1
References Ickert, R.B., Stern, R.A., 2013. Matrix Corrections and Error Analysis in High-Precision SIMS 18 O/ 16 O Measurements of Ca–Mg–Fe Garnet. Geostand. Geoanalytical Res. 37, 429–448. doi:10.1111/j.1751-908X.2013.00222.x Kita, N.T., Ushikubo, T., Fu, B., Valley, J.W., 2009. High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem. Geol. 264, 43–57. Martin, L.A.J., Rubatto, D., Crépisson, C., Hermann, J., Putlitz, B., Vitale-Brovarone, A., 2014. Garnet oxygen analysis by SHRIMP-SI: Matrix corrections and application to high-pressure metasomatic rocks from Alpine Corsica. Chem. Geol. 374-375, 25–36. doi:10.1016/j.chemgeo.2014.02.010 Page, F.Z., Kita, N.T., Valley, J.W., 2010. Ion microprobe analysis of oxygen isotopes in garnets of complex chemistry. Chem. Geol. 270, 9–19. Raimondo, T., Clark, C., Hand, M., Cliff, J., Harris, C., 2012. High-resolution geochemical record of fluid-rock interaction in a mid-crustal shear zone: a comparative study of major element and oxygen isotope transport in garnet. J. Metamorph. Geol. 30, 255–280. doi:10.1111/j.1525-1314.2011.00966.x Vielzeuf, D., Champenois, M., Valley, J.W., Brunet, F., Devidal, J.L., 2005. SIMS analyses of oxygen isotopes: Matrix effects in Fe–Mg–Ca garnets. Chem. Geol. 223, 208–226. doi:http://dx.doi.org/10.1016/j.chemgeo.2005.07.008 Summary Magnitude of the matrix correction for Cr concentration is 1.9‰ at 13.4wt.% Cr 2 O 3 The 2SD of residual after this matrix correction applied (0.33‰) is better than the value if we simply apply the X Grs correction with all standards (0.75‰) Matrix correction scheme for pyralspite garnet needs only 7 calibration standards Biases of pyralspite garnets are well described by sum of the biases derived from each component (Ca, Mn, Fe 2+ ) Cr-pyrope X Cr 0.0 0.1 0.2 0.3 0.4 0.0 0.5 1.0 1.5 2.0 2.5 Bias rel. to UWG-2 [‰] 0.0 0.2 0.4 0.6 0.8 1.0 2 1 0 1 2 3 X Grs Bias rel. to UWG-2 [‰] For Cr-pyrope garnets, after applying the correction based on grossular content, the calibration curve for Cr-pyrope garnets using new standards reveals that the magnitude of the matrix correction for Cr concentration is ~ 1.9‰ at 13.4 wt.% Cr 2 O 3 (X Cr = 0.394). X Cr is defined by Cr/(Al+Ti+Fe 3+ +Cr). X Grs is end-member (grossular) propostions. Fitting Parameters a b c RSS Max Offset 2SD of Residual Ca Mn Fe 2+ X Grs (Page et al., 2010) -0.4597 2.5982 -0.8602 7.41 -1.24 0.81 8.02 -1.26 0.76 0.81 -0.41 0.33 4.69 -0.90 0.75 -0.2196 0.7083 -0.0015 -0.3677 0.4509 -0.1125 -0.6101 8.826 -1.2758 Summary table of fitting paramters and statistics of matrix correction Ca [pfu] 0.0 0.5 1.0 1.5 2.0 2.5 Residual Bias [‰] -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 ±0.3‰ Fe 2+ [pfu] 0.0 0.5 1.0 1.5 2.0 2.5 Residual Bias [‰] -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Fe 2+ Mn [pfu] Residual Bias [‰] 0.0 0.5 1.0 1.5 2.0 2.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Mn Ca [atoms per formula unit: pfu] Bias rel. to UWG-2 [‰] 0.0 0.5 1.0 1.5 2.0 2.5 -2 -1 0 1 2 Ca 13-62-27 13-62-29 13-63-19 13-63-20 13-63-21 13-63-44 2B3 94ADK-5 94ADK-7 Alm-1 Alm-2 Alm-3 Alm-4 AlmCMG AlmSE Bal509 Beta114 GrsQu GrsSE Pyp-2 Pyp-3 Pyp-4 Pyp-5 PypAA PypAK PypDM PypMM R 53 Sps-3 Sps-4 SpsSE UWG-2 UWPp-1 Yx X Grs Bias rel. to UWG-2 [‰] 0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 2 3 X Grs fitting Results Calibration curves were fitted by selected three standards (marked by circle outside of symbols). Matrix corrections were applied step-by-step (Ca => Mn => Fe 2+ ). Inset figure shows simple X Grs cali- bration curve with all garnet standards. Blue curved line in the third plot (Fe 2+ ) shows fitting curve with all standards. There is no significant difference between blue (all standards) and red (3 stan- dards). This correction scheme was evaluated using the measured offset of corrected δ 18 O from δ 18 O True value for all other garnet standards (excluding the 7 calibration standards). The 2 standard deviation (2SD) of the residual after Ca correction was 0.81‰. After the Mn correction was performed, the 2SD of the residual was down to 0.76‰; the final residual after the Fe 2+ correction was 0.33‰. Residual Bias [‰] = δ 18 O True 1000 -1 δ 18 O Corrected 1000 -1 -1 ×1000 Bias relative to UWG-2 [‰] = δ 18 O UWG-2 1000 -1 δ 18 O Measured 1000 -1 -1 ×1000 Ca STDs: GrsSE, R-53, UWPp-1 Bias Ca = a Ca ∙(Ca) 2 + b Ca ∙(Ca) + c Ca Mn STDs: Sps-4, Sps-3, UWPp-1 Bias Mn = a Mn ∙(Mn) 2 + b Mn ∙(Mn) + c Mn STDs: Alm-4, UWG-2, UWPp-1 Bias Fe 2+ = a Fe 2+ ∙(Fe 2+ ) 2 + b Fe 2+ ∙(Fe 2+ ) + c Fe 2+ Bias Total = Bias Ca + Bias Mn + Bias Fe 2+ Fe 2+ Alm (Fe 2+ ) Pyp (Mg) Sps (Mn) Grs (Ca) 13-63-19 PypAA PypAK PypMM 13-62-29 13-62-27 13-63-20 13-63-44 AlmSE AlmCMG 2B3 Beta114 Bal509 13-63-21 SpsSE Yx 94ADK- 5 94ADK-7 Alm-1 Alm-2 Alm-3 Pyp-3 Pyp-4 Pyp-5 PypDM GrsQu Pyp-2 UWG-2 R-53 Sps-3 Sps-4 GrsSE UWPp-1 Alm-4 Correction Scheme Pyralspite and grossular garnets are calibrated with each end-member composition (Ca/Mg+Ca: grossular-pyrope, Mn/Mg+Mn: spessartine-pyrope and Fe 2+ /Mg+Fe 2+ : almandine-pyrope) instead of X Grs . Each calibration curve was fitted by a quadratic equation with three standards (near both end-members and an intermediate composition). A pyrope standard (UWPp-1) was used for all calibrations and thus a total of 7 standards were used for this matrix correction (Ca: GrsSE, R-53, UWPp-1; Mn: Sps-3, Sps-4, UWPp-1; Fe: Alm-4, UWG-2, UWPp-1). The bias for unknowns are calculated as follows: Step-by-Step calibration: Calibration is applied to standards in the following