13
BA SE Biotechnol. Agron. Soc. Environ. 2014 18(1), 121-133 Focus on: Impacts of earthworms on soil components and dynamics. A review Aboulkacem Lemtiri (1) , Gilles Colinet (2) , Taofic Alabi (1) , Daniel Cluzeau (3) , Lara Zirbes (1) , Éric Haubruge (1) , Frédéric Francis (1) (1) Univ. Liege - GemblouxAgro-Bio Tech. Functional and Evolutionary Entomology. Passage des Déportés, 2. B-5030 Gembloux (Belgium). E-mail: [email protected] (2) Univ. Liege - GemblouxAgro-Bio Tech. Department of Environmental Sciences and Technologies. Soil – Water Systems. Passage des Déportés, 2. B-5030 Gembloux (Belgium). (3) Université Européenne de Bretagne. UMR CNRS/URennes1 EcoBio. Station Biologique. 35380 Paimpont (France). Received on October 9, 2012; accepted on August 20, 2013. Earthworm populations are important decomposers contributing to aggregate formation and nutrient cycling processes involving nitrogen cycles, phosphorus and carbon. They are known to influence soil fertility by participating to important processes in soil such as soil structure regulation and organic matter dynamics. Earthworms also modify the microbial communities through digestion, stimulation and dispersion in casts. Consequently, changes in the activities of earthworm communities, as a result of soil management practices, can also be used as indicators of soil fertility and quality. It is therefore important to understand how earthworm communities affect soil dynamics. This review adresses the current state of knowledge on earthworm’s impacts on soil structure and soil organic matter (carbon, nitrogen, and phosphorus) dynamics, with special emphasis on the effects of land management practices on earthworm communities. Keywords. Earthworms, Oligochaeta, nutrient cycling in ecosystems, microbial communities, soil organic matter dynamics, soil fertility, agricultural practices. Impacts des vers de terre sur les composants et la dynamique du sol (synthèse bibliographique). Les vers de terre sont des décomposeurs importants contribuant à la formation d’aggrégats et aux différents cycles d’éléments nutritifs tels que l’azote, le phosphore et le carbone. Ils sont connus pour leur influence sur la fertilité du sol en participant à la régulation de la structure du sol et à la dynamique de la matière organique. En ingérant d’importantes quantités de sol, les vers de terre modifient la communauté microbienne lors du passage à travers leur tube digestif. Par conséquent, les changements dans les activités de la communauté lombricienne, à la suite de pratiques de gestion des sols, peuvent également être utilisés comme indicateurs de la fertilité et de la qualité des sols. Il est important de comprendre comment les communautés lombriciennes affectent la dynamique des sols. Cette synthèse bibliographique porte sur l’état actuel des connaissances sur les impacts de vers de terre sur la structure des sols et la dynamique de la matière organique, en mettant l’accent sur les impacts des pratiques agricoles sur les communautés lombriciennes. Mots-clés. Ver de terre, Oligochaeta, cycles nutriments dans écosystèmes, flore microbienne, matière organique du sol, fertilité du sol, pratique agricole. 1. INTRODUCTION Soil forms a narrow interface between the atmosphere and the lithosphere. The structure of cultivated soil results from climatic, anthropogenic, and biological processes, but the precise roles of each of these processes is difficult to assess. The impact of earthworms activity on soil structure was underlined long ago, and these organisms are now recognized as major biological drivers in temperate agrosystems. Soil characteristics (pH, organic matter, nitrogen, granulometry, etc.) are influenced by earthworms because they participate in the construction and destruction of the soil particles, as well as in organic matter transfer. The soil ingested by earthworms undergoes chemical and microbial changes when it passes throught the gut. Organic matter is digested and both the pH and the microbial activity of the gut contents increase (Edwards et al., 1996; Lukkari et al., 2006). Earthworms accelerate nitrogen mineralization from organic matter, but the effect depends on the species and their interaction with soil characteristics, organic matter location and soil biota (Butenschoen et al., 2009).

Impacts of earthworms on soil components and dynamics… · Impacts of earthworms on soil components and dynamics 123 density, as did microbial metabolic activity. In addition, Coq

Embed Size (px)

Citation preview

BASE Biotechnol. Agron. Soc. Environ.201418(1),121-133 Focus on:

Impactsofearthwormsonsoilcomponentsanddynamics.AreviewAboulkacemLemtiri(1),GillesColinet(2),TaoficAlabi(1),DanielCluzeau(3),LaraZirbes(1),ÉricHaubruge(1),FrédéricFrancis(1)(1)Univ.Liege-GemblouxAgro-BioTech.FunctionalandEvolutionaryEntomology.PassagedesDéportés,2.B-5030Gembloux(Belgium).E-mail:[email protected](2)Univ.Liege-GemblouxAgro-BioTech.DepartmentofEnvironmentalSciencesandTechnologies.Soil–WaterSystems.PassagedesDéportés,2.B-5030Gembloux(Belgium).(3)UniversitéEuropéennedeBretagne.UMRCNRS/URennes1EcoBio.StationBiologique.35380Paimpont(France).

ReceivedonOctober9,2012;acceptedonAugust20,2013.

Earthwormpopulationsareimportantdecomposerscontributingtoaggregateformationandnutrientcyclingprocessesinvolvingnitrogencycles,phosphorusandcarbon.Theyareknowntoinfluencesoilfertilitybyparticipatingtoimportantprocessesinsoilsuchassoilstructureregulationandorganicmatterdynamics.Earthwormsalsomodifythemicrobialcommunitiesthroughdigestion,stimulationanddispersionincasts.Consequently,changesintheactivitiesofearthwormcommunities,asaresultofsoilmanagementpractices,canalsobeusedasindicatorsofsoilfertilityandquality.Itisthereforeimportanttounderstandhowearthwormcommunitiesaffectsoildynamics.Thisreviewadressesthecurrentstateofknowledgeonearthworm’simpactsonsoilstructureandsoilorganicmatter(carbon,nitrogen,andphosphorus)dynamics,withspecialemphasisontheeffectsoflandmanagementpracticesonearthwormcommunities.Keywords.Earthworms,Oligochaeta,nutrientcyclinginecosystems,microbialcommunities,soilorganicmatterdynamics,soilfertility,agriculturalpractices.

Impacts des vers de terre sur les composants et la dynamique du sol (synthèse bibliographique). Lesversdeterresontdesdécomposeursimportantscontribuantàlaformationd’aggrégatsetauxdifférentscyclesd’élémentsnutritifstelsquel’azote,lephosphoreetlecarbone.Ilssontconnuspourleurinfluencesurlafertilitédusolenparticipantàlarégulationdelastructuredusoletàladynamiquedelamatièreorganique.Eningérantd’importantesquantitésdesol,lesversdeterremodifientlacommunautémicrobiennelorsdupassageàtraversleurtubedigestif.Parconséquent,leschangementsdanslesactivitésdelacommunautélombricienne,àlasuitedepratiquesdegestiondessols,peuventégalementêtreutiliséscommeindicateursdelafertilitéetdelaqualitédessols.Ilestimportantdecomprendrecommentlescommunautéslombriciennesaffectentladynamiquedessols.Cettesynthèsebibliographiqueportesurl’étatactueldesconnaissancessurlesimpactsdeversdeterresurlastructuredessolsetladynamiquedelamatièreorganique,enmettantl’accentsurlesimpactsdespratiquesagricolessurlescommunautéslombriciennes.Mots-clés.Verdeterre,Oligochaeta,cyclesnutrimentsdansécosystèmes,floremicrobienne,matièreorganiquedusol,fertilitédusol,pratiqueagricole.

1. INTRODUCTION

Soil formsanarrowinterfacebetweentheatmosphereandthelithosphere.Thestructureofcultivatedsoilresultsfromclimatic,anthropogenic,andbiologicalprocesses,butthepreciserolesofeachoftheseprocessesisdifficultto assess. The impact of earthworms activity on soilstructurewasunderlinedlongago,andtheseorganismsare now recognized as major biological drivers intemperateagrosystems.Soilcharacteristics(pH,organicmatter, nitrogen, granulometry, etc.) are influencedby

earthwormsbecausetheyparticipateintheconstructionand destruction of the soil particles, as well as inorganicmattertransfer.Thesoilingestedbyearthwormsundergoes chemical and microbial changes when itpassesthroughtthegut.OrganicmatterisdigestedandboththepHandthemicrobialactivityofthegutcontentsincrease (Edwards et al., 1996; Lukkari et al., 2006).Earthworms accelerate nitrogen mineralization fromorganicmatter,buttheeffectdependsonthespeciesandtheirinteractionwithsoilcharacteristics,organicmatterlocationandsoilbiota(Butenschoenetal.,2009).

