30
Impact of diet upon intestinal microbiota and microbial metabolites Harry J Flint Microbiology Group Rowett Institute of Nutrition and Health University of Aberdeen, UK

Impact of diet upon intestinal microbiota and microbial … · 2017. 1. 23. · gut receptors..) Gut function, gut disorders: Colitis; Irritable bowel syndrome Colorectal cancer Infections

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Impact of diet upon intestinal microbiota and microbial metabolites

    Harry J Flint

    Microbiology GroupRowett Institute of Nutrition and Health

    University of Aberdeen, UK

  • metabolism of non-digestible dietary components

    immune function, inflammation

    pathogenesis

    modification of host secretions (mucin, bile, gut receptors..)

    Gut function, gut disorders: Colitis; Irritable bowel syndromeColorectal cancer Infections

    Systemic effects: Energy supply, satiety DiabetesHeart diseaseAutoimmune disorders

    barrier function

    supply of additional energy, vitamins

    Impact of the gut microbiota on human nutrition and health

    release of phytochemicals, enterohepatic circulation of xenobiotics, drugs

  • Modulation of the human gut microbiota by dietary fibres occurs at the species level [Chung WSF et al BMC Biology, 2016]

    In vitro chemostat studies

    [Separate experiments with 3 fecal microbiota]

    Bacteroides spp.

  • Modulation of the human gut microbiota by dietary fibres occurs at the species level [Chung WSF et al BMC Biology, 2016]

    In vitro chemostat studies

    [Separate experiments with 3 fecal microbiota]

    Microbiota composition (family level)

  • Modulation of the human gut microbiota by dietary fibres occurs at the species level [Chung WSF et al BMC Biology, 2016]

    In vitro chemostat studies

    [Separate experiments with 3 fecal microbiota]

    Firmicutes

  • 14 obese male volunteers with metabolic syndrome

    (mean age 54 years, mean BMI 39.4 kg/m2)

    M: maintenance diet

    NSP: high non-starch polysaccharide, low RS

    RS: high resistant starch, low NSP

    WL: high protein, moderate carbohydrate

    M NSP RS WL1 wk 3 wks 3 wks 3 wks

    Collection of faeces

    M NSPRS WL

    Mean dietary intake [g/d]:

    M 427 230 5 28 103 126

    NSP 427 138 2 42 102 136

    RS 434 275 26 13 109 127

    WL 201 110 3 22 144 63

    CHO: carbohydrate

    Diet CHO starch RS NSP protein fat

    Walker AW et al. ISME J 2011

    Does the type of dietary carbohydrate alter the colonic

    Weight maintenance

    Weight loss

    added wheat bran

    added type 3 resistant starch

    Impact of dietary non-digestible carbohydrates in vivo

  • Walker AW et al (2011) ISME J 5, 220-230

    Salonen A et al (2014) ISME J 8, 2218-2230

    Lower diversity with RS than WB NSPSome but not all species are diet-responsive

    Increase with RSIncrease with wheat bran NSP

    [Hitchip]

    [16S rRNA gene sequences]

    M NSP RS WL

    350

    300

    250

    200

    150

    100

    Inv

    ers

    e S

    imp

    so

    n in

    dex

  • Walker AW et al (2011) ISME J 5, 220-230

    Salonen A et al (2014) ISME J 8, 2218-2230

    Lower diversity with RS than WB NSPSome but not all species are diet-responsive

    Increase with RSIncrease with wheat bran NSP

    [Hitchip]

    [16S rRNA gene sequences]

    Volunteer

    No.