steps. Biases were calculated as alphas, and subsequently converted back to value in δ-notation [‰]. all standards three standards Session on 6/24/2014 Garnet: (X 2+ ) 3 (Y 3+ ) 2 (SiO 3 ) 4 Almandine Pyrope Spessartine Grossular Andradite Uvarovite Fe Mg Mn Ca Ca Ca Al Al Al Al Fe Cr X 2+ Y 3+ Pyralspite Ugrandite Instrument Primary HV Primary Beam Beam Size Sample HV Presputtering DTFA Scan Counting Time Cycle Number Entrance Slit Contrast Aperture Field Aperture Energy Slit MRP Detectors CAMECA IMS 1280 10 kV ~2.1 nA 10-μm -10kV 10 sec ON 80 sec 20 cycles 120 μm 400 μm 4000 μm 40 eV 2200 ( 16 O, 18 O), 5000 ( 16 O 1 H) 3FCs ( 16 O, 16 O 1 H, 18 O) Instrument & Analytical condition For SIMS analysis, normal procedures were followed: 10-μm spot size, 2 Faraday cups, 3.5 min/spot (Kita et al., 2009). We also measured 16 O 1 H with the axial Faraday cup to monitor the OH count rate. All analyses were carried out at WiscSIMS Laboratory, University of Wisconsin-Madison. Standard Mineral ! 18 O True ! 18 O Meas SiO 2 TiO 2 Al 2 O 3 Cr 2 O 3 FeO MnO MgO CaO F Total Si Ti Al Cr Fe 3+ Fe 2+ Mn Mg Ca F OH vacancy (VIII) Alm Pyp Sps Grs And Uvar CaTi FluoGrs HydroGrs PypDM Pyrope 5.6 -0.8 43.3 0.0 24.6 0.0 1.9 0.0 28.1 0.2 98.1 2.99 0.00 2.00 0.00 0.03 0.08 0.00 2.89 0.01 2.8 96.7 0.1 0.4 0.0 0.0 0.0 13-63-19 Pyrope 5.9 -0.3 41.4 0.1 22.7 0.6 10.0 0.4 19.8 3.8 98.8 2.98 0.00 1.93 0.04 0.07 0.54 0.02 2.13 0.30 18.0 71.4 0.8 9.4 0.3 0.2 0.0 PypAA Pyrope 5.5 0.1 42.3 0.1 21.7 2.0 9.0 0.4 19.4 4.9 99.8 3.03 0.01 1.83 0.11 0.00 0.54 0.02 2.08 0.38 17.8 68.9 0.8 11.7 0.0 0.7 0.0 PypAK Pyrope 5.5 0.0 41.9 0.1 22.2 1.2 11.8 0.4 17.8 4.6 100.0 3.03 0.00 1.89 0.07 0.00 0.71 0.02 1.91 0.36 23.7 63.6 0.8 11.4 0.0 0.4 0.0 PypMM Pyrope 5.3 0.1 41.6 0.9 21.2 0.0 13.3 0.4 17.8 4.3 99.6 3.03 0.05 1.82 0.00 0.03 0.78 0.02 1.93 0.34 25.5 62.8 0.8 10.5 0.2 0.0 0.3 13-62-29 Pyrope 7.4 -0.4 40.5 0.4 21.7 0.2 16.6 0.4 16.2 3.0 99.0 3.00 0.02 1.90 0.01 0.05 0.98 0.03 1.78 0.24 32.3 58.9 0.9 7.5 0.2 0.0 0.1 13-62-27 Pyrope 6.5 0.2 40.0 0.3 22.2 0.1 17.0 0.4 13.2 6.0 98.9 2.99 0.01 1.95 0.01 0.03 1.04 0.02 1.47 0.48 34.5 48.9 0.7 15.5 0.2 0.1 0.1 13-63-20 Pyrope 6.1 0.6 40.2 0.3 22.3 0.0 15.3 0.3 12.9 8.0 99.3 2.99 0.01 1.95 0.00 0.04 0.92 0.02 1.43 0.64 30.5 47.6 0.6 20.7 0.4 0.0 0.1 13-63-44 Pyrope 6.4 0.7 40.1 0.2 22.3 0.1 14.4 0.3 12.0 9.7 99.0 3.00 0.01 1.96 0.00 0.02 0.88 0.02 1.33 0.77 29.3 44.3 0.6 25.3 0.2 0.1 0.1 AlmSE Almandine 8.3 -1.6 37.5 0.0 21.2 0.0 34.5 0.2 6.4 0.3 100.1 2.96 0.00 1.97 0.00 0.10 2.18 0.01 0.75 0.03 73.4 25.2 0.4 0.9 0.0 0.0 0.0 AlmCMG Almandine 7.5 -1.1 38.3 0.0 21.1 0.0 32.6 1.1 6.3 1.1 100.6 3.00 0.00 1.95 0.00 0.03 2.10 0.07 0.74 0.09 70.0 24.6 2.4 2.9 0.1 0.0 0.0 2B3 Almandine 6.9 0.5 36.5 0.0 19.5 0.0 31.4 1.8 0.7 9.0 98.8 2.98 0.00 1.88 0.00 0.16 1.99 0.12 0.08 0.79 66.7 2.7 4.1 24.4 2.0 0.0 0.0 Beta114 Almandine 9.3 -1.0 38.3 0.0 21.5 0.0 29.4 0.7 7.9 2.2 100.0 2.98 0.00 1.97 0.00 0.07 1.83 0.05 0.92 0.18 61.6 30.8 1.6 5.8 0.2 0.0 0.0 Bal509 Almandine 12.3 -0.9 39.3 0.0 22.2 0.0 25.3 0.3 11.7 1.2 100.0 2.98 0.00 1.98 0.00 0.06 1.54 0.02 1.32 0.10 51.7 44.4 0.6 3.2 0.1 0.0 0.0 UWG-2 Almandine 5.8 0.0 39.8 0.1 22.0 0.0 21.4 0.4 10.8 5.2 99.7 3.01 0.00 1.97 0.00 0.01 1.35 0.03 1.22 0.42 44.7 40.4 0.9 13.9 0.1 0.0 0.0 13-63-21 Almandine 4.6 1.2 38.7 0.4 21.4 0.0 19.7 0.3 6.7 11.7 98.9 2.99 0.02 1.95 0.00 0.03 1.25 0.02 0.77 0.97 41.5 25.7 0.7 31.4 0.4 0.0 0.4 SpsSE Spessartine 5.4 -0.9 35.7 0.1 20.2 0.0 3.1 39.7 0.0 0.1 98.9 2.98 0.01 1.99 0.00 0.04 0.17 2.81 0.00 0.01 5.7 0.1 94.0 0.2 0.0 0.0 0.0 GrsSE Grossular 3.8 2.8 38.9 0.4 21.9 0.0 1.4 0.7 0.0 35.0 98.3 2.98 0.02 1.98 0.00 0.00 0.08 0.04 0.00 2.88 2.7 0.0 1.4 94.5 0.2 0.0 1.1 R-53 Grossular 5.3 2.4 39.8 0.4 22.0 0.0 8.8 0.1 5.1 22.7 98.9 3.02 0.03 1.97 0.00 0.00 0.56 0.01 0.57 1.85 18.7 19.2 0.3 61.0 0.0 0.0 0.8 92W-1 Andradite -0.3 39.6 0.5 19.8 0.0 4.4 0.2 0.4 34.9 99.6 3.01 0.03 1.78 0.00 0.14 0.14 0.01 0.04 2.85 4.7 1.3 0.3 85.6 6.7 0.0 1.3 10691 Andradite 0.2 39.4 0.7 19.5 0.0 4.5 0.1 0.5 34.7 99.4 3.02 0.04 1.75 0.00 0.14 0.15 0.01 0.05 2.84 4.8 1.8 0.3 84.5 6.8 0.0 1.8 MexGrs Andradite 10.6 5.4 39.9 0.4 19.2 0.0 3.3 0.5 0.7 35.7 99.6 3.03 0.02 1.72 0.00 0.17 0.04 0.03 0.08 2.90 1.4 2.5 1.0 85.6 8.5 0.0 1.0 AF749A Andradite -1.2 39.3 0.6 18.4 0.0 6.4 0.3 0.3 34.5 99.7 3.01 0.03 1.66 0.00 0.25 0.16 0.02 0.04 2.83 5.3 1.2 0.5 79.4 12.0 0.0 1.6 92LEW2 Andradite -1.5 6.1 35.5 0.0 1.1 0.0 27.6 0.1 0.0 32.1 96.5 3.01 0.00 0.11 0.00 1.86 0.09 0.01 0.00 2.91 2.9 0.1 0.2 5.6 91.1 0.0 0.1 92LEW7 Andradite -1.6 6.2 35.6 0.1 1.3 0.0 27.2 0.1 0.0 32.0 96.4 3.02 0.00 0.13 0.00 1.82 0.11 0.01 0.01 2.91 3.5 0.2 0.2 6.5 89.4 0.0 0.2 92LEW10 Andradite -1.2 5.4 37.1 0.7 9.0 0.0 17.1 0.2 0.1 33.2 97.4 3.01 0.04 0.87 0.00 1.03 0.14 0.01 0.02 2.89 4.5 0.6 0.4 42.3 50.2 0.0 2.1 92LEW8 Andradite -0.9 5.3 36.8 0.9 9.4 0.0 16.7 0.2 0.2 33.2 97.4 2.99 0.05 0.90 0.00 1.01 0.12 0.01 0.03 2.88 4.0 0.8 0.4 43.4 48.7 0.0 2.6 94ADK-5 Almandine 5.2 0.4 38.9 0.1 22.0 0.0 24.4 1.1 6.7 7.0 100.3 3.00 0.00 2.00 0.00 0.00 1.57 0.07 0.77 0.58 52.5 25.8 2.3 19.3 0.0 0.0 0.0 94ADK-7 Almandine 6.4 -0.1 39.8 0.1 22.4 0.0 21.9 0.5 11.2 4.1 99.9 3.00 0.00 1.99 0.00 0.00 1.38 0.03 1.26 0.33 46.1 41.9 1.0 11.0 0.0 0.0 0.0 UWPp-1 Pyrope 6.3 -0.7 43.7 0.0 25.1 0.0 6.1 0.0 24.7 1.1 100.7 3.00 0.00 2.03 0.00 0.00 0.35 0.00 2.53 0.08 11.8 85.5 0.1 2.6 0.0 0.0 0.0 GrsQu Grossular 3.9 2.4 39.8 0.2 22.4 0.0 1.6 0.8 0.0 34.5 99.4 3.02 0.01 2.00 0.00 0.00 0.10 0.05 0.00 2.81 3.4 0.1 1.6 94.3 0.0 0.0 0.6 Yx Pyrope 5.6 -0.2 40.9 0.5 22.7 0.0 13.6 