122 Biotechnol. Agron. Soc. Environ. 201418(1),121-133 LemtiriA.,ColinetG.,AlabiT.etal.

Soil biodiversity has been widely studied sincethesoilitselfisthebaseforfarming(Stockdaleetal.,2006).Theconservationofbiodiversityisnecessarytomaintain thesustainablefunctioningofsoil. In1881,Darwinwasoneof thefirstscientistswhonotedthatthe topsoil consisted mostly of earthworm castings,thus highlighting the importance of earthwormsin pedogenesis processes (soil organo-mineralcomplex). For example, the earthworm populationbuildsgalleriesandingestslargequantitiesoforganicandmineralmatter, thusmodifying the porosity andaggregation of the soil.This earthworm bioturbationmaysubsequentlybereflectedinsoilprofiles(Zhanget al., 1995), for example: soil profile disturbance,soilstructuremodification,andverticalandhorizontalredistribution of soil and organicmatter (OM). Thisredistribution of OM depends on the earthwormecologicalgroups.Endogeicearthwormskeepmovinginside the soil to feed on soil organicmatter (SOM)while anecic ones feed on plant litter and organicresidues at the soil surface and tend to stay in thesame burrow (Lavelle et al., 1997). Epigeic species,which consume considerable amounts of raw OMhaveabroadrangeofenzymaticcapacities,probablymainly originating from ingested microflora (Curryetal.,2007).AsdiscussedbyLavelle(1997),thesoilbiogenic structure (mixture of casts, burrows, OM,etc.)createdbyearthworms iscommonly termed the“drilosphere”(Brownetal.,2000).

In agrosystems, the intensification of humanactivities (tillage, use ofmineral fertilizers, etc.) hasled to deterioration in structural and biological soilcharacteristics (Edwards, 1984; Lee, 1985). Soildegradation is often associated with decreases inbiodiversity and the abundances of earthworms andother invertebrate communities (Lee et al., 1991;Lavelle,1997).However,thereisaperceivedlackofinformationtocharacterizeadequatelytheirfunctionalrole in soil ecosystem processes such as soil carbonsequestration and loss, decomposition of organicresidues,andthemaintenanceofsoilstructure.

Thispaperaddressesthecurrentstateofknowledgeon earthworms’ impacts on soil structure and SOM(carbon, nitrogen, and phosphorus) dynamics, withspecial emphasis on the effects of landmanagementpracticesonearthwormcommunities.

2. THE ROLE OF EARTHWORMS IN ORGANIC MATTER DECOMPOSITION AND NUTRIENT DYNAMICS

2.1. Decomposition of organic matter

Organicmatter(OM)ismainlypresentinthetop20–30cmofmostsoilprofilesandisessentiallyanarray

of organic macromolecules consisting principally ofcombinationsofcarbon(C),oxygen(O)hydrogen(H),nitrogen (N), phosphorus (P) and sulfur (S).Almostall OM in soil is directly or indirectly derived fromplants via photosynthesis. Specifically, atmosphericcarbondioxideistransformedbyreductionintosimpleandcomplexorganiccarbon(OC)compounds,whichincombinationwithkeynutrientsenabletheplant tofunctionandgrow.Soilorganicmatter(SOM)providesfood and substrates for soil organisms, ranging frommacroinvertebrates to heterotrophic bacteria (Lavelleetal.,2001).Thisisofgreatimportance,giventhatthesoilbiotaisincreasinglyrecognizedasplayingamajorrole in soil functions. In cultivated soils, earthwormcommunities could play an important role in SOMdynamicsthroughregulationofthemineralizationandhumificationprocesses (Lavelle et al., 1992).On thebasisoftheresultsofcurrentliterature,itappearsthattherearesomedifferencesamongstudiesregardingtheeffectsofearthwormsonsoilorganiccarboncontent.Lachnichtetal.(1997)andDesjardinsetal.(2003)foundanegativeeffectofearthwormsadditiononsoilcarboncontent,whereasGilot(1997)foundanoppositeeffect.IntheexperimentofDesjardinsetal.(2003),themaizecropwasgrownunderno tillage, and this factor canexplaintheweaklossofcarboninthenon-inoculatedplots.Thedecreaseby28%ofthetotalcarboncontentin the earthworm-inoculated plots indicates that theendogeictropicalearthwormPontoscolex corethrurusaffectstheSOMdynamicsdramatically.TheobservedlossesofSOMincontinuouslycroppedfieldsareoftenattributedtoarapidmineralizationofSOMfollowingcultivation. Earthworms caused a decrease in SOMand carbonmineralization bymobilizing recalcitrantforms of OM. Earthworms enhance mineralizationby fragmenting SOM and by mixing SOM, mineralparticles and microorganisms, thus creating newcontactsurfacesbetweentheSOMandmicroorganisms(Parmeleeetal.,1998).Sinceearthwormsofdifferentecological groups prefer different food resources,they likely affect nutrient mineralization. Anecicearthwormsincorporatelittermaterialintothemineralsoiltherebymakingitavailableforthesoilfoodweb(Bossuyt et al., 2006). Endogeic earthworm species,in contrasts, primarily consume soil and associatedhumifiedOMintheupperlayerofthemineralsoil.

Soil microorganisms, mainly fungi and bacteria,are primarily responsible for the transformation oforganic molecules in soil, and their activity is thusa key factor in SOM dynamics (Coq et al., 2007).Aira et al. (2008) characterized changes in fungalpopulations, bacterivore nematodes communities andthe biochemical properties of an organic substrateover a short (72h) exposure to four densities of theepigeic earthworm Eisenia fetida. Calcium andN-mineralizationincreasedwithincreasingearthworms

Impactsofearthwormsonsoilcomponentsanddynamics 123

density,asdidmicrobialmetabolicactivity.Inaddition,Coqetal.(2007)showedthatcastsofendogeicspeciesPontoscolex corethrurus were slightly enriched in Cand showed significantly higher mineralization thanthe non-ingested soil. The higher mineralization incastsmight indicate a higher concentration of labilecompounds(solublecarbon,lignin,etc.),andprobablyahighermicrobialactivity.Earthwormshaveindirecteffects on soil organic carbon as determinants ofmicrobial activity. In addition, mucus productionassociatedwithwater excretion in the earthwomgutis known to enhance the microbial activity (Barois,1986).

Insoil,earthwormscontrolbiomass,diversityandactivityof soilmicroorganisms (Doubeet al., 1998).However,microorganismsmayconstituteanimportantpartofthedietofearthworms,whichcanfeedonthemselectively (Moody et al., 1995; Edwards, 2004). Inmostnaturalandmanagedecosystems,uptohalfoftheOCaddedtosoilonanannualbasisbyplantdetritusandrootexudatesisrapidlyconsumedbymicroorganisms,andreleasedascarbondioxide(Hopkinsetal.,2005;Wolf et al., 2005).The remainder of the addedOM,together with organic compounds synthesized bysoil organisms during decomposition and which isreleasedmainly as detritus, persist in the soil for anextended period. The importance of soil fauna inthe decomposition of OM is well known. However,the complex interactions between earthworm andsoil microorganisms are less understood.While soilinvertebratesyieldabout15%oftheCand30%oftheNinsomeecosystems(Anderson,1995),theirindirecteffectsthroughactivationofmicrofloraarelikelytobemuchgreater.

2.2. Consumption and humification

Epigeic earthworm species may feed directly onmicroorganisms or litter material and inhabit theorganic layer of soil. They have been shown tostrongly affect decomposition processes (Sampedroet al., 2008) and modify the fungal composition offorestsoils(McLeanetal.,2000).Generally,effectsofearthwormsonmicrobialbiomassandactivitydependon soil conditions (Shaw et al., 1986;Wolters et al.,1992).

Aira et al. (2006) showed thatmicrobial biomassandactivityinpigslurryweresignificantlydecreasedby transit through the gut of the epigeic speciesEudrilus eugeniae.ItappearsthatE. eugeniaeisabletodigestmicroorganismspresentinpigslurry(Airaetal.,2006).Theeffectsofearthwormsonmicroorganismsdepend on the kind of food source and availabilityandthespeciesofearthwormsinvolved(Flegeletal.,2000;Tiunovetal.,2000).McLeanetal.(2006)foundthatinvasiveearthwormsdecreasedmicrobialbiomass

insurfacesoilswithahighorganiccarboncontentandincreasedmicrobialbiomassintheunderlyingmineralsoils.Zhangetal.(2000)foundthatlargenumbersofthe anecic earthwormMetaphire guillelmi decreasedmicrobial biomass C, N and P after 24h, therebyconcludingthatearthwormsusedmicroorganismsasasecondaryfoodsource.

