14
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS 172, 510-523 (1976) lmmunochemical Studies on Blood Groups Purification, Chemical and lmmunochemical Properties of Blood Group-Active Glycoproteins from Horse Gastric Mucosae I,* WALTER NEWMAN AND ELVIN A. KABAT Division of Chemical Siology and the Departments of Microbiology, Human Genetics and Deuelopment, and Neurology, College Physicians and Surgeons, Columbia University, and the Neurological Institute, Presbyterian Hospital, New York, New York 10032 Received July 3, 1975 Digestion of the gastric mucosae of 10 horses with pepsin or Pronase was followed by phenol/ethanol fractionation. Chemical and immunochemical examination of the frac- tions showed the mucosae to possess various combinations of A, B and H activities. Most were B-active, three had weak A activity, one had strong H activity and the remainder were weakly H-active; one mucosa possessed neither A, B nor H activity. Digestion with pepsin or Pronase of different portions of the same mucosa yielded products equivalent in serological and most chemical properties. Materials digested by Pronase tended to have less peptide nitrogen than those treated with pepsin. Fractions with the strongest serological activities contained significantly higher amounts of carbohydrate and lesser amounts of peptide nitrogen than those with weak A, B or H activity or with no activity. All mucosae, independent of their A, B or H activity, reacted with concanavalin A. The fractions precipitable by 10% ethanol from 90% phenol reacted most strongly. The intervening 25 years since blood group substances from horse gastric mu- cosae were last studied (1) have seen the development and refinement of powerful techniques for isolation, purification and identification of small amounts of oligosac- charides. Especially important are the NaOH-NaBH,-catalyzed elimination and reduction from blood group-active mate- rials of the carbohydrate portion linked to serine and threonine (2, 31, the develop- ment of new methods for calorimetric (4, 5) and gas-liquid chromatographic (5-7) and mass spectrometric (8, 9) analyses of con- stituent sugars, the development of chro- matographic methods (5) and, most re- 1 Supported by grants from the National Science Foundation, No. BMS-72-02119A02 and 32543 X-l, and a Program Project Grant from the National Institutes of Health, No. 5P0 GM 18153-05. 2 From Part I of a dissertation submitted by W. Newman in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Pure Science, Columbia University, New York. This article is No. LIX of a series; the previous article appeared in Biochemistry (1973) 12, 5355- 5360. cently, of high pressure liquid chromatog- raphy (10) for resolution of complex mix- tures of monosaccharides (11,12) and oligo- saccharides (13). Horse gastric mucosae possess A and B activities and were shown to be a potent source of blood group B materials when there was interest in absorbing the alloag- glutinins from group 0 blood prior to trans- fusion (14, 15). Early studies demonstrated the overall chemical and immunochemical similarity of B substances from horse mu- cosae (1, 16) to those from human sources (17, 18). Horse blood groups based upon hemagglutination reactions with horse erythrocytes (19) bear no known relation to the A and B substances from human tis- sues and secretions or to those from horse gastric mucosae. Horse saliva contains A and B substances, but the activities in sa- liva do not correlate with those from the mucosa of the same horse (15, 16). This study deals with the isolation, puri- fication and chemical and immunochemi- cal characterization of blood group sub- stances from horse gastric mucosae. H ac- tivity, which had not previously been rec- 510 Copyright 0 1976 by Academic Press, Inc. All rights of reproduction in any form reserved.

Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

Embed Size (px)

Citation preview

Page 1: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS 172, 510-523 (1976)

lmmunochemical Studies on Blood Groups

Purification, Chemical and lmmunochemical Properties of Blood Group-Active

Glycoproteins from Horse Gastric Mucosae I,*

WALTER NEWMAN AND ELVIN A. KABAT

Division of Chemical Siology and the Departments of Microbiology, Human Genetics and Deuelopment, and Neurology, College Physicians and Surgeons, Columbia University, and the Neurological Institute,

Presbyterian Hospital, New York, New York 10032

Received July 3, 1975

Digestion of the gastric mucosae of 10 horses with pepsin or Pronase was followed by phenol/ethanol fractionation. Chemical and immunochemical examination of the frac- tions showed the mucosae to possess various combinations of A, B and H activities. Most were B-active, three had weak A activity, one had strong H activity and the remainder were weakly H-active; one mucosa possessed neither A, B nor H activity. Digestion with pepsin or Pronase of different portions of the same mucosa yielded products equivalent in serological and most chemical properties. Materials digested by Pronase tended to have less peptide nitrogen than those treated with pepsin. Fractions with the strongest serological activities contained significantly higher amounts of carbohydrate and lesser amounts of peptide nitrogen than those with weak A, B or H activity or with no activity. All mucosae, independent of their A, B or H activity, reacted with concanavalin A. The fractions precipitable by 10% ethanol from 90% phenol reacted most strongly.

