1
10 2 10 3 10 4 10 5 10 6 10 7 Raw CPS 2013 2014 2015 2016 Year m/z 28 m/z 15 m/z 14 m/z 13 Background Counts Trending Mass Ra&o Readings During Same Marker for All Runs 819 682 546 409 Total (hrs) 273 136 0 limit Oct ‘14 Jan ‘15 Apr ‘15 Jul ‘15 Oct ‘15 Jan ‘16 Apr ‘16 Jul ‘16 Oct ‘16 Jan ‘17 Apr ‘17 WRP On-Time DuraFon – no limit WRP on-Fme - 350 hr lifeFme – 138% WRP on-off cycles – no limit Filament 1 on-Fme - 265 hr lifeFme – 53% Filament 2 on-Fme - 265 hr lifeFme – 7% Electron mulFplier 1 on-Fme – no limit Electron mulFplier 2 on-Fme – no limit WRP Swapped 25052 25060 25068 25076 25084 25092 25100 25108 25116 25124 25132 25140 25148 25156 25164 25172 25180 25188 25196 25204 25212 25220 25228 25236 25244 25252 25260 25268 25276 25284 25292 25300 25308 25316 25324 25332 25340 25352 25360 25368 25376 25384 25392 25400 Delta Trend RF Temp. Best Fit (0.2325x - 248.28) EXPID – Experiment IdenBfier 1100 1120 1160 1180 1200 Ch 11 RF Pressure-mbar 1140 -1 1 0 0.5 -0.5 5 10 15 20 25 30 35 Temperature (C) Delta Value Trending RF Pressure Versus Temperature – Electrical Baseline Tests – SAM Flight Model on Mars Jan ‘13 Jan ‘14 Jan ‘15 Jan ‘16 Jan ‘17 1200mb 1150mb 1100mb Raw Data HARD CODED NO V2 OPS DURING GETTER REPAIR LAUNCH LANDING EARTH MARS 1 6 5 4 3 2 VOLTAGE (V) 2009 2010 2011 Ch 210: CAP+_Vmon (Capacitor +Voltage Monitor) Average 2012 2013 2014 2015 2016 2017 0 2 4 6 345 346 347 348 349 Voltage TIME - Sec CAP+_Vmon - October 2014 MARKER 102 Maximum Voltage During Marker 102 Minimum Voltage During Marker 102 Limit Check Report (May 2010) Showing Non-Opera/onal V2 Improved Engineering Diagnos1cs for Space Explora1on B. D. Prats 1,2 , M. S. Johnson 1,3 ,C. A. Malespin 1 , E. Lyness 1,3 , W. Brinckerhoff 1 , P.R. Mahaffy 1 and N. Dobson 1,4 1 NASA Goddard Space Flight Center, Code 699, [email protected], 2 eINFORMe, INC, 3 Microtel LLC, 4 Linear Labs, LLC Past, present and future electro-mechanical systems on- earth, on-orbit, on other planets and moons must be designed with sufficient diagnosUc capabiliUes to assure safety, accuracy, compliancy and longevity. Unique technologies at the NASA GSFC Planetary Environments Laboratory enable robust system health measurements during all phases of daily operaUons; integraUon, test, refurbishment, calibraUon and science. [1] Mahaffy, P.R. et al (2012) Space Science Review 170, 401-478. [2] Goetz,W. et al (2016) Int. Journal of Astrobiology,Vol. 15,Iss. 3,239-250. [3] Brunner, A.E. et al (2013) LPSC, Abstract # 2053. [4] Malespin, C.A., et al (2015) LPSC, Abstract # 2558. Figure 1. SAM Valve V02 Health Trend - Capacitor Re-Charge Voltage NASA SAM (Sample Analysis at Mars): Instrument suite on-board NASA Mars Science Laboratory (Curiosity Rover) launched November 2011, landed August 2012 now in 5 th year of conUnuing, Mars- surface atmospheric and sample science operaUons [1]. MOMA-MS (Mars Organic Molecular Analyzer): Linear ion trap mass spectrometer built by NASA Goddard Space Flight Center on-board ESA-Roscosmos ExoMars Rover to be launched 2020 & landing on Mars 2021 [2]. Mission history with nine years of housekeeping trends provide on-going data-analysis tool development and ideas for future space-mission health check tools to be used by life-sustaining equipment on manned-missions. Proper design and robust health diagnosUcs are criUcal for system design and for targeted operaUonal features. Figure 3. MOMA-MS Engineering Consumables Page from XINA Marks in telemetry idenUfy very parUcular instrument states to quickly examine science & housekeeping data. Markers allow quick and easy capture of problems during integraUon, calibraUon, tesUng and operaUons. Figure 1 shows SAM valve operaUon on Mars during monthly electrical tests (health checks) using a marker. Sofware introduces marker 102 before and during capacitor re-charge to track valve V02 health. Valve V02 at marker 102 shows a steady, consistent five-year trend for conUnuing Mars science operaUons. Figure 2 shows temperature compensaUon tools that remove external effects; SAM RF pressure flat & steady. XINA shows real-Ume consumable metrics; pump operaUng hours, filament on-Ume, valve cycles, etc. Figure 3 shows flight MOMA-MS consumables page including usage and remaining life of components. Trends provided by XINA tools can detect un-expected usage or changes that allow repair prior to launch. Figures 1, 2 and 3 were created using XINA, a tool developed at NASA/GSFC, that provides web-based access to housekeeping and science data for SAM, MOMA-MS and four other missions. To assess instrument health, Python tools have been developed to quickly idenUfy temperature, voltage, pressures that may be off-nominal (see inset – Fig. 1). Figure 4 shows mass spectrometer science trends produced using WaveMetrics Igor Pro 7 & add-ons [3]. Electron mulUplier voltage was increased for SAM Test Bed [4] to improve data as a result of this IGOR analysis. Lessons learned; disciplined use of markers early in project can yield far bener data analysis (including custom tools) later and can quickly provide a robust, accessible data distribuUon system for the project team. These techniques, used in future space-exploraUon missions, can assure compliancy, longevity and safety. Figure 4. Background Mass RaGo Prepared Using Igor Pro 7 - SAM Test Bed Science – Showing DegradaGon of Electron MulGplier Flight sofware and scripts for SAM and MOMA-MS were purposely designed with the ability to uniquely mark data based on context to allow data trending. Figure 2. RF Pressure Trending using XINA