An attempt to distinguish between nutrient-enrichment processes associated with the OMincorporationandgut-associatedprocessesassociatedwith the passage of soil andOM through the gut ofLumbricus terrestris was made by Devliegher et al.(1997). They concluded that nutrient-enrichmentprocesses but not gut associated processes wereresponsible for the increased microbial biomassand activity reported in the presence ofL. terrestris.Meanwhile,endogeicearthwormscan transport freshorganic detritus from the soil surface into burrowswhilemixingitwithmineralsoil.Inthecaseoftropicalendogeic species, it has been demonstrated that theaddition of water and readily assimilable intestinalmucustotheingestedsoilrapidlystimulatesmicrobialactivity. In thesecondhalfof theearthwormgut, themucus will have been almost entirely metabolizedandthemicroorganismsstarttodegradetheSOMintoassimilableOM.ThisformofOMisthenusedbyboththewormsandthemicroorganisms.Furthermore, theinteractionsbetweenearthwormsandmicroorganismsoccuratseveralspatialscalesinthedrilosphere(Brownetal.,2004).Thedrilosphereconcept(Figure 1)wasdevelopedbyBouché(1972),originallytodescribethe2-mm-thickzonearoundtheearthwormburrowwalls.Lavelle(1997)completedthemeaningofdrilospherebyincludingearthwormcommunities, thedigestivetractcontent,andallmicrobialandinvertebratepopulations.Upto60%oftheClossesfromearthwormsduringtheirlife spancanbe in the formofmucus secretion, andthissolubleorganiccarbon isan importantmicrobialstimulantinthedrilosphere(Brownetal.,2004).

Different species differ in their ability to digestorganic residues and assimilate nutrients (Lattaudet al., 1998). Aporrectodea caliginosa earthwormsconsumeamixtureofsoilandOM,oftenchoosingtofeedinpatchesofsoil thatarerelativelyrichinOM,orinmicrositessincetheyareenrichedwithbacteriaand fungi (Wolter et al., 1999).Lavelle et al. (1994)showedthatseveraltemperateearthwormspecieshaveamutualisticdigestivesystem.ThemixtureofsolubleOC,intheformoflow-molecular-weightmucuswithingestedOM, togetherwith themoistconditionsandneutralpHin the foregut,promoted thedevelopmentofamicrobialcommunity thatcoulddigestcelluloseandothersubstancesthatearthwormstypicallycannotdigest. Essentially, the earthworm gut can act like abioreactor where microbial activity and biomass areincreased due to favorable conditions, with readily

124 Biotechnol. Agron. Soc. Environ. 201418(1),121-133 LemtiriA.,ColinetG.,AlabiT.etal.

availableC,frommucus,andwater.Hence,earthwormcasts(EC)maycontainlargeamountsofOMthathasnotbeenassimilated,butthathasbeenmodifiedbothphysicallyandchemicallyduringpassagethroughtheearthwormgut.TheECareusuallyrichinammonium-nitrogenandpartiallydigestedOM,providingagoodsubstrate for growth of microorganisms. It has beenestablished that thereare largerpopulationsof fungi,bacteria, and actinomycetes (Shaw et al., 1986), andhigher enzymatic activities in EC than in bulk soil(Figure 1).

Earthworms produce a huge amount of intestinalmucus composed of gluco-proteins and smallglucosidicandproteicmolecules(Morris,1985).Themicroorganismsenteringthewormgutsconsumethesenitrogenouscompoundsinmucus(Zhangetal.,2000),which largely increases their activity.The biologicaldecomposition of OM is mediated by a variety ofbiochemical processes inwhich enzymes play a keyrole (Garcia et al., 1992). Themajor constituents ofOM,likecellulose,hemicellulose,lignin,andproteins,are degraded by specific enzymes. Earthwormsfragment the substrate in the process of feeding andtherebyincreasethesurfaceareaforfurthermicrobialcolonization. The enhanced microbial activityaccelerates the decomposition process leading tohumification, thus oxidizing unstable OM into morestable forms. Humification processes are acceleratedand enhanced not only by the fragmentation andsize reduction of the OM, but also by the greatlyincreasedmicrobial activitieswithin the intestinesoftheearthwormsandbytheaerationandturnoveroftheOMthroughearthwormmovementandfeeding.

2.3. Nutrient inputs, mineralization

Earthworms are known to be important regulatorsof major soil processes and functions such as soil

structure, OM decomposition, nutrient cycling,microbial decomposition and activity, and plantproduction. Cortez et al. (2000) reported that thepresence of earthworms whatever the ecologicalcategory, increased the quantity of inorganic N inthesoil.Thiswascausedbyenhancedmineralizationof N forms, both of a 15N-labelled residue and thatof the soil organic matter. Earthworms can impactplant growth by promoting N-availability (Li et al.,2002; Ortiz-Ceballos et al., 2007). Several factorsmay contribute to the mineral weathering mediatedby earthworms, such as low pH and a bacteria-richmicroenvironmentinthegutofearthworms.However,thepresenceofearthwormsmayhaveaneffectontheproductionofgreenhousegasessuchasnitrousoxide(N2O).ResearchbyRizhiyaetal.(2007)indicatedthatearthwormsincreasedN2Ofluxeswhengrassresiduewasappliedtothesoil.TheformationandproductionofN2Oinsoilsisdeterminedbymicrobialprocesses:nitrification,denitrification,andnitrifierdenitrification(Wrage et al., 2001). The earthworm gut providesideal conditions for N2O producing microorganismsby providing abundant substrate, an anaerobicenvironment,suitablepHandahighmoisturecontent(Hornetal.,2003;Drakeetal.,2007).Thepowerfulmechanicalgrindingactionofthegutiscausedbytheperistaltic actions used to move food along the gut,andtheactionofligandsoriginatingfromearthwormsand their gut microorganisms (Carpenter et al.,2007).Earthwormgutsare,consequently,enrichedinmicroorganisms,withconcentrationsmuchhigherthaninthesurroundingenvironment(Carpenteretal.,2007).High numbers of other organisms that are capableof producing N2O (i.e., nitrate-dissimilating andnitrifyingbacteria)arealsopresentintheA. caliginosaearthwormgut(Ihssenetal.,2003).ProductionofN2Obynitrate-dissimilatingbacteriaisfavoredinsystemsthat contain high levels of organic carbon, like the

Figure 1. Diagrammatic illustration of different internal components of the drilosphere, from ingestion to excretion inearthworms(adaptedfromBrownetal.,2000)—Illustration des composantes internes de la drilosphère, de la digestion à l’excrétion chez les vers de terre(d’après Brown et al., 2000).

EARTHWORM INTERNAL

PROCESSESFOREGUT MIDGUT HINDGUT

Exonephridial(external N excretion)

Digestion of fungalhyphae, bacteria,

trophozoites, algae

Intestinal mucus(Assim. C and N)

Antifungal and antibacterial secretions

(antibiotics?) Ammonification(Org. N ➝NH3)

Reassimilation of C

Metabolicwastes

Assoc. N2 fixation(e.g. Chlostridia)?

Bacterial stimulation,Enzyme productionDigestion of organic

compounds

Enteronephridial(N into

the gut)

Tissueproduction(nutrient immob.)

Gizzard(grinding)

Food selectioningestion

Calciferous glands(CaCO, secretion,

pH increase)

Faecesegestion(casts)

Impactsofearthwormsonsoilcomponentsanddynamics 125

rumenor thegastrointestinal tractsofanimals.Somenitrifiers are able to use nitrate or nitrite as electronacceptors and, by using this nitrifier denitrificationsystem, can produce N2O and/or N2 under oxygen-limited conditions (Freitag et al., 1987). The in situconditionsofthegutareidealforactivationofdormantbacteriaandbacterialspores thatmightbepresent insoil.Manyendospore-formingbacillithatareabundantinsoil(Felskeetal.,1998)havebeendetectedinthegutofA. caliginosaspeciesandcanreducenitrateornitritetoN2O(Ihssenetal.,2003).

The increased total nitrogen may be due tothe release of nitrogenous metabolic productsthrough E. eugeniae earthworm excreta, urine, andmucoproteins(Padmavathiammaetal.,2008).Indeed,Dash et al. (1977;1979) reportedhigher levelsofNin casts ofLampito mauritii than in the surroundingsoil. In the gut of earthworms, it is possible that themucus secreted from the gut epithelium provides anenergy source that stimulates biological N-fixation(Lee,1985).

Todeterminetheroleofearthwormsinagrosystemsustainability,itmaybenecessarytofocusonprocessesbywhichearthwormsincreaseordecreasethestorageorlossofnutrients,andhowtheyinfluenceproductivityandnutrientuptakebycrops.Asshowninfigure 2,thepresenceofearthwormscanchangethesizesofvariousnutrientspools,andthefluxesofCandN,significantly(Bohlenetal.,2004a;figure 2).

This model emphasizes the major pathways bywhich earthworms change the retention and loss ofC and N, incorporating the effects of earthwormson soil biological, physical and chemical processes.Throughinteractionsofearthwormswiththemicrobial

community and by processing OM, earthworms canincreasethesystemfluxofCO2(gaseousCloss).Thesesameinteractions,coupledwithearthwormexcretion,canalsoleadtoincreasedavailabilityofN.