The intervening 25 years since blood group substances from horse gastric mu- cosae were last studied (1) have seen the development and refinement of powerful techniques for isolation, purification and identification of small amounts of oligosac- charides. Especially important are the NaOH-NaBH,-catalyzed elimination and reduction from blood group-active mate- rials of the carbohydrate portion linked to serine and threonine (2, 31, the develop- ment of new methods for calorimetric (4, 5) and gas-liquid chromatographic (5-7) and mass spectrometric (8, 9) analyses of con- stituent sugars, the development of chro- matographic methods (5) and, most re-

1 Supported by grants from the National Science Foundation, No. BMS-72-02119A02 and 32543 X-l, and a Program Project Grant from the National Institutes of Health, No. 5P0 GM 18153-05.

2 From Part I of a dissertation submitted by W. Newman in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Pure Science, Columbia University, New York. This article is No. LIX of a series; the previous article appeared in Biochemistry (1973) 12, 5355- 5360.

cently, of high pressure liquid chromatog- raphy (10) for resolution of complex mix- tures of monosaccharides (11,12) and oligo- saccharides (13).

Horse gastric mucosae possess A and B activities and were shown to be a potent source of blood group B materials when there was interest in absorbing the alloag- glutinins from group 0 blood prior to trans- fusion (14, 15). Early studies demonstrated the overall chemical and immunochemical similarity of B substances from horse mu- cosae (1, 16) to those from human sources (17, 18). Horse blood groups based upon hemagglutination reactions with horse erythrocytes (19) bear no known relation to the A and B substances from human tis- sues and secretions or to those from horse gastric mucosae. Horse saliva contains A and B substances, but the activities in sa- liva do not correlate with those from the mucosa of the same horse (15, 16).

This study deals with the isolation, puri- fication and chemical and immunochemi- cal characterization of blood group sub- stances from horse gastric mucosae. H ac- tivity, which had not previously been rec-

510 Copyright 0 1976 by Academic Press, Inc. All rights of reproduction in any form reserved.

Page 2: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

HORSE BLOOD GROUP-ACTIVE GLYCOPROTEINS 511

ognized in horse materials, was found by using lectins from Ulex europeus and Lo- tus tetragonolobus. Despite these addi- tional assays, one mucosa showed no A, B or H activity. While preparing blood group substances from horse mucosae (1) a tenta- tive identification of fucose in the dialy- sates was made. It seemed that the condi- tions of peptic digestion (pH 1.8-2.0, 37”C, 72 h) might have been sufficient to hydro- lyze some fucose (20). Accordingly, prod- ucts of peptic digestion of the same as well as different mucosae were compared with those isolated by digestion with Pronase, a mixture of proteases from Streptomyces griseus (211, at neutral pH. No dialyzable fucose and no significant differences in yield or blood group activity were found. Blood group B- and H-active glycoproteins of high serological activity were isolated by both procedures. After purification, Pronase-digested materials contained less peptide nitrogen than did those from pep- sin digestion. Many of the fractions con- tained considerably more fucose than had been found previously (1). Some mucosae showed weak A activity and all had vary- ing amounts of Con A3 activity.

MATERIALS AND METHODS Gastric mucosae from 10 individual horses were

obtained from Roth Packing Co., Philadelphia, Pa., and were stored on Dry Ice prior to use. They were numbered 7-16 for continuity with an earlier study in this laboratory on six horse mucosae (1). The amounts of each used are in Table Ia.