Improved Engineering Diagnoscs for Space Exploraon · • Sofware introduces marker 102 before and during capacitor re-charge to track valve V02 health. • Valve V02 at marker 102

  • Upload
    hakhue

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Improved Engineering Diagnoscs for Space Exploraon · • Sofware introduces marker 102 before and during capacitor re-charge to track valve V02 health. • Valve V02 at marker 102

102

103

104

105

106

107

Raw

CPS

2013 2014 2015 2016Year

m/z 28 m/z 15 m/z 14 m/z 13

Background Counts Trending

MassRa&oReadingsDuringSameMarkerforAllRuns

819

682

546

409

Total(hrs)

273

136

0

limit

Oct‘14 Jan‘15 Apr‘15 Jul‘15 Oct‘15 Jan‘16 Apr‘16 Jul‘16 Oct‘16 Jan‘17 Apr‘17

WRPOn-Time

DuraFon–nolimit

WRPon-Fme-350hrlifeFme–138%

WRPon-offcycles–nolimit

Filament1on-Fme-265hrlifeFme–53%

Filament2on-Fme-265hrlifeFme–7%

ElectronmulFplier1on-Fme–nolimit

ElectronmulFplier2on-Fme–nolimit

WRPSwapped

25052

25060

25068

25076

25084

25092

25100

25108

25116

25124

25132

25140

25148

25156

25164

25172

25180

25188

25196

25204

25212

25220

25228

25236

25244

25252

25260

25268

25276

25284

25292

25300

25308

25316

25324

25332

25340

25352

25360

25368

25376

25384

25392

25400

DeltaTrend

RFTemp. BestFit(0.2325x-248.28)

EXPID–ExperimentIdenBfier

1100

1120

1160

1180

1200

Ch11RFPressure-mbar

1140

-1

1

0

0.5

-0.5

5

10

15

20

25

30

35

Tempe

rature(C

)De

ltaValu

e

TrendingRFPressureVersusTemperature–ElectricalBaselineTests–SAMFlightModelonMars

Jan‘13

Jan‘14

Jan‘15

Jan‘16

Jan‘17

1200mb

1150mb

1100mb

RawData

SAMFMValve2Func/onDuringEBTh9ps://goo.gl/HiRdOp

HARDCODEDNO

V2OPSDURINGGETTERREPAIR

LAUNCH LANDING

EARTH MARS

1

6

5

4

3

2

VOLTAGE(V)

2009

2010

2011

Ch210:CAP+_Vmon(Capacitor+VoltageMonitor)Average

2012

2013

2014

2015

2016

2017

0

2

4

6

345 346 347 348 349

Voltage

TIME-Sec

CAP+_Vmon-October2014

MARKER102

MaximumVoltageDuringMarker102

MinimumVoltageDuringMarker102

LimitCheckReport(May2010)ShowingNon-Opera/onalV2

ImprovedEngineeringDiagnos1csforSpaceExplora1onB.D.Prats1,2,M.S.Johnson1,3,C.A.Malespin1,E.Lyness1,3,W.Brinckerhoff1,P.R.Mahaffy1andN.Dobson1,4

1NASAGoddardSpaceFlightCenter,Code699,[email protected],2eINFORMe,INC,3MicrotelLLC,4LinearLabs,LLC

•  Past,presentandfutureelectro-mechanicalsystemson-earth, on-orbit, on other planets and moons must bedesignedwithsufficientdiagnosUccapabiliUestoassuresafety,accuracy,compliancyandlongevity.