0.4 16.0 5.3 99.4 3.00 0.03 1.95 0.00 0.00 0.83 0.02 1.74 0.42 27.6 57.7 0.8 13.6 0.0 0.0 0.2 Alm-1 Almandine 4.8 -0.5 39.7 0.0 22.4 0.0 23.5 0.9 11.1 2.6 100.1 3.00 0.00 2.00 0.00 0.00 1.48 0.06 1.25 0.21 49.5 41.6 1.9 7.0 0.0 0.0 0.0 Alm-2 Almandine 7.4 -1.2 38.1 0.0 21.5 0.0 29.8 3.8 6.1 0.8 100.1 3.00 0.00 2.00 0.00 0.00 1.96 0.26 0.71 0.07 65.4 23.8 8.6 2.2 0.0 0.0 0.0 Alm-3 Almandine 13.5 -1.1 38.0 0.0 21.5 0.0 32.3 1.1 5.7 1.5 100.1 3.00 0.00 2.00 0.00 0.00 2.13 0.07 0.67 0.13 71.2 22.2 2.4 4.2 0.0 0.0 0.0 Alm-4 Almandine 11.2 -1.1 37.7 0.0 21.3 0.0 32.3 1.7 4.5 2.3 99.8 3.00 0.00 2.00 0.00 0.00 2.15 0.12 0.54 0.20 71.7 17.9 3.9 6.6 0.0 0.0 0.0 Pyp-2 Almandine 7.6 -1.8 37.3 0.0 21.2 0.0 36.0 0.4 3.8 1.3 100.0 3.00 0.00 2.00 0.00 0.00 2.41 0.02 0.45 0.11 80.4 15.1 0.8 3.7 0.0 0.0 0.0 Pyp-3 Almandine 7.6 -1.7 37.8 0.0 21.3 0.0 34.0 1.1 4.9 1.0 100.2 3.00 0.00 2.00 0.00 0.00 2.26 0.08 0.58 0.08 75.2 19.4 2.6 2.8 0.0 0.0 0.0 Pyp-4 Pyrope 7.5 0.1 40.1 0.1 22.6 0.0 19.1 0.5 13.0 4.1 99.6 3.00 0.00 1.99 0.00 0.00 1.19 0.03 1.45 0.33 39.8 48.3 1.0 10.8 0.0 0.0 0.0 Pyp-5 Almandine 7.6 -1.7 37.7 0.0 21.3 0.0 35.1 0.2 4.7 1.2 100.1 3.00 0.00 1.99 0.00 0.00 2.34 0.01 0.55 0.10 77.9 18.4 0.4 3.3 0.0 0.0 0.0 Sps-3 Spessartine 5.3 0.1 38.3 0.1 21.6 0.0 1.5 32.0 5.4 1.9 100.8 3.00 0.01 1.99 0.00 0.00 0.10 2.12 0.62 0.16 3.3 20.8 70.6 5.3 0.0 0.0 0.0 Sps-4 Spessartine 6.8 -0.5 36.3 0.2 20.6 0.0 1.9 40.4 0.0 0.6 99.9 2.99 0.01 2.00 0.00 0.00 0.13 2.82 0.00 0.05 4.3 0.1 94.0 1.7 0.0 0.0 0.0 U-194-09 Cr-Pyrope 5.3 0.7 41.1 0.0 18.7 6.8 7.4 0.5 18.8 6.2 99.5 3.00 0.00 1.61 0.39 0.00 0.45 0.03 2.04 0.48 15.0 68.0 0.9 12.9 0.0 3.1 0.0 U-33-10 Cr-Pyrope 5.4 0.6 41.6 0.1 18.4 7.8 7.0 0.4 19.7 5.7 100.6 2.99 0.01 1.56 0.44 0.00 0.42 0.02 2.12 0.44 14.1 70.5 0.7 11.4 0.0 3.2 0.0 U-98-10 Cr-Pyrope 5.1 1.3 40.0 0.8 12.3 13.4 7.1 0.3 17.6 7.8 99.4 3.01 0.05 1.09 0.79 0.01 0.43 0.02 1.97 0.63 14.2 64.4 0.7 11.6 0.1 8.4 0.5 U-L33-10 Cr-Pyrope 5.3 0.5 41.7 0.1 18.3 7.7 7.0 0.4 19.7 5.7 100.6 3.00 0.01 1.56 0.44 0.00 0.42 0.02 2.11 0.44 14.1 70.5 0.7 11.4 0.0 3.2 0.1 U-163-01 Cr-Pyrope 40.8 1.4 15.0 9.3 7.8 0.3 18.8 6.3 99.7 3.01 0.08 1.31 0.54 0.00 0.48 0.02 2.06 0.50 15.6 67.4 0.7 11.0 0.0 4.6 0.7 U-84-09 Cr-Pyrope 5.3 0.9 41.3 0.1 17.4 8.9 7.1 0.4 18.7 6.8 100.4 3.00 0.00 1.49 0.51 0.00 0.43 0.02 2.02 0.53 14.3 67.5 0.7 13.0 0.0 4.4 0.0 Sps-5 F-Spessartine 3.3 -1.0 32.3 0.0 20.5 0.0 2.9 40.9 0.0 0.5 3.6 100.9 2.61 0.00 1.95 0.00 0.20 0.00 2.80 0.00 0.05 0.93 0.64 0.39 0.0 0.1 98.2 0.1 0.1 0.0 0.0 0.8 0.6 New standards Alm+Sps Pyp Grs PypDM 13 63 19 PypAA PypAK PypMM 13 62 29 13 62 27 13 63 20 13 63 44 AlmSE AlmCMG 2B3 Beta114 Bal509 UWG 2 13 63 21 SpsSE GrsSE R 53 UWPp 1 GrsQu Yx 94ADK 5 94ADK 7 Alm 1 Alm 2 Alm 3 Alm 4 Pyp 2 Pyp 3 Pyp 4 Pyp 5 Sps 3 Sps 4 Sps 5 Alm Pyp Sps New Standards Garnet standards In this study, we introduce 22 new garnet standards in addition to the current 27 garnet standards (Page et al., 2010). We report 16 low-Ca pyralspite garnets (3 pyropes, 9 almandines, 2 spessartines, 1 fluorine-bearing spessartine and 1 grossular) including intermediate compositions between pyrope and spessartine that were lacking in the composition range of our previous suite of garnet standards. In addition, 6 Cr-pyrope standards were added to evaluate the effect of Cr on the matrix correction. We evaluated the homogeneity of chemical composition and δ 18 O of all new garnet standards by EPMA and SIMS. The δ 18 O True values were calibrated by laser fluorination. Stable isotope analysis by SIMS requires a large suite of matching standards for minerals that show complex solid-solution. There is no theoretical basis for extrapolating composition and samples are generally bracketed by the cation composition of standards. For oxygen isotope analysis of pyralspite garnets, a matrix correction based on grossular (Ca) component (X Grs ) has been proposed (Page et al., 2010). This simple correction scheme has been generally accepted (Ickert and Stern, 2013; Martin et al., 2014; Raimondo et al., 2012) and can be described with a quadratic curve. However, we observed significant dispersion (>0.5‰) in the low-Ca, near end-member, pyralspite garnets such as pyrope (Mg), almandine (Fe 2+ ) and spessartine (Mn) in recent garnet sessions. While there are some correction schemes that consider these components (Ickert and Stern, 2013; Martin et al., 2014; Vielzeuf et al., 2005), these corrections used a linear fit and/or single component and cannot explain the observed dispersions of low-Ca pyralspite garnets. In this study, we added new garnet standards that were lacking in the composition range of our previous suite of garnet standards and applied three different matrix correction using quadratic equations. We applied matrix corrections based on 7 garnets (selected as calibration standards) to 27 other garnet standards (including 12 new garnet standards) to evaluate the quality of the matrix correction. In addition, we also added new Cr-pyrope garnet standards, to evaluate the effect of Cr on the matrix correction. The effect of Cr has not previously been studied systematically for matrix correction. Introduction Improvement in matrix correction of δ 18 O analysis by SIMS for pyralspite and Cr-pyrope garnets Kouki Kitajima 1,2 ([email protected]), Ariel Strickland 1 , Michael J. Spicuzza 1 and John W. Valley 1,2 1 WiscSIMS, Department of Geoscience, University of Wisconsin Madison, Madison, WI, 53706. 2 NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin-Madison, Madison, WI, 53706