2.4. Nutrient dynamics

Earthwormsareimportantdecomposerscontributingtonutrientcyclingprocessesinvolvingnitrogen(Lavelleetal.,1992),phosphorus(Chapuis-Lardyetal.,1998)and carbon (Lee, 1985; Lavelle et al., 1992; Zhanget al., 1995;Curry et al., 2007).They ingestorganicmatter with relatively wide C:N ratios and convertit to earthworm tissues of lower C:N ratios (Syersetal.,1984).Thisacceleratesthecyclingofnutrientsin soil, particularly N. Some field studies indicatethat earthworms feed on organic materials with lowC:N ratio, thereby leaving behind a pool of organicmaterialswithahigherC:Nratio(Bohlenetal.,1997;Ketteringsetal.,1997).

Field studies have shown variable effects ofearthworm invasionon soilNdynamics. Invasionofmaple sugar forests inNewYork byLumbricus spp.increasedleachingofNO3inahistoricallyplowedsite.However,atanothersitethathadneverbeenplowed,the effects have not been observed, which could beattributedtothegreaterpotentialforNimmobilizationin the more C-rich unplowed site (Frelich et al.,2006).Total soilNwasnot significantlychangedbyearthworm invasion (Bohlen et al., 2004b). Duringearthwormfeeding,thenutrients,phosphorus(P)andpotassium(K),areconvertedintoanavailableformforplants.Lavelleetal. (1992)highlight the importanceof earthworm feeding behaviors, which may

contribute to the long-term effectsof earthworms on nutrient cyclingprocesses. Suarez et al. (2004)foundanincreaseinPleachinganddecrease in P availability on plotsin a New York sugar maple forestdominated by Lumbricus rubellus.Sugar maple forests invaded byseveralspeciesincludingL. rubellushadlowerPavailabilitythancontrolparcels without those earthwormspecies (Hale et al., 2005). Loss ofP with earthworm invasion can beassociated with maple decline. Themagnitude of earthworm invasionimpactsonnutrientcyclingdependson the species assemblage ofearthworms that invade as well asland-use history. In order to havesystems of sustainable agriculture,it is important tomaintain a globalbalance of nutrients to ensure that

Figure 2. Ecosystem budgetmodel to examine pools and fluxes ofC andNinthepresenceofearthworms(adaptedfromBohlenetal.,2004a)—Modèle conceptuel comparant les flux du carbone et de l’azote en présence des vers de terre (d’après Bohlen et al., 2004a).

Crop

Root

LitterFertilizer

Runoff

BurrowEarthworm

Microbialbiomass Available

C and NSoil organic

C and N

Matrix and bypass

Stableaggregates

Plant uptake

Gaseous loss

126 Biotechnol. Agron. Soc. Environ. 201418(1),121-133 LemtiriA.,ColinetG.,AlabiT.etal.

theoutputsandlossofnutrientsareoffsetbynutrientinputs (Giller, 2001). Potassium is one of themajornutrientsforplantgrowththatcansignificantlyaffectthegrowthandproductionofcrops,alongwithNandP(Amtmannetal.,2007;Sugumaranetal.,2007;Chenetal.,2008).HoweverK,intheformofsilicates,canhardlybeusedbyplants(Liuetal.,2006).Earthwormscan help in releasing K from silicate minerals. Forinstance,Baskeretal.(1994)reportedthatexchangeableK-contentincreasedsignificantlyinsoilspopulatedbyearthwormscomparedwithsoilsdevoidofearthworms(Baskeretal.,1992).TheyconcludedthattheincreasewasduetothereleaseofK,fromthenon-exchangeableK-pool, as soil material passed through the wormgut.Somemicroorganisms in the earthwormgut canenhancetheweatheringofmineralsbyloweringpHorby producing ion-complexing organic ligands (Sanz-Montero et al., 2009).EC are usually found to havegreaterexchangeableK,calcium(Ca),andmagnesium(Mg) contents than bulk soil (Edwards et al., 1996;Marianietal.,2007).ThiswasalsoconfirmedbyTengetal.(2012)whoexaminedthephysical,chemicalandbiological properties of casts produced by endogeicspeciesMetaphire tschiliensis tschiliensis inclaysoilincubated in the dark for two weeks. The findingssuggestedimprovednutrientcontentinECascomparedtoWWSandBS(Table 1).Thiswasshownbyhighercontentofmacronutrients(N,Ca)inECthaninbothWWS and BS. This is probably due to the intimatemixing of OM through the earthworm gut whichcan further enhance mineralization and humificationprocesses(Lavelle,1988;Blanchartetal.,1999).

ImprovedCa-contentinECwasprobablyduetothepresenceofanactivecalciferousglandinearthwormsthatactivelysecretesmucusrichincalciumcarbonatesintotheesophagus(Drakeetal.,2007).ThisleadstotheeliminationofexcessCaionsviacastingactivity,andgreatlyincreasesCaavailabilityinsoil.

3. EARTHWORMS AND MICROORGANISMS

The impact of earthworms on soil OM breakdownhas been studied before. However, despite the factthat importanceofsoil fauna inOM-turnover iswellknown,thecomplexinteractionsbetweensoilfaunaandmicroorganisms,andtheindirecteffectsonmicrobialcommunities, are less understood. The biochemicaldecomposition of OM is primarily accomplished bymicroorganisms,butearthwormsarecrucialdriversoftheprocessas theymayaffectmicrobialdecomposeractivitybygrazingdirectlyonmicroorganisms(Monroyetal.,2008;Airaetal.,2009;Gómez-Brandónetal.,2011),andbyincreasingthesurfaceareaavailableformicrobialattackaftercomminutionofOM(Domínguezetal.,2010).Somemicroorganismsmaybea sourceof food for earthworms, but the amounts consumedandtheabilityofearthwormstodigestandassimilatemicrobial biomass vary with earthworm species,its ecologogical category, food substrate, and theenvironmentalconditionsinwhichtheearthwormsareliving(Brownetal.,2004).Earthwormsaffectdirectlythe decomposition of soil through gut-associatedprocesses,via theeffectsof ingestion,digestion,andstimulationoftheOMbreakdownandmicroorganisms(Monroy et al., 2008; Aira et al., 2009). Afterpassage of microorganisms through the earthwormgut (mainly fungal and protozoan spores and someresistantbacteria), theyprovideinoculaformicrobialcolonization of newly formed EC (Brown, 1995).Somebacteriaareactivatedduringpassagethroughthegut,whereasothersremainunaffected,andyetothersare digested in the intestinal tract and thus decreaseinnumber(Pedersenetal.,1993;Drakeetal.,2007).Themicrobialcompositionoftheearthwormintestinecontentshasbeenconsideredtoreflectthatofthesoilingested (Brown, 1995). Furthermore, the numbers,biomass, and activity of microbial communitiesin the earthworm gut have also been shown to bedifferent from that in uningested soil (Schönholzeret al., 1999). Singleton et al. (2003) studied bacteriaassociatedwiththeintestineandcastsofearthwormsand found Pseudomonas, Paenibacillus, Azoarcus,Burkholderia,SpiroplasmandActinobacterium.Someofthesebacteria,suchasPseudomonas alcaligenesandAcidobacterium, areknown todegradehydrocarbons(Johnsenetal.,2005).Monroyetal.(2008)observedareductioninthedensityoftotalcoliformsby98%,afterthepassageofpigslurrythroughthegutoftheepigeicearthworm E. fetida. Accordingly, Pedersen et al.(1993) reported a selective reduction in the coliformEscherichia coliBJ18 in cattledungduringpassagethrough the gut of several species of earthworms ofonegenusLumbricus.Theselectiveeffectsoningestedmicroorganisms through the earthworm gut may becaused by competitive interactions between those

Table 1.Mineralelementsinworm-workedsoil(WWS),earthworm casts (EC) and bulk soil (BS)—Teneurs en éléments minéraux présents dans le sol après ingestion par les vers de terre, dans les déjections des vers de terre et dans le sol témoin en absence de vers de terre(Tengetal.,2012).Elements (mg.kg-1drysoil) WWS EC BSN 2.34 3.78 3.39P 1.11 1.42 1.24K 2.42 2.54 2.48Ca 3.67 5.00 3.92Mg 1.14 1.42 1.16

Impactsofearthwormsonsoilcomponentsanddynamics 127

ingested and the endosymbiotic microrganisms thatreside in thegut (Brownet al., 1981). Indeed,Byzovetal.(2007)foundthatthemid-gutfluidofearthwormspossessaselectivesuppressiveactivitywhilestimulatingcertain soil microorganisms. Meanwhile, Thakuiraet al. (2010) found that food resource type can causeshifts in the gut wall-associated bacterial community,but that themagnitudeof these shiftsdidnotobscurethe delineation between ecological group specificity.Forinstance,sporesofsomefungithatsurvivedinthemid-gut environment (Alternaria alternata) started togerminateandgrewactivelyinfreshexcrement.Thefateofmicroorganismspassing through thedigestive tractofearthworms isan important factor in the formationofthesoilmicrobialcommunityandthedegradationofOM.Recently,Rudietal.(2009)observedarapidandhomogenouschangeinthemicrobiotaingutselectiveeffects on the presence and abundance of ingestedmicroorganisms.These selective effectsmay alter thedecomposition pathways, probably by modifying thecomposition of microbial communities involved indecomposition. Previous studies were mostly aimedto evaluate the effect of gut transit on the microbialpopulation,biomassandenzymeactivitiesofdifferentorganicresidues(Devliegheretal.,1995;Zhangetal.,2000;Scheuetal.,2002;Airaetal.,2006).ButrecentlyAiraetal.(2007a;2007b)showedthatearthwormscanmodifythemicrobialcommunityphysiologyandtriggerenzymeactivitiesduringvermicompostingofpigslurry.Severalenzymesisolatedfromearthwormgutsallowedto digest some bacteria, fungi andmicroinvertebrates(e.g., protozoa, nematodes) (Brown et al., 2000).Studies using 6earthworm species and more than10soil and litter fungal species (Moody etal., 1995;Bonkowski etal., 2000) have shown that earthwormsprefer, and digest, the rapid-growing fungi speciestypically associatedwith theearly successional stagesofdecomposition.