    1-P

    ears

    on

    co

    rrela

    tio

    n

    Individual variation still dominates

    M NSP RS WL

    350

    300

    250

    200

    150

    100

    Inv

    ers

    e S

    imp

    so

    n in

    dex

  • Very extreme dietary changes can lead to wide-ranging shifts in the gut

    bacterial community in humans

    ‘animal based’ – 69.5 % (!) cals from fat, 30% from protein,

  • Walker AW et al. ISME J (2011); Salonen A et al. ISME J (2014)

    0

    10

    20

    30

    40

    50

    0 10 20 30 40 50 60 70

    Volunteer 16

    M RS NSP WL

    0

    10

    20

    30

    40

    50

    0 10 20 30 40 50 60 70

    Volunteer 19

    M NSP RS WL

    0

    10

    20

    30

    40

    50

    0 10 20 30 40 50 60 70

    time [days]

    Volunteer 24

    M NSP RS WL

    0

    10

    20

    30

    40

    50

    0 10 20 30 40 50 60 70

    time [days]

    Volunteer 20

    M RS NSP WL

    R. bromii

    R. albus

    + R. bicirculans

    R. flavefaciens

    + R. champanellensis

    + R. callidus

    R. champanellensis

    Responses occur rapidly and tend to be species-specific

    Cluster IV Ruminococcus species - qPCR

    % 1

    6S

    rR

    NA

    ge

    ne

    % 1

    6S

    rR

    NA

    ge

    ne

    Response on

    RS is due to

    R. bromii

  • Nutritional specialization among Ruminococcus spp.

    - selected glycoside hydrolase families encoded by genomes

    Rumen (cellulolytic)

    Human colon

    Human colon

    0

    2

    4

    6

    8

    10

    12

    14

    16

    GH2 GH3 GH5 GH26 GH44 GH74 GH16 GH48 GH9 GH10 GH11 GH43 GH51 GH13 GH31 GH77

    R. bicirculans 80/3

    R. champanellensis 18P13

    R. flavefaciens FD1

    R. bromii L2-63

    Human colon

    amylase/ a-glucosidase/ amylomaltasecellulase

    b-glucanase/ mannanase/ xyloglucanase

    xylanase/ xylosidase/ arabino-furanosidase

  • Ruminococcal cellulosome systems from rumento human. Ben David et al (2015) Environ Microbiol 17:3407-3426

    Ruminococcus champanellensis

    The only human colonic anaerobe able to degrade filter paper (crystalline) cellulose

    “Ruminococcus bicirculans”

    Able to utilize xyloglucan, beta-glucan for growth, but not cellulolytic

    Complete genome of a new Firmicutes speciesbelonging to the dominant human colonic microbiota(‘Ruminococcus bicirculans’) reveals twochromosomes and a selective capacity to utilizeplant glucans. Wegmann U et al (2014) Environ Microbiol 16:2879-2890

  • Ruminococcus bromii

    Specialist starch-degrader

    Exceptional starch-degrading activity in the human colonic anaerobe Ruminococcus bromii coincides with unique organization of its extracellular enzymes into ‘amylosomes’. Ze X et al (2015) MBio 6 (5) e01058-15.

  • Ruminococcus bromii

    Specialist starch-degrader

    Exceptional starch-degrading activity in the human colonic anaerobe Ruminococcus bromii coincides with unique organization of its extracellular enzymes into ‘amylosomes’. Ze X et al (2015) MBio 6 (5) e01058-15.

    C

    D G E F

    B

    A

    TonBcomplex

    OM

    CM

    susR susA susB susC susD susE susF susG

    Contrast - Bacteroides thetaiotaomicronstarch utilization (sus) system (Salyers)

    - soluble starches

    Mainly periplasmic amylases

  • Degradation of corn starches by four amylolytic human gut bacteria

    Ruminococcus bromii

    Specialist starch-degrader

    0%

    20%

    40%

    60%

    80%

    100%

    S1 S2 S3 S4

    starches (boiled 10 mins)

    Ruminococcus bromii(Firmicutes)

    Bifidobacterium adolescentis(Actinobacteria)

    Eubacterium rectale(Firmicutes)

    Bacteroides thetaiotaomicron(Bacteroidetes)

    Gram-positive

    Gram-negative

    Resistant starches (S2, S3 (RS2) S4 (RS3))

    [Ze X et al 2012 ISME J]

    Digestible starch (S1)

    Exceptional starch-degrading activity in the human colonic anaerobe Ruminococcus bromii coincides with unique organization of its extracellular enzymes into ‘amylosomes’. Ze X et al (2015) MBio 6 (5) e01058-15.