Improvement in matrix correction of δ18O analysis by SIMS for … · 2015-06-08 · ˚(Ca) + c Ca˛ Mn STDs: Sps-4, Sps-3, UWPp-1 Bias Mn = a Mn ˚(Mn)2 + b Mn ˚(Mn) + c Mn STDs:

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Improvement in matrix correction of δ18O analysis by SIMS for … · 2015-06-08 · ˚(Ca) + c Ca˛ Mn STDs: Sps-4, Sps-3, UWPp-1 Bias Mn = a Mn ˚(Mn)2 + b Mn ˚(Mn) + c Mn STDs:

ReferencesIckert, R.B., Stern, R.A., 2013. Matrix Corrections and Error Analysis in High-Precision SIMS 18O/16O Measurements of Ca–Mg–Fe Garnet. Geostand. Geoanalytical Res. 37, 429–448. doi:10.1111/j.1751-908X.2013.00222.xKita, N.T., Ushikubo, T., Fu, B., Valley, J.W., 2009. High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem. Geol. 264, 43–57.Martin, L.A.J., Rubatto, D., Crépisson, C., Hermann, J., Putlitz, B., Vitale-Brovarone, A., 2014. Garnet oxygen analysis by SHRIMP-SI: Matrix corrections and application to high-pressure metasomatic rocks from Alpine Corsica. Chem. Geol. 374-375, 25–36.