4. EFFECTS OF EARTHWORMS ON SOIL STRUCTURE

The beneficial effects of SOM on soil productivitythrough the supply of plant nutrients, enhancementof cation exchange capacities, and improvements insoilandwaterretentionarewellestablished(Woomeret al., 1994). In addition, SOM supports varioussoil biological processes by acting as a substrate fordecomposerorganismsandecosystemengineers, suchasearthworms.Theyplayaroleinbothaccelerationofdecompositionandmineralizationprocesses(Closs)andincarbonstorageorprotectionfromdecomposition(Caccumulation)instableaggregates(Brownetal.,2000).AggregatestabilityisakeyfactorforphysicalsoilfertilityanditalsoaffectsSOMdynamics(Abivenetal.,2009).

Aggregatesareformedthroughthecombinationofclay,silt,andsand,withorganicandinorganiccompounds.Their stability isusedasan indicatorof soil structure(Sixetal.,2000).Thesize,quantity,andstabilityofsoilaggregates reflect a balance between factors such asorganic amendments, soilmicroorganisms, fauna, anddisruptingfactorsasbioturbationandculture(Sixetal.,2002)(Figure 3).

Aggregation is a complex procedure that includesenvironmental factors, soil management factors,plant influences, and soil properties such as mineralcomposition, texture, SOC-concentration, pedogenicprocesses,microbialactivities,exchangeableions,andmoistureavailability(Kay,1998).Forseveraldecades,the role of soil organisms in soil structure has beenrecognizedbyfarmers,buttheimpactofsoilorganismson the formationof aggregateswas conceptualized inthehierarchicalmodelofsoilaggregatesonlyinthelast25years(Tisdalletal.,1982).Thismodelshowsthattheactivityoffungi,bacteria,plantroots,andmacrofauna(e.g. earthworms) lead to the formation of biologicalmacroaggregates(Sixetal.,2002).Thebreakdownofsoilmacroaggregates increases over time because theactionofbindingagentsisgraduallydisrupted.However,despite the disruptive forces, the microaggregatesremainstableandbecomeblocksduringtheformationof new soil macroaggregates. A study conducted byBossuytetal.(2006)showedthattherewasasignificantinfluenceofearthwormactivityandresidueapplicationon stable aggregate formation. Soil aggregates were4.3timesgreaterthanthecontrol(noearthworms)whenA. caliginosawaspresentinresidues-incorporatedsoils.Further, in thepresenceofL. rubellus, soilaggregateswerethreetimesgreaterthanthecontrol.

Nunan et al. (2003) reported that bacteria are notrandomly distributed throughout the soil; there arevariations in biomass and differential colonizationamong different sizes of aggregates.Usingmolecularmethods,Mummeyetal.(2006)examinedthebacterialcommunities associated with different aggregatesize-fractions in earthworm-worked soil relative tosoilreceivingonlyplant litter.Earthwormsalteredthebacterial community composition in all soil fractionsthat were analyzed. When earthworms ingest thesoil, thesoilparticlesarebrokendownand thesoil iscompacted during passage through the gut prior toexcretion.Barréetal.(2009)reportedthatearthwormswereshowntobringinitiallylooseorcompactedsoiltoanintermediatemechanicalstatethatismorefavorableforstructuralstabilityandrootgrowth.Inaddition,soilsize-distributionissignificantlyaffectedbyearthwormsin the 0–2cm layer of soil (Snyder etal., 2009).Earthwormpresence shifted soil aggregate-size to the>2,000µmfractionfromsmallerfractionsbyreducingtheamountofsoilinthe200–250and250–253µmfractions.

128 Biotechnol. Agron. Soc. Environ. 201418(1),121-133 LemtiriA.,ColinetG.,AlabiT.etal.

5. EFFECTS OF AGRICULTURAL PRACTICES ON THE DYNAMICS OF EARTHWORM COMMUNITIES

Agricultural practices such as tillage, drainage,irrigation, limeapplication,pesticideuse, fertilizationandcroprotation,caninfluencesignificantlyearthwormbiomassandactivity(Edwardsetal.,1996).Inareviewof several studies exploring the effects of tillage onearthworms, it was concluded that deep ploughingand intensive tilling reduced earthworm populationsinclayloamsoils.Insandyloamstillageeffectswerevariableanddependentuponseveralfactorsincludingtheearthwormspeciespresentinthesoil(Chan,2001).No-till management systems promoted earthwormabundance (Edwards et al., 1996; Johnson-Maynardetal., 2007). However, populations tend to recoverwithinoneyearfromless-severeformsofcultivation,provided the disturbance is not repeated. Whenperformedonceayear,theeffectoftillageonearthwormpopulationswasevenfoundtobelessdestructivethan

that of birds feeding on earthworms. Larger, anecicspecies such as L. terrestris andAporrectodea longawhich require a supply of surface litter and inhabitrelatively permanent burrows, are the species mostadverselyaffectedbyrepeatedsoildisturbance;smallerendogeicspeciessuchasAllolobophora chloroticaandA. caliginosa are less affected and can benefit fromplowed-incropresidues(Lofs-Holmin,1983;Edwards,1984). Eriksen-Hamel et al. (2009) investigated theeffects of tillage on the earthworm Aporrectodea turgidaandsuggestedthatincool,humidagrosystems,tillage-induced disturbance probably has a greaterimpact on earthworm populations and biomass thanfoodavailability.Mechanicalweedingwasfoundtoberesponsibleforhabitatdisturbance,physicaldamagetoearthworms,anddisturbanceinreproductionfunctionsamongotherfactors(Ernstetal.,2009;Peignéetal.,2009).

Agricultural systems are characterized by highlevels of inputs. Biological activity in agriculturalsoils isdrivenbyorganicCinputs. Inputsoforganic

Figure 3.Aggregate formation and degradationmechanisms in temperate and tropical soils—Formation d’agrégats et mécanisme de dégradation des sols(Sixetal.,2002).

Impactsofearthwormsonsoilcomponentsanddynamics 129

materials from crop residue, cover crops, manureapplicationsororganicfertilizershaveastrongpositiveeffectonthecomposition,sizeandactivityofthesoilbiologicalcommunity(Kirchneretal.,1993).Useofsolid materials and organic fertilizers obtained fromplants and animal origins were reported to increaseearthworm populations (Leroy et al., 2007; Leroyet al., 2008; Reinecke et al., 2008). However, mostchemical fertilizers influence earthworms indirectlythrough an increase in plant yield and consequentlyan increase in plant residues that remain in the fieldafter harvest. Earthworms play an important role insurface residue decomposition rate, distribution ofOM throughout the soil profile, and soil physicalpropertymodification.Lowe et al. (2002) found thatOMmanagement is important in thedevelopmentofsustainable earthworm populations and their role insoilameliorationatrestoredsites.AlsotheconversionofgrasslandtoarablelandcanaffecttheSOMandalsodecreaseearthwormpopulations.Indeed,VanEekerenet al. (2008) found a strong decrease in earthwormabundanceafterconversionofgrasslandtoarableland.Onthecontrary,conversionofarablelandtograsslandstimulatedthespeciesrichnessandabundance,eveninthesecondyearafterconversion(VanEekerenetal.,2008).

6. CONCLUSION

Earthworms are important biological factors in soilecosystems.Theyaresensitivetocultivationtechniquesandconsequentlymaybeusedasbioindicatorsofsoilhealth.Earthwormshavebeen suggestedaspotentialindicatorsofthesustainabilityofagriculturalpracticesthat farmers could use, thereby optimizing differentfarming systems. Nevertheless, further researchregarding the impact of cultivation techniques, croprotations,andcropresiduemanagementonearthwormpopulationswithinEuropeisrequired.Also,itwillbeimportanttoexplorethepotentialroleofearthwormsinsoilfertilityandagriculturalsustainability.