  • [Walker AW et al. ISME J 2011Ze X et al. ISME J 2012]

    qPCR analysis – all timepointsqPCR - % Ruminococcus (cl IV)

    16S rRNA gene copies

    Residual starch in faeces

    11 12 17 18 19 23 240

    20

    40

    60

    80

    100

    14 15 16 20 22 25 26

    volunteer% r

    es

    idu

    al fa

    ec

    al s

    tarc

    h

    RS diet

    NSP diet

    Incomplete starch fermentation

    R. bromii as a ‘keystone’ species in degradation of resistant starch

    0

    10

    20

    30

    40

    50

    60

    11 12 17 18 19 23 24 14 15 16 20 22 25 26

    Rum % (RS diet) Rum % (NSP)

    v low R. bromii

  • Diet

    Insoluble complex carbohydrates

    Soluble polysaccharides

    Oligosaccharides, sugars

    Primary degraders

    Polysaccharide utilisers

    Oligosaccharide/ sugar utilisers

    H-utilisers (acetogens, methano-gens, SRB); lactate utilisers

    Metabolic products

    Microbial ecology of carbohydrate utilization in the gut: functional groups

    (Flint HJ et al Env Micro 2007)

    ruminococci on faecal fibre

  • 0

    10

    20

    30

    40

    50

    60

    2h 4h 8h24h48h 2h 4h 8h24h48h 2h 4h 8h24h48h 2h 4h 8h24h48h

    D1 D2 D3 D4

    Otu039

    Otu030

    Otu029

    Otu028

    Otu024

    Otu017

    Otu005

    Otu006

    Otu007

    Oscillospira guilliermondii (94% similarity)

    Coprococcus sp. ART55/1/eutactus (97% similarity)

    Clostridium lactatifermentans

    Butyrate-producer A2-166

    Lachnospiraceae bacterium A4 (C. hathewayi - 96% similarity)

    Eubacterium siraeum (97% similarity)

    Roseburia faecis/hominis/intestinalis

    Butyrate-producer T2-145 (96% similarity)

    Eubacterium xylanophilum (97% similarity)

    Enrichment of Firmicutes bacteria on wheat bran in vitro*

    % s

    equ

    ence

    s

    * Duncan SH et al. Environ Microbiol 2016 online medium

    pH- controlled, anaerobicin vitro fermentor system -

    inflow

    outflow

    100% CO2 atmosphere

  • % s

    eq

    ue

    nce

    s

    0

    10

    20

    30

    40

    50

    60

    2h

    4h

    8h

    24

    h4

    8h

    2h

    4h

    8h

    24

    h4

    8h

    2h

    4h

    8h

    24

    h4

    8h

    2h

    4h

    8h

    24

    h4

    8h

    D1 D2 D3 D4

    Otu039

    Otu030

    Otu029

    Otu028

    Otu024

    Otu017

    Otu005

    Otu006

    Otu007

    Duncan SH et al Environ Microbiol -2016 online

    Action of isolated bacteria on wheat bran

    weight loss (degradation)

    phenolics

    Otu005-relatedOtu017-relatedOtu006-related

    “Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulicacid”

    ferulicacid

  • ferulic acid metabolite 1

    Co

    nce

    ntr

    atio

    n (

    g cm

    -3)

    metabolite 2 metabolite 3

    5

    10

    15

    20

    25

    P < 0.001

    P = 0.007

    P < 0.001

    demethylation dehydroxylationhydrogenation

    OH

    OOH

    OH

    OOH

    OOH

    OOH

    OOH

    OOHO

    OOH

    O

    OOH

    OH

    OOH

    OOH

    OOH

    OOH

    H

    [Russell WR et al AJCN 2011]

    ferulic acid

    Faecal concentrations

    (means, 8 overweight male volunteers)