Pronase was from Calbiochem, Grade B, Lot 73716, 43,000 PUK units/g; pepsin from Worthing- ton, 2x crystallrzed. The buffer for Pronase diges- tions was 0.2 N Tris-HCl, pH 7.8, 0.008 M CaCl,. For pepsin digestion 0.02 M citrate-HCl, pH 2.0, was used. Mucosae were homogenized in a Waring Blen- dor at 4°C with the buffer in which they were to be digested. Mucosae 8 and 11, however, were homoge- nized in distilled water at 4°C. Digestions were car- ried out in a total volume of 1-2 liters in the pres- ence of toluene at 37°C for 72 h with adjustment to pH 2.0 twice daily for pepsin and to pH 7.8 for Pronase digestion. Mucosae 7, 9 and 10 were di- gested by Pronase and 12-16 by pepsin. Mucosae 8 and 11 were divided in half, the appropriate buffers added and one-half digested by pepsin, the other by

3 Abbreviations used: N, nitrogen; Fuc, 6-deoxy- galactose; GalNAc, 2-acetamido-2-deoxygalactopyra- nose; GlcNAc, 2-acetamido-2-deoxyglucopyranose; Gal, galactopyranose; ConA, concanavalin A.

Pronase. The amount of enzyme used was based on the weight of mucosa; on day 1, 1 mg of Pronase per 5-7 g (wet weight) of gastric mucosa was added. On day 2, an additional 20 or 40 mg of Pronase were added to each flask. For digestion with pepsin, 1 mg per 5-7 g (wet weight) of mucosa was added; an additional 15 mg were added on day 2.

After treatment with enzyme, digests were di- alyzed against 0.1 N NaCl at 4°C for 8 h (22) and dialysates tested for methylpentose (23). The digests were filtered through glass wool and 2-3 g of sodium acetate plus 2-3 volumes of 95%’ ethanol were added to the clear filtrates. The flocculent white precipi- tate was centrifuged, washed with 95% ethanol, dried over P,O, in a desiccator, dissolved in distilled water, centrifuged to remove insoluble material and lyophilized. It was then extracted with 90% phenol as schematized in Fig. 1 (17, 24). The phenol-insolu- ble fraction from the Pronase-digested portion of mucosa 8 was further digested with pepsin. On day 1, 5 mg of pepsin was added to 125 mg of phenol- insoluble fraction in 10 ml of citrate-HCI buffer. An additional 5 mg of pepsin was added on day 2. After a 72-h digestion at 37°C (with toluene), the material was reisolated by ethanol precipitation in the pres- ence of sodium acetate. Refractionation was carried out as shown in Fig. 1.

All fractions from phenol/ethanol were assayed for A, B and H activities by hemagglutination inhibi- tion and for Con A-precipitating ability. The most active B fractions from hemagglutination inhibition were tested for their capacity to precipitate anti-B. Hemagglutination inhibition assays were performed with a Takatsy microtitrator (Cooke Engineering Co., Alexandria, Va.). B activity was assayed using a 1:50 dilution of anti-B serum 310, (25) which had been produced by immunization of an A individual with purified horse B substance, horse 4, 25% (1); A activity with a 1:50 dilution of anti-A serum Chris D, (26); H activity with a 109 saline extract of Ulex europeus seeds and 2% suspension of human B, A or 0 erythrocytes, respectively. The antibody or lectin used contained 4-8 hemagglutinating units. Le and H activities of the combined B-active and non-B- active materials (see Results) were kindly assayed by Dr. R. E. Rosenfield of Mount Sinai Hospital, New York, using an Autoanalyzer (27, 281.

Concanavalin A was isolated from jack bean meal according to Ref. (291 by adsorbing the lectin on Sephadex G-50 and eluting with methyl a-n-gluco- side. Quantitative precipitin curves for the various fractions with Con A were determined relative to dextran B 1355-S-4 (30) as standard. Tubes con- tained varying amounts of antigen and 8.1 pg of Con A N in 60 ~1 of 1 M NaCl; the total volume was adjusted to 260 ~1 with 0.018 M phosphate buffer, pH 7.2, in 0.9% saline. The N content of the washed precipitates was determined by the ninhydrin method after digestion with sulfuric acid (2). The lectin from Lotus tetrogonolobas (33) had been puri-