List of abbreviations

Al3+:AluminumionsBS:BulksoilCa:CalciumCa2+:CalciumionsC:CarbonEC:EarthwormcastsFe2+:FerionsH:HydrogenK:PotassiumMg:MagnesiumMg2+:Magnesiumions

N:NitrogenN2O:NitrousoxideOC:OrganiccarbonOM:OrganicmatterO:OxygenO2-:OxygenionsP:PhosphorusSOC:SoilorganiccarbonSOM:SoilorganicmatterWWS:Worm-workedsoil

Bibliography

AbivenS.,MenasseriS.&ChenuC.,2009.Theeffectsoforganicinputsovertimeonsoilaggregatestability–Aliteratureanalysis.Soil Biol. Biochem.,41(1),1-12.

AiraM., MonroyF. & DominguezJ., 2006. Changes inmicrobial biomass andmicrobial activity of pig slurryafter the transit through the gut of the earthwormEudrilus eugeniae (Kinberg, 1897).Biol.Fertil. Soils,42(4),371-376.

AiraM.,MonroyF. & DominguezJ., 2007a. Earthwormsstrongly modify microbial biomass and activitytriggeringenzymaticactivitiesduringvermicompostingindependentlyoftheapplicationratesofpigslurry.Sci. Total Environ.,385(1-3),252-261.

AiraM., MonroyF. & DominguezJ., 2007b. Eisenia fetida (Oligochaeta: Lumbricidae) modifies thestructure and physiological capabilities of microbialcommunities improving carbon mineralization duringvermicompostingofpigmanure.Microb. Ecol.,54(4),662-671.

AiraM., SampedroL.,MonroyF.&DominguezJ., 2008.Detritivorousearthwormsdirectlymodifythestructure,thusalteringthefunctioningofamicrodecomposerfoodweb.Soil Biol. Biochem.,40(10),2511-2516.

AiraM., MonroyF. & DominguezJ., 2009. Changes inbacterial numbers andmicrobial activity of pig slurryduring gut transit of epigeic and anecic earthworms.J. Hazard. Mater.,162(2-3),1404-1407.

AmtmannA.&ArmengaudP., 2007.The role of calciumsensor-interacting protein kinases in plant adaptationtopotassium-deficiency:newanswerstooldquestions.Cell Res.,17,483-485.

AndersonJ., 1995.Soil organisms as engineers:micrositemodulation of macroscale processes. In: JonesC. &LawtonJ.,eds.Linking species and ecosystems.London:Chapman&Hall,94-106.

BaroisI.&LavelleP.,1986.Changesinrespirationrateandsomephysico-chemicalpropertiesofsoilduringtransitthrough Pontoscolex corethurus (GlossoscolecidaeOligochaete).Soil Biol. Biochem.,18(5),539-541.

BarréP.,McKenzieB.M.&HalletP.D.,2009.Earthwormsbringcompactedandloosesoiltoasimilarmechanicalstate.Soil Biol. Biochem.,41(3),656-658.

130 Biotechnol. Agron. Soc. Environ. 201418(1),121-133 LemtiriA.,ColinetG.,AlabiT.etal.

BaskerA.,MacgregorA.N.&KirkmanJ.H.,1992.Influenceof soil ingestion by earthworms on the availability ofpotassiuminsoil:anincubationexperiment.Biol. Fertil. Soils,14(4),300-303.

BaskerA.,KirkmanJ.H.&MacgregorA.N.,1994.Changesinpotassiumavailabilityandothersoilpropertiesduetosoil ingestionbyearthworms.Biol. Fertil. Soils,17(2),154-158.

BlanchartE. et al., 1999. Effects of earthworms on soilstructureandphysicalproperties.In:Lavelleetal.,eds.Earthworm management in tropical agroecosystems.Wallingford, Oxon, UK; NewYork, NY, USA: CABIPublisher,149-172.

BohlenP.J., ParmeleeR.W., McCartneyD.A. &EdwardsC.A., 1997. Earthworms effects on carbonand nitrogen dynamics of surface litter in cornagroecosystems.Ecol. Appl.,7(4),1341-1349.

BohlenP.J.,ParmeleeR.W.&BlairJ.M.,2004a.Integratingthe effects of earthworms on nutrient cycling acrossspatial and temporal scales. In: EdwardsC.A., ed.Earthworm ecology.2nded.BocaRaton,FL,USA:CRCPress,183-200.

BohlenP.J.etal.,2004b.Influenceofearthworminvasiononredistributionandretentionofsoilcarbonandnitrogenin northern temperate forests. Ecosystems, 7(1), 13-27.

Bonkowski M., Griffiths B.S. & Ritz K., 2000. Foodpreferencesofearthwormsforsoilfungi.Pedobiologia,44,666-676.

BossuytH.,SixJ.&HendrixP.F.,2006.Interactiveeffectsoffunctionallydifferentearthwormspeciesonaggregationand incorporation and decomposition of newly addedresiduecarbon.Geoderma,130(1-2),14-25.

BouchéM.B., 1972. Lombriciens de France. Écologie et systématique.Paris:INRA.

BrownB.A.&MitchellM.J.,1981.Roleof theearthworm,Eisenia foetida, in affecting survival of Salmonella enteriditis ser. typhimurium. Pedobiologia, 21(6), 434-438.

BrownG.G.,1995.Howdoearthwormsaffectmicrofloraland faunal community diversity? Plant Soil, 170(1),209-231.

BrownG.G., BaroisI. & LavelleP., 2000. Regulation ofsoil organicmatter dynamics andmicrobial activity inthe drilosphere and the role of interactionswith otheredaphicfunctionaldomains.Eur. J.Soil Biol.,36(3-4),177-198.Copyright©2013ElsevierMassonSAS.Allrightsreserved.

BrownG.G. & DoubeB., 2004. Functional interactions between earthworms, microorganisms, organic matter and plants. Earthworm ecology. 2nd ed.London;BocaRaton,FL,USA:CRCPress,213-240.

ButenschoenO., MarhanS., LangelR. & ScheuS., 2009.Carbon and nitrogen mobilisation by earthworms ofdifferent functional groups as affected by soil sandcontent.Pedobiologia,52(4),263-272.

ByzovB.A., KhomyakovN.V., KharinS.A. &KurakovA.V., 2007.Fateof soil bacteria and fungi inthegutofearthworms.Eur. J. Soil Biol.,43(1),149-156.

CarpenterD., HodsonM.E., EggletonP.&KirkC., 2007.Earthworm induced mineral weathering: preliminaryresults.Eur. J. Soil Biol.,43(1),176-183.

ChanK.Y., 2001. An overview of some tillage impactson earthworm population abundance and diversity—implications for functioning in soils. Soil Till. Res.,57(4),179-191.

Chapuis-LardyL.,BrossardM.,LavelleP.&SchoullerE.,1998.Phosphorustransformationsinaferralsolthroughingestion by Pontoscolex corethrurus, a geophagousearthworm.Eur. J. Soil Biol.,34(2),61-67.

ChenS.,LianB.&LiuC.Q.,2008.TheroleofastrainofBacillus mucilaginosus on weathering of phosphoriterockunderexperimentalconditions.Acta Mineralogica Sinica,28(1),77-83.

CoqS. et al., 2007. Earthworm activity affects soilaggregation and organic matter dynamics accordingto the quality and localization of crop residues – anexperimental study (Madagascar).SoilBiol. Biochem.,39(8),2119-2128.

CortezJ.,BillesG.&BouchéM.B.,2000.Effectofclimate,soil type and earthworm activity on nitrogen transferfrom a nitrogen-15-labelled decomposing materialunder field conditions. Biol. Fertil. Soils, 30(4), 318-327.

CurryJ.P. & SchmidtO., 2007. The feeding ecology ofearthworms–areview.Pedobiologia,50(4),463-477.

DarwinC.,1881.The formation of vegetable mould through the actions of worms with observations on their habits.London:Murray.

DashM.C. & PatraU.C., 1977. Density, biomass andenergybudgetofatropicalearthwormpopulationfromagrasslandsiteinOrissa,India.Rev. Ecol. Biol. Sol,14(3),461-471.

DashM.C.&PatraU.C., 1979.Wormcast production andnitrogen contribution to soil by a tropical earthwormpopulation from a grassland site inOrissa, India.Rev. Ecol. Biol. Sol,16(1),79-83.

DesjardinsT.etal.,2003.Effectsofearthworminoculationonsoilorganicmatterdynamicsofacultivatedultisol.Pedobiologia,47(5-6),835-841.

DevliegherW.&VerstraeteW.,1995.Lumbricus terrestrisinasoilcoreexperiment:nutrient-enrichmentprocesses(NEP) and gut-associated processes (GAP) and theireffectonmicrobialbiomassandmicrobialactivity.Soil Biol. Biochem.,27(12),1573-1580.