    Impact of diet on plant-derived phenolic acids and microbial metabolites in human volunteers

    Maintenance (carbs 400g, NSP fibre 28 g/day)

    High Protein WL (carbs 170g, NSP fibre 12 g/day)

    High Protein WL (carbs 23g, NSP fibre 6 g/day)

    diets

    4OH-3OMe-PPA 3,4OH-PPA 3OH-PPA

  • [Louis P, Hold GL & Flint HJ 2014 NRM]

    The gut microbiota, bacterial metabolites and colorectal cancer

  • oxaloacetate

    fumarate

    succinate

    propionyl-CoA

    fucose, rhamnose

    propane-1,2-diol

    propionyl-CoA

    DHAP + L-lactaldehydePEP

    CO2

    lactate

    lactoyl-CoA

    propionyl-CoA

    pyruvate

    propionate

    hexoses & pentoses

    acetyl-CoA

    acetoacetyl-CoA

    butyryl-CoAacetate

    acetyl-CoA

    butyrate

    acetate

    butyryl-P

    H2 + CO2

    formate

    Roseburia inulinivoransRuminococcus obeumSalmonella enterica

    methane

    Bacteroidetessome Negativicutes

    Coprococcus catusMegasphaera elsdenii

    Ruminococcusbromii

    Eubacterium rectaleEubacterium halliiRoseburia spp.Anaerostipes spp.Coprococcus catusFaecalibacterium prausnitzii

    Coprococcus eutactusCoprococcus comes

    ethanol

    Blautiahydrogenotrophica

    Eubacterium halliiAnaerostipes spp.

    methanogenicarchaea

    hydrogensulphide

    sulfate

    Desulfovibrio spp.

    Major fermentation pathways

    [propionate pathways -Reichardt N et al (2014) ISME J]

  • NSP starch protein

    propionate

    H2 + CO2

    oligo-saccharides, sugars

    lactate

    butyrate

    acetate

    succinate

    formate

    CH4

    B10B9

    B7

    B2, B4, B5B3, B6 B1

    B5, B6 B8

    PEPpyruvate

    acetyl CoA

    B1-B9

    B1

    B1-B9

    B3, B1

    Kettle H, Louis P, Duncan SH, Holtrop G, Flint HJ (2015) “Modelling the emergent dynamics of communities of human colonic microbiota: response to pH and peptide”Environ Microbiol 15: 1615-1630

    Bacterial functional groups

    B1 = BacteroidetesB2 = Firmicutes (eg. R. bromii)B3 = Firmicutes (eg. E. eligens)B4 = ActinobacteriaB5 = Roseburia groupB6 = F. prausnitziiB7 = NegativutesB8 = E. hallii, AnaerostipesB9 = acetogensB10 = methanogens

  • Changes in butyrate-producing bacteria within faecal microbiota in disease states/ extreme diets –

    F. prausnitzii in ileal Crohn’s patients Sokol H et al PNAS (2008)

    F. prausnitzii in frail elderly Claesson et al Nature (2012)

    Roseburia, E. rectale, F. prausnitzii in type 2 diabetics Qin J et al Nature (2012)

    Butyrate- producers in type 1 diabetics de Goffau MC et al Diabetes (2013)

    Roseburia, butyrate-producers in CR cancer Wang T et al ISME J (2012)

    Roseburia in constipation-type-IBS Chassard C et al Alim Ph Th (2012)

    Roseburia in hepatic encephalopathy (mucosal flora) Bajaj JS et al Am J Clin Nutr (2012)

    Butyrate-producers with improved insulin sensitivity Vrieze A et al Gastroenterol (2012)

    Roseburia, E. rectale with low carb WL diets Duncan SH et al AEM (2007)

    Roseburia, Faecalibacterium, Coprococcus in LGC individuals (increased metabolic syndrome) Le Chatelier et al Nature (2013)

  • Dietary intake, medication, inter-individual variation

    GUT ENVIRONMENT

    GUT MICROBIOTA

    metabolic pathways community structure

    cross-feeding

    METABOLIC PRODUCTS

    How do changes in gut microbiota composition impact on metabolite production?