Page 3: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

512 NEWMAN AND KABAT

Enzylw? digested ma;erial Dialysis at 4 against 0.1 M NaCl, the” distdled Water

Jf

C%ntrifllge Add sodium acetate and 2 volumes 95 percent ethanol

Dried ethanol precipitate Extract with 90 percent phenol

phenol’i”soluble supernatant *, ~i$W&itb 1057,etha”ol 1 t

1;; ;jzizi;

supernatant : precipitate with 20% ethanol in 90% phenol

pkclpitate supernatant

0 s”pel’nata”t

phenol insoluble precipitate with 2

I‘ 10% ethanol in

pkcipitate 90% phenol

p+ata”t

supernatant precipitate 10% 2x precipitate with with 10% ethanol

3 20% ethanol i” in 90% ph no1 90% phenol

pkxipitate I

supematant precipitate super atant 20% from 2nd 10% 10% from 1st F

4 20% precipitate with , 5 f$+t+in

precipitate supematant 20% 2x I

6 precipitate with 25% ethanol i” 90% phenol

pkcipitate 25%

7

supenlatant

FIG. 1. Outline of the procedure for fractionation with 90% phenol and ethanol (17) of pepsin- or Pronase-digested blood group glycoproteins. The seven fractions are numbered in order of increasing ethanol required for precipitation from 90% phenol.

tied by adsorption on polyleucyl hog A+H substance and elution with LFUC. Each tube contained 6.2 pg of lectin N in a total volume of 225 ~1. JS phenol insolu- ble (21, an HLeh-active material from human ovar- ian cyst fluid was used as standard. Quantitative precipitin reactions with anti-B serum 310, and with Lotus lectin were performed on a microscale (23). Tubes containing antigen and antiserum were incu- bated at 37°C for 1 h and kept at 4°C for 5-7 days and centrifuged in the cold, and the precipitates were washed twice with 0.4 ml of chilled saline. Nitrogen in the washed precipitates was determined as above (2).

Calorimetric methods for determination ofhexosa- mines, N-acetylhexosamines, galactosamine, meth- ylpentose (fucose) and hexose (galactose) have been described previously (2, 4, 23). Sialic acid was deter- mined by the thiobarbituric acid method (34).

Reference blood group substances used were Beach phenol insoluble (35), a B-active material from human ovarian cyst fluid; hog 25 (36) and hog 33B (37) from H-active hog gastric mucosae; MSM, an A-active material from human ovarian cyst (2) and N-l 20% from 2nd 10% (381, an Lea-active mate- rial from human ovarian cyst fluid.

RESULTS

Table Ia shows the yields, compositions and serological activities of various frac- tions from phenol/ethanol purification (Fig. 1). Mucosae generally yielded consid- erable amounts of three to five of the possi- ble seven fractions shown; the remaining fractions were disregarded if less than 10 mg or if of negligible carbohydrate con- tent. Yields of purified blood group sub- stances were approximately the same for each mucosa; l-2 mg/g wet weight (No. 7- 11) or 2-6 mg/g dry weight (No. 12-16) whether pepsin or Pronase was used for digestion.

Table II shows the A, B, H, Lea and Leh activities of the phenol/ethanol fractions in Table Ia. Two horse blood group materials were obtained for further study by combin- ing fractions from Table Ia. One, B-active, consists of the most active B fractions, de- noted in Table Ia by an asterisk (*); the

Page 4: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

TABLE Ia

ANALYTICAL COMPOSITION OF HORSE BLQOD GROUP FRACTIONS

Fraction Yield (ma)”

Percent composition (weight)

Total Methyl- Hexose N pentose (galac-

(fucose) tose) -

Horse 7, Pronase di- gested, starting weight (wet) 431 g (strong B, weak A, H)

Phenol insoluble* 10% 2x* 10% from 1st 20%*

Horse 8, pepsin digested, starting weight (wet) 202 g (strong B, weak A, H)

10% 2x’ 20% from 2nd LO%* 20% 2x 25%

Horse 8, Pronase di- gested, starting weight (wet) 202 g (strong B, weak H)

Phenol insoluble* 10% 2x* 20% from 2nd 10%

Horse 8, Pronase-digested phenol-insoluble frac- tion, pepsin digested, 132 mg (strong B, weak H)

Phenol insoluble* Horse 9, Pronase di-

gested, starting weight (wet) 170 g (strong B, weak H)

Phenol insoluble* 10% 2x* 20% from 2nd 10% 10% from 1st :!O% 20% 2x*

Horse 10, Pronase di- gested, starting weight (wet) 326 g (in- active)

Phenol insolublet 10% Phenol insolublet 10% 2xt 20% from 2nd lO%t 10% from 1st 20% t 20% 2xt

Horse 11, pepsin digested, starting weight (wet) 130 g (strong H)

10% 2xt 20% from 2nd 10% t 20% zxt 25?Jt

126 (113) 4.5 9.4 25.9 19.5 22.0 7.3 3.0 193 (161) 5.7 7.4 24.5 25.7 22.3 11.7 3.7