doi:10.1016/j.chemgeo.2014.02.010Page, F.Z., Kita, N.T., Valley, J.W., 2010. Ion microprobe analysis of oxygen isotopes in garnets of complex chemistry. Chem. Geol. 270, 9–19.Raimondo, T., Clark, C., Hand, M., Cliff, J., Harris, C., 2012. High-resolution geochemical record of fluid-rock interaction in a mid-crustal shear zone: a comparative study of major element and oxygen isotope transport in garnet. J. Metamorph. Geol. 30,

255–280. doi:10.1111/j.1525-1314.2011.00966.xVielzeuf, D., Champenois, M., Valley, J.W., Brunet, F., Devidal, J.L., 2005. SIMS analyses of oxygen isotopes: Matrix effects in Fe–Mg–Ca garnets. Chem. Geol. 223, 208–226. doi:http://dx.doi.org/10.1016/j.chemgeo.2005.07.008

SummaryMagnitude of the matrix correction for Cr concentration is 1.9‰ at 13.4wt.% Cr2O3

The 2SD of residual after this matrix correction applied (0.33‰) is better than the value if we simply apply the XGrs correction with all standards (0.75‰)Matrix correction scheme for pyralspite garnet needs only 7 calibration standardsBiases of pyralspite garnets are well described by sum of the biases derived from each component (Ca, Mn, Fe2+)

Cr-pyrope

XCr

0.0 0.1 0.2 0.3 0.4

0.0

0.5

1.0

1.5

2.0

2.5

Bias

rel.

to U

WG

-2 [‰

]

0.0 0.2 0.4 0.6 0.8 1.02

1

0

1

2

3

XGrs

Bias

rel.

to U

WG

-2 [‰

]

For Cr-pyrope garnets, after applying the correction based on grossular content, the calibration curve for Cr-pyrope garnets using new standards reveals that the magnitude of the matrix correction for Cr concentration is ~ 1.9‰ at 13.4 wt.% Cr2O3 (XCr = 0.394). XCr is defined by Cr/(Al+Ti+Fe3++Cr). XGrs is end-member (grossular) propostions.

Fitting Parameters

a b cRSS Max Offset 2SD of Residual

Ca

Mn

Fe2+

XGrs(Page et al., 2010)

-0.4597 2.5982 -0.8602 7.41 -1.24 0.81

8.02 -1.26 0.76

0.81 -0.41 0.33

4.69 -0.90 0.75

-0.2196 0.7083 -0.0015

-0.3677 0.4509 -0.1125

-0.6101 8.826 -1.2758

Summary table of �tting paramters and statistics of matrix correction 

Ca [pfu]0.0 0.5 1.0 1.5 2.0 2.5

Resi

dual

Bia

s [‰

]

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

±0.3‰

Fe2+ [pfu]0.0 0.5 1.0 1.5 2.0 2.5

Resi

dual

Bia

s [‰

]

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Fe2+

Mn [pfu]

Resi

dual

Bia

s [‰

]

0.0 0.5 1.0 1.5 2.0 2.5-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Mn

Ca [atoms per formula unit: pfu]

Bias

rel.

to U

WG

-2 [‰

]

0.0 0.5 1.0 1.5 2.0 2.5-2

-1

0

1

2Ca

13-62-2713-62-2913-63-1913-63-20

13-63-2113-63-442B394ADK-5

94ADK-7Alm-1Alm-2Alm-3

Alm-4AlmCMGAlmSEBal509

Beta114GrsQuGrsSEPyp-2

Pyp-3Pyp-4Pyp-5PypAA

PypAKPypDMPypMMR 53

Sps-3Sps-4SpsSEUWG-2

UWPp-1Yx

XGrs

Bias

rel.

to U

WG

-2 [‰

]

0 0.2 0.4 0.6 0.8 1.0-2

-1

0

1

2

3XGrs fitting

Results

Calibration curves were fitted by selected three standards (marked by circle outside of symbols). Matrix corrections were applied step-by-step (Ca => Mn => Fe2+). Inset figure shows simple XGrs cali-bration curve with all garnet standards. Blue curved line in the third plot (Fe2+) shows fitting curve with all standards. There is no significant difference between blue (all standards) and red (3 stan-dards). This correction scheme was evaluated using the measured offset of corrected δ18O from δ18OTrue value for all other garnet standards (excluding the 7 calibration standards). The 2 standard deviation (2SD) of the residual after Ca correction was 0.81‰. After the Mn correction was performed, the 2SD of the residual was down to 0.76‰; the final residual after the Fe2+ correction was 0.33‰.