  • Clone libraries from 1 volunteer

    05

    10152025303540

    % o

    f to

    tal

    clo

    ne

    s mmdA

    16S rRNA

    % Bacteroidetes (qPCR)

    % p

    rop

    ion

    ate

    M

    NS

    P

    RS

    [14 male volunteers]

    Relative abundance of Bacteroidetes correlates with % propionate

    - in faecal samples - and in fermentor studies

    R² = 0,558

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 20 40 60 80 100

    Pro

    port

    ion

    al

    ab

    un

    dan

    ce o

    f

    pro

    pio

    nate

    (%

    of

    tota

    l S

    CF

    A)

    Bacteroides spp. and Prevotella spp. % of total 16S

    rRNA genes

    Salonen A et al. ISME J (2014) Chung WSF et al. BMC Biology (2016)

  • • Total faecal SCFA , especially butyrate, decrease with lower carbohydrate intake

    Obese male subjects (UK)

    1. Duncan SH et al AEM 2007

    2. Russell WR et al Am J Cl Nutr 2011

    Diets:M – maintenance (50-52% cals as CHO)HPMC – Moderate carbohydrate (35%)HPLC – Low carbohydrate (4-5%)

    0

    20

    40

    60

    80

    100

    120

    M1 HPMC1 LC1 M2 HPMC2 HPLC2

    isobutyrate

    isovalerate

    valerate

    butyrate

    propionate

    acetate

    mM

    study 1 study 2

    Faecal SCFA:

    • Total faecal SCFA, including butyrate, can be very high in populations that have high intakes of plant-derived foodstuffs

    Ou J et al Am J Clin Nutr 2013

    Native Africans - Ace: Prop: But 72: 27: 17 mM (total > 100 mM) African Americans - Ace: Prop: But 27: 7: 8 mM (total < 50 mM)

  • Model describing the relationship between substrate abundance and gut microbiota product

    formation and its dependence on gut microbiota composition using the consumption of

    fermentable carbohydrates and the production of short chain fatty acids (SCFAs) as an example.

    Gary D Wu et al. Gut 2016;65:63-72

    Copyright © BMJ Publishing Group Ltd & British Society of Gastroenterology. All rights reserved.

    Do ‘restrictive’ communities lack certain keystone species?

  • GENERAL CONCLUSIONS

    Changes in diet composition change the representation of certain ‘diet-responsive’ species within the microbiota

    This reflects the fact that many species (especially Firmicutes?) are highly specialised in their substrate utilization

    ‘Some are more equal than others’ (Ze X et al Gut Microbes 2013) (after George Orwell) - certain ‘keystone species’ play primary roles in degradation of recalcitrant substrates

    Changes in microbiota composition (due to diet or individual variation) impact on metabolite formation – especially loss of keystone species

  • Rowett Institute (U Aberdeen, UK)

    Alan Walker

    Sylvia Duncan

    Petra Louis

    Karen Scott

    Xiaolei Ze

    Faith Chung

    Jenny Laverde

    Nicole Reichardt

    Alexandra Johnstone

    Biomathematics and Statistics Scotland

    Grietje Holtrop, Helen Kettle

    Institute of Food Research, UK

    Nathalie Juge, Emmanuelle Crost

    Wellcome Trust Sanger Institute, UK

    Trevor Lawley, Julian Parkhill

    U Groningen, Netherlands

    Hermie Harmsen

    U Wageningen, Netherlands

    Jerry Wells

    Weizmann Institute, Israel

    Ed Bayer, Sarah Morais

    U Helsinki, Finland

    Anne Salonen, Willem de Vos

    U. Girona, Spain

    Mireia Lopez-Siles, Jesus Garcia-Gill

    Support from :–

    Acknowledgements -

    Commercial collaborators

    Rowett Institute of Nutrition and Health

    http://www.nih.gov/http://www.nih.gov/