84 (68) 6.1 9.2 28.4 21.2 16.7 10.1 4.5

38 (34) 5.9 9.4 22.6 18.0 14.7 8.1 4.5 153 (122) 5.8 10.4 26.0 19.3 17.3 9.3 4.3

19.5 6.7 5.6 19.4 23.9 20.0 10.9 4.8 13.0 7.5 5.4 19.3 16.5 16.5 5.3 6.2

132 (46) 5.1 11.3 26.2 19.4 22.8 7.7 3.6 47 (27) 5.4 6.6 23.9 18.4 16.2 7.3 4.0 17 6.5 5.6 20.2 20.9 18.4 7.9 4.9

65 (46) 4.4 10.6 27.6 22.5 26.8 8.3 2.7

130 (96) 5.4 9.6 25.8 17.1 17.8 9.5 4.1 91 (70) 5.7 6.7 23.3 22.8 18.9 10.6 3.9 18 6.0 9.4 25.2 17.9 12.3 10.4 4.6 38 6.4 11.0 27.4 16.0 10.8 10.5 5.2 98 (60) 5.9 10.1 27.7 18.3 12.5 11.7 4.5

87 (68) 5.1 2.0 12.5 16.7 22.0 3.5 3.8 10 (4) 4.6 1.6 12.6 16.1 22.1 2.1 2.9

120 (103) 7.7 3.3 14.1 19.1 15.5 3.6 6.2 14 (5) 6.9 3.6 13.7 15.3 12.3 4.1 5.7

154 (138) 8.8 4.2 14.0 14.8 11.2 4.0 7.6 68 (50) 8.7 4.2 15.1 16.1 11.9 3.3 7.4

28 (17) 5.8 117 (98) 5.9 84 (75) 6.9 44 (34) 7.3

8.3 21.2 7.2 17.3 7.5 20.4 6.9 22.4

-

Hexos- N-acetyl- Galac- Pep&de amine” hexos- tosamine

amine

25.7 20.8 8.8 3.8 25.4 22.7 10.1 3.9 29.3 24.7 12.2 4.6 19.0 11.2 14.3 5.8

513

Page 5: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

TABLE Ia-Continued

Fraction Yield (mg)”

Percent composition (weight)

Total Methvl- Hexose Hexes- N-acetvl- Galac- Peptide N pent&e (galac- amine” hexos- tosamine

amine

Horse 11, Pronase di- gested, starting weight (wet) 130 g (strong H)

Phenol insolublet 104 2xt 20% from 2nd 10% t 10% from 1st 20% t 25Yct

Horse 12, pepsin digested, starting weight (dry) 33 g (moderately strong HI

Phenol insolublet 10% 2xt 20% from 2nd 10% t 20% 2xt

Horse 13, pepsin digested, starting weight (dry) 31 g (strong B, weak H)

Phenol insoluble* 10% 2x* 2O’X from 2nd 10% * 20% 2x

Horse 14, pepsin digested, starting weight (dry) 46 g (strong B, Hl

10% 2x* Horse 15, pepsin digested,

starting weight (dry) 31 gm (moderate B, weak A and H)

Phenol insoluble 104 2x 20%. 2x 25%

Horse 16, pepsin digested, starting weight (dry) 42 g (weak Hf

Phenol insoluble? 10% phenol insolublet 10% 2x1 20% from 2nd lO%t 204 2xt

95 (76) 5.3 3.3 15.5 24.6 23.4 8.8 3.4

19 (9) 5.7 7.2 20.6 21.2 19.6 8.6 4.1 53 (38) 6.1 6.8 23.6 23.3 19.1 8.7 4.3 24 (16) 6.3 4.4 19.9 27.4 24.1 7.7 4.8 39 (30) 6.8 4.8 21.3 30.4 27.7 7.3 4.4

18 (10) 9.2 2.7 14.4 17.7 15.0 3.1 7.8 24 (12) 5.8 3.2 19.3 19.1 17.8 5.4 4.3 75 (58) 6.5 4.8 17.7 24.1 22.8 8.0 4.6 27 (18) 7.8 4.2 15.8 27.4 22.8 9.1 5.7

