Importance of the LNA Friis Formula Importance of the LNA Friis Formula Digital Electronics CMOS LNA X Low Cost High Integration Integration With Digital

  • View
    215

  • Download
    1

Embed Size (px)

Text of Importance of the LNA Friis Formula Importance of the LNA Friis Formula Digital Electronics CMOS LNA...

  • Slide 1

Slide 2 Importance of the LNA Slide 3 Friis Formula Slide 4 Importance of the LNA Friis Formula Digital Electronics CMOS LNA X Low Cost High Integration Integration With Digital IC Larger Parasitic Capisitance Slide 5 Importance of the LNA Friis Formula Digital Electronics CMOS LNA X Low Cost High Integration Integration With Digital IC Larger Parasitic Capisitance RF Hexagon Slide 6 Why Inductive Degenerated LNA? 2-Port Noise Theory Slide 7 Why Inductive Degenerated LNA? 2-Port Noise Theory Slide 8 Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Slide 9 Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution Slide 10 Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution Slide 11 Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution X Power Matching Slide 12 Inductive Degenerated LNA Bond Wire Inductance Inductive Source Degeneration Input Power Matching Slide 13 Inductive Degenerated LNA Bond Wire Inductance Inductive Source DegenerationSmall Signal Equivalent Input Power Matching Slide 14 Inductive Degenerated LNA Bond Wire Inductance Inductive Source DegenerationSmall Signal Equivalent Power Matching Input Power Matching Slide 15 Inductive Degenerated LNA Bond Wire Inductance Inductive Source DegenerationSmall Signal Equivalent Power Matching Input Power Matching Slide 16 Inductive Degenerated LNA Bond Wire Inductance Inductive Source DegenerationSmall Signal Equivalent Power Matching Input Power Matching Slide 17 Definitions Basic Equation of MOS Drain Slide 18 Definitions Basic Equation of MOS Drain Slide 19 Definitions Basic Equation of MOS Drain Slide 20 Definitions Basic Equation of MOS Drain Slide 21 Definitions Basic Equation of MOS Drain Long Channel Short Channel Slide 22 Inductive Specified Technique 1 st step: Setting the value of L s Slide 23 Inductive Specified Technique 1 st step: Setting the value of L s 2 nd step: Finding the value of t.Ls From Impendance Matching: Slide 24 Inductive Specified Technique 3 rd step: Finding the optimum Q s 1 st step: Setting the value of L s 2 nd step: Finding the value of t.Ls From Impendance Matching: Slide 25 Inductive Specified Technique 3 rd step: Finding the optimum Q s 1 st step: Setting the value of L s 2 nd step: Finding the value of t.Ls 4 th step: Finding the value of L g From Impendance Matching: Slide 26 Inductive Specified Technique 3 rd step: Finding the optimum Q s 1 st step: Setting the value of L s 2 nd step: Finding the value of t.Ls 4 th step: Finding the value of L g 5 th step: Finding the optimum C gs From Impendance Matching: Slide 27 Inductive Specified Technique 6 th step: Finding the optimum devices width W opt,Ls Slide 28 Inductive Specified Technique 6 th step: Finding the optimum devices width W opt,Ls 7 th step: Finding the optimum devices transconductance g m.opt.Ls From Impendance Matching: Slide 29 Inductive Specified Technique 6 th step: Finding the optimum devices width W opt,Ls 7 th step: Finding the optimum devices transconductance g m.opt.Ls From Impendance Matching: 8 th step: Finding the optimum and V od ! Slide 30 Inductive Specified Technique 6 th step: Finding the optimum devices width W opt,Ls 7 th step: Finding the optimum devices transconductance g m.opt.Ls From Impendance Matching: 8 th step: Finding the optimum and V od ! 9 th step: Finding the current consumption I D.Ls Slide 31 Current Specified Technique 1 st step: Setting the current consumption I D Slide 32 Current Specified Technique 1 st step: Setting the current consumption I D 2 nd step: Finding the optimum and V od Slide 33 Current Specified Technique 1 st step: Setting the current consumption I D 2 nd step: Finding the optimum and V od 3 nd step: Finding the optimum Q s From 2 nd Step: Slide 34 Current Specified Technique 1 st step: Setting the current consumption I D 2 nd step: Finding the optimum and V od 3 nd step: Finding the optimum Q s 4 th step: Finding the optimum device width W opt,I From 2 nd Step: From 3 rd Step & Impendance Matching: Slide 35 Current Specified Technique 1 st step: Setting the current consumption I D 2 nd step: Finding the optimum and V od 3 nd step: Finding the optimum Q s 4 th step: Finding the optimum device width W opt,I 5 nd step: Finding the value of t.I From 2 nd Step: From 3 rd Step & Impendance Matching: From 2 nd Step: Slide 36 Current Specified Technique 6 th step: Finding the optimum device transconductance g m.opt.I From 2 nd, 3 rd Step & Impendance Matching: Slide 37 Current Specified Technique 6 th step: Finding the optimum device transconductance g m.opt.I From 2 nd, 3 rd Step & Impendance Matching: 7 th step: Finding the optimum C gs From 5 th, 6 th Step : Slide 38 Current Specified Technique 6 th step: Finding the optimum device transconductance g m.opt.I From 2 nd, 3 rd Step & Impendance Matching: 7 th step: Finding the optimum C gs From 5 th, 6 th Step : From 6 th, 7 th Step & Impendance Matching: 8 th step: Finding the optimum L s Slide 39 Current Specified Technique 6 th step: Finding the optimum device transconductance g m.opt.I From 2 nd, 3 rd Step & Impendance Matching: 7 th step: Finding the optimum C gs From 5 th, 6 th Step : From 6 th, 7 th Step & Impendance Matching: 8 th step: Finding the optimum L s 9 th step: Finding the optimum L g From 6 th, 7 th Step & Impendance Matching: Slide 40 Comparison Results Inductive Specified Technique Slide 41 Comparison Results Inductive Specified Technique Slide 42 Comparison Results Inductive Specified Technique Parameters: Slide 43 Comparison Results @ 1.6 GHz V od =120mV I D = 1.7mA Inductive Specified Technique Slide 44 Comparison Results Inductive Specified Technique @ 2.5 GHz V od =120mV I D = 1.1mA Slide 45 Comparison Results Inductive Specified Technique @ 5.5 GHz V od =120mV I D = 0.5mA Slide 46 Comparison Results Inductive Specified Technique V od 150 mV Slide 47 Comparison Results Inductive Specified Technique @ 1.6 GHz V od =138mV I D = 2.4mA Slide 48 Comparison Results Inductive Specified Technique @ 2.5 GHz V od =138mV I D = 1.5mA Slide 49 Comparison Results Inductive Specified Technique @ 5.5 GHz V od =138mV I D = 0.7mA Slide 50 Comparison Results Inductive Specified Technique V od 150 mV Slide 51 Comparison Results Inductive Specified Technique @ 1.6 GHz V od =162mV I D = 3.2mA Slide 52 Comparison Results Inductive Specified Technique @ 2.5 GHz V od =162mV I D = 2.1mA Slide 53 Comparison Results Inductive Specified Technique @ 5.5 GHz V od =162mV I D = 0.7mA Slide 54 Comparison Results Inductive Specified Technique V od 150 mV Slide 55 Comparison Results Inductive Specified Technique V od 150 mV Slide 56 Comparison Results Inductive Specified Technique V od 150 mV Slide 57 Comparison Results Inductive Specified Technique V od 150 mV Slide 58 Comparison Results Inductive Specified Technique V od 150 mV Slide 59 Comparison Results Inductive Specified Technique V od 150 mV Slide 60 Comparison Results Inductive Specified Technique L s = 1.2nH NF min = 6.1dB I D = 0.9mA Slide 61 Comparison Results Inductive Specified Technique L s = 1nH NF min = 5.6dB I D = 1.4mA Slide 62 Comparison Results Inductive Specified Technique L s = 0.8nH NF min = 5dB I D = 2.2mA Slide 63 Comparison Results Inductive Specified Technique L s = 0.6nH NF min = 4dB I D = 4mA Slide 64 Comparison Results Inductive Specified Technique NF min IDID Slide 65 Comparison Results Inductive Specified Technique NF min IDID Slide 66 Comparison Results Inductive Specified Technique NF min IDID Slide 67 Comparison Results Inductive Specified Technique NF min IDID IDID LLSLS Slide 68 Comparison Results Current Specified Technique Slide 69 Comparison Results Current Specified Technique Slide 70 Comparison Results Current Specified Technique Parameters: Slide 71 Comparison Results Current Specified Technique @ 1.6 GHz V od =60mVL S =3.1nH Slide 72 Comparison Results Current Specified Technique @ 2.5 GHz V od =76mVL S =2.5nH Slide 73 Comparison Results Current Specified Technique @ 5.5 GHz V od =112mVL S =1.7nH Slide 74 Comparison Results Current Specified Technique @ 1.6 GHz V od =85mVL S =2.2nH Slide 75 Comparison Results Current Specified Technique @ 2.5 GHz V od =107mVL S =1.7nH Slide 76 Comparison Results Current Specified Technique @ 5.5 GHz V od =158mVL S =1.2nH Slide 77 Comparison Results Current Specified Technique Slide 78 Comparison Results Current Specified Technique V od,opt 150mV3nH L S 0.5nH Slide 79 Comparison Results Current Specified Technique NF min IDID Slide 80 Comparison Results Current Specified Technique NF min IDID Slide 81 Comparison Results Current Specified Technique NF min IDID IDID LLSLS Slide 82 Conclusion Inductive Specified Technique QsQs LsLs t.Ls LgLg C gs W opt,Ls g m.opt.Ls I D.Ls Slide 83 Conclusion Inductive Specified Technique Current Specified Technique QsQs LsLs t.Ls LgLg C gs W opt,Ls g m.opt.Ls I D.Ls QsQs IDID pLgLg C gs W opt,I g m.opt.I L S,opt,I t.I Slide 84 Conclusion Inductive Specified Technique Current Specified Technique QsQs LsLs t.Ls LgLg C gs W opt,Ls g m.opt.Ls I D.Ls QsQs IDID pLgLg C gs W opt,I g m.opt.I L S,opt,I t.I Same Results for Same Numbers from the two techniques Slide 85 Conclusion Inductive Specified Technique Current Specified Technique QsQs LsLs t.Ls LgLg C gs W opt,Ls g m.opt.Ls I D.Ls QsQs IDID pLgLg C gs W opt,I g m.opt.I L S,opt,I t.I Same Results for Same Numbers from the two techniques Noise minimization for different values than those for Power Matching X Slide 86 Conclusion Inductive Specified Technique Current Specified Technique QsQs LsLs t.Ls LgLg C gs W opt,Ls g m.opt.Ls I D.Ls QsQs IDID pLgLg C gs W opt,I g m.opt.I L S,opt,I t.I Same Results for Same Number