DevliegherW.&VerstraeteW.,1997.Microorganismsandsoil physico-chemical conditions in the drilosphere ofLumbricus terrestris. Soil Biol. Biochem., 29(11-12),1721-1729.

DoubeB.M. & BrownG.G., 1998. Life in a complexcommunity:functionalinteractionsbetweenearthworms,organicmatter,microorganisms, and plant growth. In:

Impactsofearthwormsonsoilcomponentsanddynamics 131

EdwardsC.A.,ed.Earthwormecology.BocaRaton,FL,USA:CRCPress,179-211.

DrakeH.L. & HornM.A., 2007.As the worm turns: theearthwormgut as a transient habitat for soilmicrobialbiomes.Annu. Rev. Microbiol.,61,169-189.

EdwardsC.A., 1984.Changes in agricultural practice andtheir impact upon soil organisms. In: JenkinsD., ed.Proceedings of ITE symposium no. 13, The impact of agriculture on wildlife, agriculture and the environment, 28-29 February and 1 March 1984, Monks Wood Experimental Station, Sawtry, Cambridgeshire, UK,56-65.

EdwardsC.A., 2004. Earthworm ecology. 2nd ed. BocaRaton,FL,USA:CRCPress.

EdwardsC.A.&BohlenP.J.,1996.Earthworm ecology and biology.London:Chapman&Hall,196-212.

Eriksen-HamelN.S. et al., 2009. Earthworm populationsandgrowthratesrelated to long-termcropresidueandtillage management. Soil Tillage Res., 104(2), 311-316.

ErnstG. & EmmerlingC., 2009. Impact of five differenttillage systems on soil organic carbon content andthe density, biomass and community composition ofearthworms after a ten year period.Eur. J. Soil Biol.,45(3),247-251.

FelskeA.,AkkermansA.D.L.&DeVosW.M.,1998.In situdetection of an uncultured predominant Bacillus inDutchgrasslandsoils.Appl. Environ. Microbiol.,64(11),4588-4590.

FlegelM. & SchraderS., 2000. Importance of foodquality on selected enzyme activities in earthwormcasts (Dendrobaena octaedra,Lumbricidae).Soil Biol. Biochem.,32(8-9),1191-1196.

FreitagA., RudertM. & BockE., 1987. Growth ofNitrobacter by dissimilatoric nitrate reduction. FEMS Microbiol. Lett.,48(1-2),105-109.

FrelichL.E.etal.,2006.Earthworminvasionintopreviouslyearthworm-free temperate and boreal forests. Biol. Invasions,8(6),1235-1245.

GarciaC. et al., 1992. Changes inATP content, enzymeactivityandinorganicnitrogenspeciesduringcompostingoforganicwastes.Can. J. Soil Sci.,72(3),243-253.

GillerK.E., 2001. Nitrogen fixation in tropical cropping systems.2nded.Wallingford,UK:CABInternational.

GilotC., 1997. Effects of a tropical geophageousearthworm, Millsonia anomala (Megascolecidae), onsoilcharacteristicsandproductionofayamcropinIvoryCoast.Soil Biol. Biochem.,29(3-4),353-359.

Gómez-BrandónM., AiraM., LoresM. & DomínguezJ.,2011.Epigeic earthworms exert a bottleneck effect onmicrobialcommunitiesthroughgutassociatedprocesses.Plos One,6,e24786.

HaleC.M., FrelichL.E. & ReichP.B., 2005. Effects ofEuropeanearthworminvasiononsoilcharacteristicsinnorthern hardwood forests of Minnesota. Ecosystems,8(8),911-927.

HopkinsD.W. & GregorichE.G., 2005. Carbon asa substrate for soil organisms. In: BardgettR.D.,UsherM.B. & HopkinsD.W., eds. Biodiversity and function in soils.BritishEcologicalSocietyEcologicalReviews.Cambridge,UK:CambridgeUniversityPress,57-79.

HornM.A., SchrammA. & DrakeH.L., 2003. Theearthworm gut: an ideal habitat for ingested N2O-producing microorganisms.Appl. Environ. Microbiol.,69(3),1662-1669.

IhssenJ. et al., 2003. N2O - producing microorganismsin the gut of the earthworm Aporrectodea caliginosaare indicative of ingested soil bacteria.Appl. Environ. Microbiol.,69(3),1655-1661.

JohnsenA.R.,WickL.Y.&HarmsH.,2005.Principlesofmicrobial PAH-degradation in soil. Environ. Pollut.,133,71-84.

Johnson-MaynardJ.L., UmikerK.J. & GuyS.O., 2007.Earthwormdynamicsandsoilphysicalpropertiesinthefirst three years of no-tillmanagement.Soil Till. Res.,94(2),338-345.

KayB.D.,1998.Soilstructureandorganiccarbon:areview.In:LalR.etal.,eds.Soil processes and the carbon cycle.BocaRaton,FL,USA:CRCPress,169-197.

KetteringsQ.M., BlairJ.M. & MarinissenJ.C.Y., 1997.Effects of earthworms on soil aggregate stability andcarbon and nitrogen storage in a legume cover cropagroecosystem. Soil Biol. Biochem., 29(3-4), 401-408.

KiikkiläO., KitunenV. & SmolanderA., 2006. Dissolvedsoil organicmatter from surface horizons under birchand conifers: degradation in relation to chemicalcharacteristics.Soil Biol. Biochem.,38(4),737-746.

KirchnerM.J., WollumIIA.F. & KingL.D., 1993. Soilmicrobialpopulationsandactivitiesinreducedchemicalinputagroecosystems.Soil Sci. Soc. Am. J.,57(5),1289-1295.

LachnichtS.L.,ParmeleeR.W.,McCartneyD.&AllenM.,1997. Characteristics of macroporosity in a reducedtillage agroecosystem with manipulated earthwormpopulations: implications for infiltration and nutrienttransport.Soil Biol. Biochem.,29(3-4),493-498.

LattaudC. et al., 1998. The diversity of the digestivesystemsin tropicalgeophagousearthworms.Appl. Soil Ecol.,9(1-3),189-195.

LavelleP.,1988.Earthwormactivitiesandthesoilsystem.Biol. Fertil. Soils,6(3),237-251.

LavelleP., 1997. Faunal activities and soil processes:adaptive strategies that determine ecosystem function.Adv. Ecol. Res.,27,93-132.

LavelleP.&MartinA., 1992. Small-scale and large-scaleeffects of endogeic earthworms on soil organicmatterdynamics in soils of the humid tropics. Soil Biol. Biochem.,24(12),1491-1498.

LavelleP. & GilotC., 1994. Priming effects ofmacroorganisms on microflora: a key process of soil

132 Biotechnol. Agron. Soc. Environ. 201418(1),121-133 LemtiriA.,ColinetG.,AlabiT.etal.

function? In: RitzK., DightonJ. & GillerK., eds.Beyond the biomass: compositional and functional analysis of soil microbial communities.Chichester,UK:Wiley,173-180.

LavelleP. & SpainA.V., 2001. Soil ecology. Dordrecht,TheNetherlands:KluwerAcademic.

LeeK.E.,1985.Earthworms: their ecology and relationships with soil and land use.NewYork,NY,USA:AcademicPress,Inc.

LeeK.E.&FosterR.C.,1991.Soilfaunaandsoilstructure.Austr. J. Soil Res.,29(6),745-775.

LeroyB.L.M.etal.,2007.Thequalityofexogenousorganicmatter: short-term influence on earthworm abundance.Eur. J. Soil Biol.,43(1),196-200.

LeroyB.L.M.etal.,2008.Earthwormpopulationdynamicsasinfluencedbythequalityofexogenousorganicmatter.Pedobiologia,52(2),139-150.

LiX.,FiskM.C.,FaheyT.J.&BohlenP.J.,2002.Influenceofearthworminvasiononsoilmicrobialbiomassactivityin a northern hardwood forest. Soil Biol. Biochem.,34(12),1929-1937.

LiuW. et al., 2006. Decomposition of silicate mineralsby Bacillus mucilaginosus in liquid culture. Environ. Geochem. Health,28(1-2),133-140.

Lofs-HolminA., 1983. Earthworm population dynamicsindifferentagriculturalrotations.In:SatchellJ.E.,ed.Earthworm ecology – from Darwin to vermiculture.London:Chapman&Hall,151-160.

LoweC.N.&ButtK.R.,2002.Influenceoforganicmatteron earthwormproduction andbehaviour: a laboratory-based approach with applications for soil restoration.Eur. J. Soil Biol.,38(2),173-176.

LukkariT.,TenoS.,VaisanenA.&HaimiJ.,2006.Effectsofearthwormsondecompositionandmetalavailabilityincontaminatedsoil:microcosmstudiesofpopulationswith different exposure histories. Soil Biol. Biochem.,38(2),359-370.