44 (30) 8.9 5.6 17.2 18.3 17.0 5.1 7.5 63 (39) 7.2 5.0 18.5 20.0 17.3 6.9 5.6 57 (43) 6.3 5.2 17.0 20.4 14.5 10.5 4.7 36 8.6 3.0 14.4 15.7 11.2 7.2 7.4

99 (80) 6.4 5.6 21.6 27.6 23.2 11.5 4.3

29 8.6 2.8 15.0 13.2 12.0 4.6 7.6 29 6.9 3.4 18.0 14.3 12.1 3.8 6.0 14 8.8 3.3 15.9 12.4 8.5 4.4 7.8 15 8.7 3.7 18.0 14.0 7.4 7.3 7.6

18 (7) 17 (71

108 (841 18 (6) 50 (36)

9.1 2.0 12.7 10.4 10.0 2.4 8.3 6.1 0.7 14.7 8.9 8.2 1.6 5.4 6.5 3.8 18.0 22.5 20.3 5.4 4.7 5.0 1.1 10.7 6.6 5.5 1.6 4.5 7.7 2.3 15.3 12.6 8.8 5.6 6.7 5.9 2.8 13.4 12.3 6.4 3.1 4.9 25% t 15 (6)

ifucose) iose)

n Omitted are those fractions of less than 10 mg yield or with negligible amounts of carbohydrate. Values in parentheses under the yield indicate amounts pooled into either the B-active or the non-B-active materials for further study in the following two papers. In addition 281 mg from horse 2 (1) was added to the B-active sample and the following amounts were added to the non-B-active sample: 172 mg of horse, 3, 151 mg of horse 5, and 600 mg of horse 6 (1).

n In the hexosamine assay N-acetylglucosamine and N-acetylgalactosamine give equal color intensities whereas in the N-acetylhexosamine assay N-acetylgalactosamine gives 31% of the color intensity of N- acetylglucosamine.

r Calculated as difference between percentage of total N and percentage of hexosamine N. * Indicates most active B fractions by hemagglutination inhibition, Table II. See also Fig. 2 for precipita-

tion of these fractions by anti-B serum 310,. These fractions were later combined (391. t Indicates non-B active fractions combined. See Fig. 2 and Table II for immunochemical properties.

514

Page 6: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

HORSE BLOOD GROUP-ACTIVE GLYCOPROTEINS 515

TABLE Ib

SUMMARY OF RANGE IN ANALYTICAL COMPOSITION OF FRACTIONS FROM TABLE Ia FOR ALL FRACTIONS, MOST

ACTIVE B FRACTIONS” AND FRACTIONS OBTAINED IN LARGEST YIELD FROM EACH MUCOSA

Fractions Percent composition (weight)

Total Methyl- Hexose Hexos- N-acetyl- Galactos- Peptide N pentose (galac- amine hexos- amine N

(fucose) tose) amine

All fractions Low 4.4 0.7 10.7 5.5 6.6 1.6 2.7 High 8.3 11.3 28.4 27.7 30.4 14.3 8.3

Most active B fractions Low 4.4 5.0 17.0 12.5 17.1 5.1 2.7 High 8.9 10.6 28.4 26.8 27.6 11.7 7.5

Largest fractions Low 5.1 3.3 14.0 11.2 14.8 4.0 3.4 High 8.8 11.3 26.2 23.4 27.6 11.7 7.6

m Indicated in Table Ia by an asterisk (*).

other, non-B-active, includes materials in Table Ia with a dagger (t). Their proper- ties are described more fully in the follow- ing article (39). As shown at the bottom of Table II, no Lewis activities were detected in these materials, while H activity with the Ulex lectin was comparable to the hu- man standard, JS phenol insoluble.

Hemagglutination inhibition data, Ta- ble II, on the individual fractions from Ta- ble Ia indicate that various combinations of A, B and H activities were present in each mucosa as follows: strong B and H in mucosa 14; strong B, weak H in 9 and 13; strong B, weak A and H in 7 and 8; strong H in 11; weak H in 16; moderately strong H in 12; moderate B, A and H in 15, and mucosa 10 was inactive. Within each mu- cosa, individual fractions showed some var- iation in activity. Six of ten mucosae had B activity; five of these, mucosae 7, 8, 9, 13 and 14, yielded materials comparable in potency to the human B standard. A and H activities, except for H-active mucosa 11, were always less than their standards. Mu- cosae with A. or B activity also showed weak H activity, except for strongly B- active mucosa 14, which was also strongly H-active. The weak A activity of mucosa 8 was found only in pepsin-digested frac- tions. Pronase-digested mucosa 7 showed weak A activity.

