

47

Gaussian Beam Optics: Physical Optics

Ray Optics: B = 0

Physical Optics: Real part of Eq. (2.90) = 0

Gauss’ lens formula:

Page 48: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.20: Fabry-Perot Resonator with finite beam size.

z1

w0

L

z2

R1R2

2.6 Optical Resonators

48

Page 49: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.21: Curved-Flat Mirror

Resonator

Curved - Flat Mirror Resonator

with

49

Page 50: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.22: Beam waists of the curved-flat mirror resonator as a

function of L/R1.

For given R1

50

Curved - Flat Mirror Resonator

Page 51: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.20: Fabry-Perot Resonator with finite beam size.

z1

w0

L

z2

R1R2

Two Curved Mirror Resonator

51

Page 52: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Two Curved Mirror Resonator

by symmetry:

and:

Or:

52

Page 53: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.23: Two curved

mirror resonator.

53

Page 54: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.75: Stable regions (black) for the two-mirror resonator

L

0 R2 1R +R 2

R1

Resonator Stability

Or introduce cavity parameters:

54

Page 55: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.24: Stability Criterion

Geometrical Interpretation

55

Page 56: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.26: Stable and unstable resonators

R1R2 R1

R2

Stable Unstable

R1

R2

R2

R1

R2

R2

56

Page 57: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Hermite Gaussian Beams

Other solutions to the paraxial wave equation:

Hermite Polynomials:

57

Page 58: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.27: Hermite Gaussians Gl(u)

Hermite Gaussian Beams

58

Page 59: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.28: Intensity profile of TEMlm-beams. by ABCD law.

59

Hermite Gaussian Beams

Page 60: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Special Case: Confocal Resonator: L = R

Axial Mode Structure:

Roundtrip Phase = 2 p :

Resonance Frequencies:

2 1( ) ( )2

z z

60

Page 61: IMPRS: Ultrafast Source Technologies - CFEL · IMPRS: Ultrafast Source Technologies 1 Franz X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322 Email & phone: franz.kaertner@cfel.de,

Figure 2.29: Resonance frequencies of the confocal Fabry-Perot resonator,

d=L

Resonance Frequencies

61