Residual Bias [‰] = δ18OTrue

1000 -1

δ18OCorrected1000 -1

-1 ×1000

Bias relative to UWG-2 [‰] = δ18OUWG-21000 -1

δ18OMeasured1000 -1

-1 ×1000

Ca STDs: GrsSE, R-53, UWPp-1BiasCa = aCa∙(Ca)2 + bCa∙(Ca) + cCa 

Mn STDs: Sps-4, Sps-3, UWPp-1BiasMn = aMn∙(Mn)2 + bMn∙(Mn) + cMn

STDs: Alm-4, UWG-2, UWPp-1BiasFe2+ = aFe2+∙(Fe2+)2 + bFe2+∙(Fe2+) + cFe2+

BiasTotal = BiasCa + BiasMn + BiasFe2+

Fe2+

Alm (Fe2+)

Pyp (Mg)

Sps (Mn)

Grs (Ca)

13-63-19

PypAAPypAK

PypMM13-62-29

13-62-27

13-63-20

13-63-44

AlmSEAlmCMG

2B3

Beta114

Bal509

13-63-21

SpsSE

Yx

94ADK-5

94ADK-7Alm-1

Alm-2Alm-3Pyp-3

Pyp-4

Pyp-5

PypDM

GrsQu

Pyp-2 UWG-2

R-53

Sps-3

Sps-4

GrsSE

UWPp-1

Alm-4

Correction SchemePyralspite and grossular garnets are calibrated with each end-member composition (Ca/Mg+Ca: grossular-pyrope, Mn/Mg+Mn: spessartine-pyrope and Fe2+/Mg+Fe2+: almandine-pyrope) instead of XGrs. Each calibration curve was fitted by a quadratic equation with three standards (near both end-members and an intermediate composition). A pyrope standard (UWPp-1) was used for all calibrations and thus a total of 7 standards were used for this matrix correction (Ca: GrsSE, R-53, UWPp-1; Mn: Sps-3, Sps-4, UWPp-1; Fe: Alm-4, UWG-2, UWPp-1).

The bias for unknowns are calculated as follows:

Step-by-Step calibration:Calibration is applied to standards in the following steps.Biases were calculated as alphas, and subsequently converted back to value in δ-notation [‰].

all standardsthree standards

Session on 6/24/2014

Garnet: (X2+)3(Y3+)2(SiO3)4

AlmandinePyrope

SpessartineGrossular

AndraditeUvarovite

FeMgMnCaCaCa

AlAlAlAlFeCr

X2+ Y3+

Pyralspite

Ugrandite

InstrumentPrimary HV

Primary BeamBeam Size

Sample HVPresputtering

DTFA ScanCounting TimeCycle Number

Entrance SlitContrast Aperture

Field ApertureEnergy Slit

MRPDetectors

CAMECA IMS 128010 kV~2.1 nA10-µm-10kV10 secON80 sec20 cycles120 µm400 µm4000 µm40 eV2200 (16O, 18O), 5000 (16O1H)3FCs (16O, 16O1H, 18O)

Instrument & Analytical condition

For SIMS analysis, normal procedures were followed: 10-µm spot size, 2 Faraday cups, 3.5 min/spot (Kita et al., 2009). We also measured 16O1H with the axial Faraday cup to monitor the OH count rate. All analyses were carried out at WiscSIMS Laboratory, University of Wisconsin-Madison.

Standard Mineral !18OTrue !18OMeas SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO F Total Si Ti Al Cr Fe3+ Fe2+ Mn Mg Ca F OH vacancy (VIII) Alm Pyp Sps Grs And Uvar CaTi FluoGrs HydroGrs

PypDM Pyrope 5.6 -0.8 43.3 0.0 24.6 0.0 1.9 0.0 28.1 0.2 98.1 2.99 0.00 2.00 0.00 0.03 0.08 0.00 2.89 0.01 2.8 96.7 0.1 0.4 0.0 0.0 0.013-63-19 Pyrope 5.9 -0.3 41.4 0.1 22.7 0.6 10.0 0.4 19.8 3.8 98.8 2.98 0.00 1.93 0.04 0.07 0.54 0.02 2.13 0.30 18.0 71.4 0.8 9.4 0.3 0.2 0.0

PypAA Pyrope 5.5 0.1 42.3 0.1 21.7 2.0 9.0 0.4 19.4 4.9 99.8 3.03 0.01 1.83 0.11 0.00 0.54 0.02 2.08 0.38 17.8 68.9 0.8 11.7 0.0 0.7 0.0PypAK Pyrope 5.5 0.0 41.9 0.1 22.2 1.2 11.8 0.4 17.8 4.6 100.0 3.03 0.00 1.89 0.07 0.00 0.71 0.02 1.91 0.36 23.7 63.6 0.8 11.4 0.0 0.4 0.0

PypMM Pyrope 5.3 0.1 41.6 0.9 21.2 0.0 13.3 0.4 17.8 4.3 99.6 3.03 0.05 1.82 0.00 0.03 0.78 0.02 1.93 0.34 25.5 62.8 0.8 10.5 0.2 0.0 0.313-62-29 Pyrope 7.4 -0.4 40.5 0.4 21.7 0.2 16.6 0.4 16.2 3.0 99.0 3.00 0.02 1.90 0.01 0.05 0.98 0.03 1.78 0.24 32.3 58.9 0.9 7.5 0.2 0.0 0.113-62-27 Pyrope 6.5 0.2 40.0 0.3 22.2 0.1 17.0 0.4 13.2 6.0 98.9 2.99 0.01 1.95 0.01 0.03 1.04 0.02 1.47 0.48 34.5 48.9 0.7 15.5 0.2 0.1 0.113-63-20 Pyrope 6.1 0.6 40.2 0.3 22.3 0.0 15.3 0.3 12.9 8.0 99.3 2.99 0.01 1.95 0.00 0.04 0.92 0.02 1.43 0.64 30.5 47.6 0.6 20.7 0.4 0.0 0.113-63-44 Pyrope 6.4 0.7 40.1 0.2 22.3 0.1 14.4 0.3 12.0 9.7 99.0 3.00 0.01 1.96 0.00 0.02 0.88 0.02 1.33 0.77 29.3 44.3 0.6 25.3 0.2 0.1 0.1

AlmSE Almandine 8.3 -1.6 37.5 0.0 21.2 0.0 34.5 0.2 6.4 0.3 100.1 2.96 0.00 1.97 0.00 0.10 2.18 0.01 0.75 0.03 73.4 25.2 0.4 0.9 0.0 0.0 0.0AlmCMG Almandine 7.5 -1.1 38.3 0.0 21.1 0.0 32.6 1.1 6.3 1.1 100.6 3.00 0.00 1.95 0.00 0.03 2.10 0.07 0.74 0.09 70.0 24.6 2.4 2.9 0.1 0.0 0.0

2B3 Almandine 6.9 0.5 36.5 0.0 19.5 0.0 31.4 1.8 0.7 9.0 98.8 2.98 0.00 1.88 0.00 0.16 1.99 0.12 0.08 0.79 66.7 2.7 4.1 24.4 2.0 0.0 0.0Beta114 Almandine 9.3 -1.0 38.3 0.0 21.5 0.0 29.4 0.7 7.9 2.2 100.0 2.98 0.00 1.97 0.00 0.07 1.83 0.05 0.92 0.18 61.6 30.8 1.6 5.8 0.2 0.0 0.0Bal509 Almandine 12.3 -0.9 39.3 0.0 22.2 0.0 25.3 0.3 11.7 1.2 100.0 2.98 0.00 1.98 0.00 0.06 1.54 0.02 1.32 0.10 51.7 44.4 0.6 3.2 0.1 0.0 0.0