Certain fractions from pepsin and Pro- nase digestions had high serological activi- ties (Tables II and III). The main fractions

of Pronase-digested mucosa 8 (phenol insol- uble and 10% 2 x 1 were less active in inhibi- tion of B hemagglutination than the pep- sin fractions (10% 2x and 20% from 2nd 10%) while, in inhibition of H hemaggluti- nation, the most active fractions from the Pronase-digested portion of mucosa 11 were as potent as those from pepsin treat- ment. In phenol/ethanol fractionation, B- active mucosae 7, 8, 9 and 13 (Tables Ia and II) showed a distribution pattern that differed somewhat depending on the en- zyme used in digestion. Pepsin treatment tended to give the largest yields and the most active materials in the 10% 2x and 20% from 2nd 10%; with Pronase these were generally the phenol insoluble and 10% 2x. Fractions from the non-B-active pepsin-digested mucosae (No. 11, 12, 15 and 16) and an inactive Pronase-digested mucosa (No. 10) tended to be more uni- formly distributed.

Table Ia demonstrates the wide range of calorimetric values for the 50 fractions ana- lyzed. The range in values for fractions from the same mucosa was always less than for fractions from different mucosae. Table Ib summarizes data from Table Ia on the ranges in analytical composition for all fractions, the most active B fractions and those from each mucosa obtained in high- est yield regardless of their serological ac- tivity. The ranges of values for hexosa- mine, N-acetylhexosamine and galactosa- mine were substantially narrower both for

Page 7: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

TAB

LE

II

HE

MA

GG

LUTI

NA

TIO

N

INH

IBIT

ION

A

SS

AY

S O

F H

OR

SE

BLQ

OD

GR

OU

P F

RA

CTI

ON

S F

OR

A,

B,

H,

Le”

AN

D L

eh

AC

TIV

ITIE

S

Min

imum

co

ncen

tratio

n @

g/m

l) gi

ving

co

mpl

ete

inhi

bitio

n of

hem

aggl

utin

atio

n”

Sta

ndar

d B

A

H

Bea

ch

phen

ol

inso

lubl

e M

SM

Hog

25

H

og

25

Hog

33

B

__-~

_ 6.

3 3.

1 6.

3 1.

5 6.

8 1.

6 0.

8 0.

8 6.

3 6.

3 12

.0

Hor

se

7 (P

rona

se)

Phe

nol

inso

lubl

e 10

% 2

x 10

% f

rom

1s

t 20

%

Hor

se

8 (p

epsi

n)

10%

2x

20%

fro

m

2nd

10%

20

% 2

x 25

%

Hor

se

8 (P

rona

se)

Phe

nol

inso

lubl

e 10

% 2

x 20

% f

rom

2n

d 10

%

Hor

se

8 (p

epsi

n-P

rona

se)

Phe

nol

inso

lubl

e H

orse

9

(Pro

nase

) P

heno

l in

solu

ble

10%

2x

20%

fro

m

2nd

10%

10

% f

rom

1s

t 20

%

20%

2x

Hor

se

10 (

Pro

nase

) P

heno

l in

solu

ble

10%

phe

nol

inso

l. 10

% 2

x 20

% f

rom

2n

d 10

%

10%

fro

m

1st

20%

20

% 2

x H

orse

11

(pe

psin

) 10

% 2

x 20

% f

rom

2n

d 10

%

20%

2x

25%

15

4.5

20

7.5

4.5

5

30

>960

24

0 12

0 4.

5 28

5 36

14

3 5

159

159

317

2.4

1.2

2.1

151

303

133

2.5

2.5

2.1

108

158

131

6.8

13.7

10

21

9 10

9 31

8 41

41

18

>1

310

655

580

33

33

79

73

33

33

40

73

19

18

31

>123

0 >1

230

8.2

33

37

523

>104

5 >1

170

54

54

62

>173

0

62

62

62

73

62

34

17

~108

0 >1

280

68

8.4

2.7

16.7

16

.7

>107

0 26

8 5.

5 1.