MarianiL.etal.,2007.Whathappenstoearthwormcastsinthesoil?Afieldstudyofcarbonandnitrogendynamicsin Neotropical savannahs. Soil Biol. Biochem., 39(3),757-767.

McLeanM.A.&ParkinsonD.,2000.FieldevidenceoftheeffectsoftheepigeicearthwormDendrobaena octaedraonthemicrofungalcommunityinpineforestfloor.Soil Biol. Biochem.,32(3),1671-1681.

McLeanM.A., Migge-KleianS. & ParkinsonD., 2006.Earthworm invasions of ecosystems devoid ofearthworms: effects on soil microbes.Biol. Invasions,8(6),1257-1273.

MonroyF., AiraM. & DominguezJ., 2008. Changes indensity of nematodes, protozoa and total coliformsaftertransitthroughthegutoffourepigeicearthworms(Oligochaeta).Appl. Soil Ecol.,39(2),127-132.

MoodyS.A.,BrionesM.J.I.,PierceT.G.&DightonJ.,1995.Selectiveconsumptionofdecomposingwheatstrawbyearthworms.Soil Biol Biochem.,27(9),533-537.

MorrisG.M., 1985. Secretory cells in the clitellarepithelium of Eisenia fetida (Annelida, Oligochaeta):a histochemical and ultrastructural study. J. Morphol.,185(1),89-100.

MummeyD.L., RilligM.C. & SixJ., 2006. Endogeicearthworms differentially influence bacterialcommunities associated with different soil aggregatesizefractions.Soil Biol. Biochem.,38(7),1608-1614.

NunanN. et al., 2003. Spatial distribution of bacterialcommunities and their relationships with the micro-architectureofsoil.FEMS Microbiol. Ecol.,44(2),203-215.

Ortiz-CeballosA.I., Pena-CabrialesJ.J., FragosoC. &BrownG.G., 2007. Mycorrhizal colonization andnitrogen uptake bymaize: combined effect of tropicalearthworms and velvetbean mulch. Biol. Fertil. Soils,44(1),181-186.

PadmavathiammaP.K., LiLY. & KumariU.R., 2008. Anexperimental study of vermi-biowaste composting foragricultural soil improvement. Bioresour. Technol.,99(6),1672-1681.

ParmeleeR.W.,BohlenP.J.&BlairJ.M.,1998.Earthwormsand nutrient cycling processes: integrating across theecological hierarchy. In: EdwardsC., ed. Earthworm ecology.BocaRaton,FL,USA:CRCPress,179-211.

PedersenJ.C.&HendriksenN.B.,1993.Effectofpassagethrough the intestinal track of detritivore earthworms(Lumbricus spp.) on the number of selected Gram-negative and total bacterial. Biol. Fertil. Soils, 16(3),227-232.

PeignéJ. et al., 2009. Earthworm populations underdifferenttillagesystemsinorganicfarming.SoilTillage Res.,104(2),207-214.

ReineckeA.J., AlbertusR.M.C., ReineckeS.A. &LarinkO.,2008.Theeffectsoforganicandconventionalmanagement practices on feeding activity of soilorganismsinvineyards.Afr. Zool.,43(1),66-74.

RizhiyaE.etal.,2007.EarthwormactivityasadeterminantforN2Oemissionfromcropresidue.SoilBiol. Biochem.,39(8),2058-2069.

RudiK., ØdegardK., LøkkenT.T. & WilsonR., 2009. Afeedinginducedswitchfromavariabletoahomogenousstate of the earthworm gut microbiota within a hostpopulation.PloS One,4(10),e7528.

SampedroL.&DominguezJ.,2008.Stableisotopenaturalabundance (d13C and d15N) of the earthworm Eisenia fetida and other soil fauna living in two differentvermicompostingenvironments.Appl. Soil Ecol.,38(2),91-99.

Sanz-MonteroM.E.&Rodriguez-ArandaJ.P.,2009.Silicatebioweathering and biomineralization in lacustrinemicrobialites: ancient analogues from the MioceneDueroBasin,Spain.Geol. Mag.,146(4),527-539.

ScheuS.etal.,2002.Effectsofthepresenceandcommunitycomposition of earthworms on microbial communityfunctioning.Oecologia,133(2),254-260.

Impactsofearthwormsonsoilcomponentsanddynamics 133

SchönholzerF.,HahnD.&ZeyerJ.,1999.OriginsandfateoffungiandbacteriainthegutofLumbricus terrestrisL.studied by image analysis. FEMS Microbiol. Ecol.,28(3),235-248.

ShawC. & PawlukS., 1986. Faecal microbiology ofOctolasion tyrtaeum, Aporrectodea turgida andLumbricus terrestris and its relation to the carbonbudgets of three artificial soils. Pedobiologia, 29(6),377-389.

SingletonD.R., HendrixP.F., ColemanD.C. &WhitmanW.B., 2003. Identification of unculturedbacteria tightly associated with the intestine ofthe earthworm Lumbricus rubellus (Lumbricidae;Oligochaeta).Soil Biol. Biochem.,35(12),1547-1555.

SixJ.,ElliottE.&PaustianK.,2000.Soilmacroaggregateturnover and microaggregate formation: a mechanismfor C sequestration under no-tillage agriculture. Soil Biol. Biochem.,32(14),2099-2103.

SixJ.etal.,2002.Soilorganicmatter,biotaandaggregationin temperate and tropical soils-effects of no-tillage.Agronomie,22,755-775.

SnyderB.A.,BootsB.&HendrixP.F., 2009.Competitionbetween invasive earthworms (Amynthas corticis,Megascolecidae)andnativeNorthAmericanmillipedes(Pseudopolydesmus erasus, Polydesmidae): effects oncarbon cycling and soil structure.Soil Biol. Biochem.,41(7),1442-1449.

StockdaleE.A., WatsonCA., BlackH.I.J. & PhilippsL.,2006.Do farm management practices alter below-ground biodiversity and ecosystem function? Implications for sustainable land management. JNCC Report No. 364.Peterborough,UK:JointNatureConservationCommittee.

SuarezE.R. et al., 2004. Effects of exotic earthworms onsoil phosphorous cycling in two broadleaf temperateforests.Ecosystems,7(1),28-44

SugumaranP. & JanarthanamB., 2007. Solubilization ofpotassium containing minerals by bacteria and theireffectonplantgrowth.World J. Agric. Sci.,3(3),350-355.

SyersJ.K. & SpringettJ.A., 1984. Earthworms and soilfertility.Plant Soil,76(1-3),93-104.

TengS.K., 2012. Evaluation on physical, chemical andbiologicalpropertiesofcastsofgeophagousearthwormMetaphire tschiliensis tschiliensis. Sci. Res. Essays,7(10),1169-1174.

ThakuiraD.etal.,2010.Gutwallbacteriaofearthworms:anaturalselectionprocess.ISME J.,4,357-366.

TisdallJ.M.&OadesJ.M.,1982.Organicmatterandwater-stableaggregatesinsoils.J. Soil Sci.,33(2),141-163.

TiunovA.V. & ScheuS., 2000. Microbial biomass,biovolume and respiration in Lumbricus terrestris L.castmaterialofdifferentage.Soil Biol. Biochem.,32(2),265-275.

Van EekerenN. et al., 2008. Soil biological quality after36years of ley-arable cropping, permanent grasslandandpermanentarablecropping.Appl. Soil Ecol.,40(3),432-446.

WolfD.&WagnerG., 2005. Carbon transformations andsoilorganicmatterformation.In:SylviaD.,FuhrmannJ.,HartelP.&ZubererD.,eds.Principles and applications of soil microbiology. Upper Saddle River, NJ, USA:PearsonPrenticeHall,285-332.

WolterC.&ScheuS.,1999.Changesinbacterialnumbersand hyphal lengths during the gut passage throughLumbricus terrestris (Lumbricidae, Oligochaeta).Pedobiologia,43(6),891-900.

WoltersV. & JoergensenR.G., 1992. Microbial carbonturnover inbeechforestsoilsworkedbyAporrectodea caliginosa (Savigny) (Oligochaeta, Lumbricidae). Soil Biol. Biochem.,24(2),171-177.

WoomerP.L. & SwiftM.J., 1994. The biological management of tropical soil fertility. Chichester, UK:JohnWileyandSons.

WrageN.,VelthofG.L.,VanBeusichemM.L.&OenemaO.,2001.Roleofnitrifierdenitrification in theproductionofnitrousoxide.Soil Biol. Biochem.,33(12-13),1723-1732.

ZhangB.G.etal.,2000.Changes inmicrobialbiomassC,N,andPandenzymeactivitiesinsoilincubatedwiththeearthwormsMetaphire guillelmiorEisenia fetida.Soil Biol. Biochem.,32(14),2055-2062.

ZhangQ.L.&HendrixP.F., 1995.Earthworm (Lumbricus rubellusandAporrectodea caliginosa)effectsoncarbonfluxinsoil.Soil Sci. Soc. Am.,59(3),816-823.

(110ref.)