UWG-2 Almandine 5.8 0.0 39.8 0.1 22.0 0.0 21.4 0.4 10.8 5.2 99.7 3.01 0.00 1.97 0.00 0.01 1.35 0.03 1.22 0.42 44.7 40.4 0.9 13.9 0.1 0.0 0.013-63-21 Almandine 4.6 1.2 38.7 0.4 21.4 0.0 19.7 0.3 6.7 11.7 98.9 2.99 0.02 1.95 0.00 0.03 1.25 0.02 0.77 0.97 41.5 25.7 0.7 31.4 0.4 0.0 0.4

SpsSE Spessartine 5.4 -0.9 35.7 0.1 20.2 0.0 3.1 39.7 0.0 0.1 98.9 2.98 0.01 1.99 0.00 0.04 0.17 2.81 0.00 0.01 5.7 0.1 94.0 0.2 0.0 0.0 0.0GrsSE Grossular 3.8 2.8 38.9 0.4 21.9 0.0 1.4 0.7 0.0 35.0 98.3 2.98 0.02 1.98 0.00 0.00 0.08 0.04 0.00 2.88 2.7 0.0 1.4 94.5 0.2 0.0 1.1

R-53 Grossular 5.3 2.4 39.8 0.4 22.0 0.0 8.8 0.1 5.1 22.7 98.9 3.02 0.03 1.97 0.00 0.00 0.56 0.01 0.57 1.85 18.7 19.2 0.3 61.0 0.0 0.0 0.892W-1 Andradite -0.3 39.6 0.5 19.8 0.0 4.4 0.2 0.4 34.9 99.6 3.01 0.03 1.78 0.00 0.14 0.14 0.01 0.04 2.85 4.7 1.3 0.3 85.6 6.7 0.0 1.310691 Andradite 0.2 39.4 0.7 19.5 0.0 4.5 0.1 0.5 34.7 99.4 3.02 0.04 1.75 0.00 0.14 0.15 0.01 0.05 2.84 4.8 1.8 0.3 84.5 6.8 0.0 1.8

MexGrs Andradite 10.6 5.4 39.9 0.4 19.2 0.0 3.3 0.5 0.7 35.7 99.6 3.03 0.02 1.72 0.00 0.17 0.04 0.03 0.08 2.90 1.4 2.5 1.0 85.6 8.5 0.0 1.0AF749A Andradite -1.2 39.3 0.6 18.4 0.0 6.4 0.3 0.3 34.5 99.7 3.01 0.03 1.66 0.00 0.25 0.16 0.02 0.04 2.83 5.3 1.2 0.5 79.4 12.0 0.0 1.6

92LEW2 Andradite -1.5 6.1 35.5 0.0 1.1 0.0 27.6 0.1 0.0 32.1 96.5 3.01 0.00 0.11 0.00 1.86 0.09 0.01 0.00 2.91 2.9 0.1 0.2 5.6 91.1 0.0 0.192LEW7 Andradite -1.6 6.2 35.6 0.1 1.3 0.0 27.2 0.1 0.0 32.0 96.4 3.02 0.00 0.13 0.00 1.82 0.11 0.01 0.01 2.91 3.5 0.2 0.2 6.5 89.4 0.0 0.2

92LEW10 Andradite -1.2 5.4 37.1 0.7 9.0 0.0 17.1 0.2 0.1 33.2 97.4 3.01 0.04 0.87 0.00 1.03 0.14 0.01 0.02 2.89 4.5 0.6 0.4 42.3 50.2 0.0 2.192LEW8 Andradite -0.9 5.3 36.8 0.9 9.4 0.0 16.7 0.2 0.2 33.2 97.4 2.99 0.05 0.90 0.00 1.01 0.12 0.01 0.03 2.88 4.0 0.8 0.4 43.4 48.7 0.0 2.694ADK-5 Almandine 5.2 0.4 38.9 0.1 22.0 0.0 24.4 1.1 6.7 7.0 100.3 3.00 0.00 2.00 0.00 0.00 1.57 0.07 0.77 0.58 52.5 25.8 2.3 19.3 0.0 0.0 0.094ADK-7 Almandine 6.4 -0.1 39.8 0.1 22.4 0.0 21.9 0.5 11.2 4.1 99.9 3.00 0.00 1.99 0.00 0.00 1.38 0.03 1.26 0.33 46.1 41.9 1.0 11.0 0.0 0.0 0.0UWPp-1 Pyrope 6.3 -0.7 43.7 0.0 25.1 0.0 6.1 0.0 24.7 1.1 100.7 3.00 0.00 2.03 0.00 0.00 0.35 0.00 2.53 0.08 11.8 85.5 0.1 2.6 0.0 0.0 0.0

GrsQu Grossular 3.9 2.4 39.8 0.2 22.4 0.0 1.6 0.8 0.0 34.5 99.4 3.02 0.01 2.00 0.00 0.00 0.10 0.05 0.00 2.81 3.4 0.1 1.6 94.3 0.0 0.0 0.6Yx Pyrope 5.6 -0.2 40.9 0.5 22.7 0.0 13.6 0.4 16.0 5.3 99.4 3.00 0.03 1.95 0.00 0.00 0.83 0.02 1.74 0.42 27.6 57.7 0.8 13.6 0.0 0.0 0.2