•  Unique technologies at the NASA GSFC PlanetaryEnvironments Laboratory enable robust system healthmeasurements during all phases of daily operaUons;integraUon,test,refurbishment,calibraUonandscience.

[1]Mahaffy,P.R.etal(2012)SpaceScienceReview170,401-478.[2]Goetz,W.etal(2016)Int.JournalofAstrobiology,Vol.15,Iss.3,239-250.[3]Brunner,A.E.etal(2013)LPSC,Abstract#2053.[4]Malespin,C.A.,etal(2015)LPSC,Abstract#2558.

Figure1.SAMValveV02HealthTrend-CapacitorRe-ChargeVoltage

•  NASA S AM ( S amp l e A n a l y s i s a t Ma r s ) :Instrument suite on-board NASA Mars ScienceLaboratory (CuriosityRover) launchedNovember2011,landedAugust2012nowin5thyearofconUnuing,Mars-surfaceatmosphericandsamplescienceoperaUons[1].

•  MOMA-MS (MarsOrganicMolecularAnalyzer):Linearion trap mass spectrometer built by NASA GoddardSpace Flight Center on-board ESA-Roscosmos ExoMarsRovertobelaunched2020&landingonMars2021[2].

•  Missionhistorywithnineyearsofhousekeepingtrendsprovide on-going data-analysis tool development andideasfor futurespace-missionhealthchecktoolstobeusedbylife-sustainingequipmentonmanned-missions.

•  ProperdesignandrobusthealthdiagnosUcsarecriUcalforsystemdesignandfortargetedoperaUonalfeatures.

Figure3.MOMA-MSEngineeringConsumablesPagefromXINA

•  Marks in telemetry idenUfy very parUcular instrumentstatestoquicklyexaminescience&housekeepingdata.

•  Markers allow quick and easy capture of problemsduringintegraUon,calibraUon,tesUngandoperaUons.

•  Figure 1 shows SAM valve operaUon on Mars duringmonthlyelectricaltests(healthchecks)usingamarker.

•  Sofware introduces marker 102 before and duringcapacitorre-chargetotrackvalveV02health.

•  Valve V02 at marker 102 shows a steady, consistentfive-yeartrendforconUnuingMarsscienceoperaUons.

•  Figure 2 shows temperature compensaUon tools thatremoveexternaleffects;SAMRFpressureflat&steady.

•  XINA shows real-Ume consumable metrics; pumpoperaUnghours,filamenton-Ume,valvecycles,etc.

•  Figure 3 shows flight MOMA-MS consumables pageincludingusageandremaininglifeofcomponents.

•  TrendsprovidedbyXINA tools candetectun-expectedusageorchangesthatallowrepairpriortolaunch.

•  Figures 1, 2 and 3 were created using XINA, a tooldeveloped at NASA/GSFC, that provides web-basedaccess to housekeeping and science data for SAM,MOMA-MSandfourothermissions.

•  To assess instrument health, Python tools have beendeveloped to quickly idenUfy temperature, voltage,pressuresthatmaybeoff-nominal(seeinset–Fig.1).

•  Figure 4 shows mass spectrometer science trendsproducedusingWaveMetricsIgorPro7&add-ons[3].

•  ElectronmulUpliervoltagewas increased forSAMTestBed[4]toimprovedataasaresultofthisIGORanalysis.

•  Lessons learned; disciplined use of markers early inproject can yield far bener data analysis (includingcustom tools) later and can quickly provide a robust,accessibledatadistribuUonsystemfortheprojectteam.

•  These techniques, used in future space-exploraUonmissions,canassurecompliancy,longevityandsafety.

Figure4.BackgroundMassRaGoPreparedUsingIgorPro7-SAMTestBedScience–ShowingDegradaGonofElectronMulGplier

•  Flight sofware and scripts for SAM and MOMA-MSwere purposely designed with the ability to uniquelymarkdatabasedoncontexttoallowdatatrending.

Figure2.RFPressureTrendingusingXINA