Alm-1 Almandine 4.8 -0.5 39.7 0.0 22.4 0.0 23.5 0.9 11.1 2.6 100.1 3.00 0.00 2.00 0.00 0.00 1.48 0.06 1.25 0.21 49.5 41.6 1.9 7.0 0.0 0.0 0.0Alm-2 Almandine 7.4 -1.2 38.1 0.0 21.5 0.0 29.8 3.8 6.1 0.8 100.1 3.00 0.00 2.00 0.00 0.00 1.96 0.26 0.71 0.07 65.4 23.8 8.6 2.2 0.0 0.0 0.0Alm-3 Almandine 13.5 -1.1 38.0 0.0 21.5 0.0 32.3 1.1 5.7 1.5 100.1 3.00 0.00 2.00 0.00 0.00 2.13 0.07 0.67 0.13 71.2 22.2 2.4 4.2 0.0 0.0 0.0Alm-4 Almandine 11.2 -1.1 37.7 0.0 21.3 0.0 32.3 1.7 4.5 2.3 99.8 3.00 0.00 2.00 0.00 0.00 2.15 0.12 0.54 0.20 71.7 17.9 3.9 6.6 0.0 0.0 0.0Pyp-2 Almandine 7.6 -1.8 37.3 0.0 21.2 0.0 36.0 0.4 3.8 1.3 100.0 3.00 0.00 2.00 0.00 0.00 2.41 0.02 0.45 0.11 80.4 15.1 0.8 3.7 0.0 0.0 0.0Pyp-3 Almandine 7.6 -1.7 37.8 0.0 21.3 0.0 34.0 1.1 4.9 1.0 100.2 3.00 0.00 2.00 0.00 0.00 2.26 0.08 0.58 0.08 75.2 19.4 2.6 2.8 0.0 0.0 0.0Pyp-4 Pyrope 7.5 0.1 40.1 0.1 22.6 0.0 19.1 0.5 13.0 4.1 99.6 3.00 0.00 1.99 0.00 0.00 1.19 0.03 1.45 0.33 39.8 48.3 1.0 10.8 0.0 0.0 0.0Pyp-5 Almandine 7.6 -1.7 37.7 0.0 21.3 0.0 35.1 0.2 4.7 1.2 100.1 3.00 0.00 1.99 0.00 0.00 2.34 0.01 0.55 0.10 77.9 18.4 0.4 3.3 0.0 0.0 0.0Sps-3 Spessartine 5.3 0.1 38.3 0.1 21.6 0.0 1.5 32.0 5.4 1.9 100.8 3.00 0.01 1.99 0.00 0.00 0.10 2.12 0.62 0.16 3.3 20.8 70.6 5.3 0.0 0.0 0.0Sps-4 Spessartine 6.8 -0.5 36.3 0.2 20.6 0.0 1.9 40.4 0.0 0.6 99.9 2.99 0.01 2.00 0.00 0.00 0.13 2.82 0.00 0.05 4.3 0.1 94.0 1.7 0.0 0.0 0.0

U-194-09 Cr-Pyrope 5.3 0.7 41.1 0.0 18.7 6.8 7.4 0.5 18.8 6.2 99.5 3.00 0.00 1.61 0.39 0.00 0.45 0.03 2.04 0.48 15.0 68.0 0.9 12.9 0.0 3.1 0.0U-33-10 Cr-Pyrope 5.4 0.6 41.6 0.1 18.4 7.8 7.0 0.4 19.7 5.7 100.6 2.99 0.01 1.56 0.44 0.00 0.42 0.02 2.12 0.44 14.1 70.5 0.7 11.4 0.0 3.2 0.0U-98-10 Cr-Pyrope 5.1 1.3 40.0 0.8 12.3 13.4 7.1 0.3 17.6 7.8 99.4 3.01 0.05 1.09 0.79 0.01 0.43 0.02 1.97 0.63 14.2 64.4 0.7 11.6 0.1 8.4 0.5

U-L33-10 Cr-Pyrope 5.3 0.5 41.7 0.1 18.3 7.7 7.0 0.4 19.7 5.7 100.6 3.00 0.01 1.56 0.44 0.00 0.42 0.02 2.11 0.44 14.1 70.5 0.7 11.4 0.0 3.2 0.1U-163-01 Cr-Pyrope 40.8 1.4 15.0 9.3 7.8 0.3 18.8 6.3 99.7 3.01 0.08 1.31 0.54 0.00 0.48 0.02 2.06 0.50 15.6 67.4 0.7 11.0 0.0 4.6 0.7U-84-09 Cr-Pyrope 5.3 0.9 41.3 0.1 17.4 8.9 7.1 0.4 18.7 6.8 100.4 3.00 0.00 1.49 0.51 0.00 0.43 0.02 2.02 0.53 14.3 67.5 0.7 13.0 0.0 4.4 0.0

Sps-5 F-Spessartine 3.3 -1.0 32.3 0.0 20.5 0.0 2.9 40.9 0.0 0.5 3.6 100.9 2.61 0.00 1.95 0.00 0.20 0.00 2.80 0.00 0.05 0.93 0.64 0.39 0.0 0.1 98.2 0.1 0.1 0.0 0.0 0.8 0.6New

sta

ndar

ds

Alm+Sps

Pyp Grs

PypDM13 63 19PypAAPypAKPypMM13 62 2913 62 27

13 63 2013 63 44AlmSEAlmCMG2B3Beta114Bal509

UWG 213 63 21SpsSEGrsSER 53

UWPp 1GrsQuYx94ADK 594ADK 7Alm 1

Alm 2Alm 3Alm 4Pyp 2Pyp 3Pyp 4

Pyp 5Sps 3Sps 4Sps 5

Alm

Pyp Sps

New Standards

Garnet standards

In this study, we introduce 22 new garnet standards in addition to the current 27 garnet standards (Page et al., 2010). We report 16 low-Ca pyralspite garnets (3 pyropes, 9 almandines, 2 spessartines, 1 fluorine-bearing spessartine and 1 grossular) including intermediate compositions between pyrope and spessartine that were lacking in the composition range of our previous suite of garnet standards. In addition, 6 Cr-pyrope standards were added to evaluate the effect of Cr on the matrix correction. We evaluated the homogeneity of chemical composition and δ18O of all new garnet standards by EPMA and SIMS. The δ18OTrue values were calibrated by laser fluorination.

Stable isotope analysis by SIMS requires a large suite of matching standards for minerals that show complex solid-solution. There is no theoretical basis for extrapolating composition and samples are generally bracketed by the cation composition of standards. For oxygen isotope analysis of pyralspite garnets, a matrix correction based on grossular (Ca) component (XGrs) has been proposed (Page et al., 2010). This simple correction scheme has been generally accepted (Ickert and Stern, 2013; Martin et al., 2014; Raimondo et al., 2012) and can be described with a quadratic curve. However, we observed significant dispersion (>0.5‰) in the low-Ca, near end-member, pyralspite garnets such as pyrope (Mg), almandine (Fe2+) and spessartine (Mn) in recent garnet sessions. While there are some correction schemes that consider these components (Ickert and Stern, 2013; Martin et al., 2014; Vielzeuf et al., 2005), these corrections used a linear fit and/or single component and cannot explain the observed dispersions of low-Ca pyralspite garnets.

In this study, we added new garnet standards that were lacking in the composition range of our previous suite of garnet standards and applied three different matrix correction using quadratic equations. We applied matrix corrections based on 7 garnets (selected as calibration standards) to 27 other garnet standards (including 12 new garnet standards) to evaluate the quality of the matrix correction. In addition, we also added new Cr-pyrope garnet standards, to evaluate the effect of Cr on the matrix correction. The effect of Cr has not previously been studied systematically for matrix correction.

Introduction

Improvement in matrix correction of δ18O analysis by SIMS for pyralspite and Cr-pyrope garnetsKouki Kitajima1,2 ([email protected]), Ariel Strickland1, Michael J. Spicuzza1 and John W. Valley1,2

1 WiscSIMS, Department of Geoscience, University of Wisconsin Madison, Madison, WI, 53706. 2 NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin-Madison, Madison, WI, 53706