4 >1

400

88

18.1

19

.1

>116

0 14

5 74

18

.6

>119

0 29

7 43

43

>1

370

172

88

73

149

171

>139

0 >1

390

>139

0 >1

390

>139

0 >1

390

>126

0 >1

260

>126

0 >1

260

630

>114

0 >1

140

>114

0 57

0 57

0 >1

040

>104

0 >1

040

>104

0 >1

040

>118

0 >1

180

>118

0 >1

180

>118

0 >1

140

>114

0 >1

140

> 11

40

>114

0

>115

0 >1

150

>115

0 9

>103

0 >1

030

>103

0 16

>1

250

>125

0 >1

250

20

>129

0 21

290

>129

0 81

9 9 16

20

20

.- ._

-

,. ,._

-

._ -

-

Page 8: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

> 10

00

>104

0 >1

350

>109

0 >

1000

16

16

10.3

41

43

43

16

8

6.1

12.3

--&se

11

(P

rona

se)

-

Phe

nol

inso

lubl

e >l

OO

O

>lO

OO

16

16

10

% 2

x >1

040

>104

0 16

8

20%

fro

m

2nd

10%

>1

350

>135

0 5

11

10%

fro

m

1st

20%

>1

090

>109

0 3

17

25%

>

1000

11

000

16

31

Hor

se

12 (

peps

in)

Phe

nol

inso

lubl

e :

1080

>

1080

,1

08o

34

34

10%

2x

> 14

30

>143

0 >1

430

22

45

20%

fro

m

2nd

10%

>1

450

> 14

50

>145

0 23

23

20

% 2

x >1

160

>116

0 >1

160

18

36

Hor

se

13 (

peps

in)

Phe

nol

inso

lubl

e 8

8 >1

020

64

64

10%

2x

41

10

>132

0 83

83

20

% f

rom

2n

d 10

%

43

11

>137

0 17

1 34

3 20

% 2

x 16

7 84

>1

340

>134

0 H

orse

14

(pep

sin)

10

% 2

x 6.

1 6.

1 >1

570

12

25

Hor

se

15 (

peps

in)

Phe

nol

inso

lubl

e 30

5 38

38

10

% 2

x 73

73

73

20

% 2

x 26

5 13

3 25

%

>115

0 57

5 57

5 H

orse

16

(pe

psin

) P

heno

l in

solu

ble

>121

0 15

2 15

2 10

% P

heno

l in

solu

ble

>126

0 63

0 63

0 10

% 2

x >1

360

85

85

20%

fro

m

2nd

10%

>1

290

>129

0 >1

280

20%

2x

>124

0 >1

240

> 12

40

25%

13

40

>340

>3

40

-~__

---

Le”

Le”

H

Con

cent

ratio

n (~

glm

l)

Le”,

Leh

and

H

activ

ities

H

orse

no

n-B

-act

ive

bloo

d gr

oup

subs

tane

(p

ool)

- 1.

9 0.

70

111

Hor

se

B-ac

tive

bloo

d gr

oup

subs

tanc

e (p

ool)

- 19

.0

0.95

13

0 S

tand

ard

hum

an

HLe

” su

bsta

nce,

JS

phe

nol

inso

lubl

e 2.

2h

0.09

3 1.

3 11

0 S

tand

ard

hum

an

Lea

subs

tanc

e,

N-l

Lea

20%

fro

m

2nd

10%

0.

062

6.2

- 95

o Se

vera

l ex

perim

ents

w

ere

perfo

rmed

; ac

tiviti

es

are

expr

esse

d re

lativ

e to

the

en

dpoi

nt

for

the

stan

dard

bl

ood

grou

p su

bsta

nce

assa

yed

at

the

sam

e tim

e,

sinc

e tw

ofol

d se

rial

dilu

tion

valu

es

may

di

ffer

by

a fa

ctor

of

2.

b N

umbe

rs

repr

esen

t m

illilit

ers

of b

lood

gr

oup

subs

tanc

e ne

eded

fo

r 50

% in

hibi

tion

of h

emag

glut

inat

ion

by

1 m

l of

ant

ibod

y.

Ant

i-Lea

di

lute

d 1:

300

for

use;

ant

i-Leb

di

lute

d 1:

lOO

for

use;

U

ler

extra

ct

dilu

ted

1:30

for

use.

D

ash

(-)

indi

cate

s no

act

ivity

se

en.

Goa

t an

ti-Le

a an

d -L

eb w

ere

kind

ly

sup-

pl

ied

by

Dr.

Don

ald

Mar

cus

(52)

.

38

19

73

146

265

133

144

72

>121

0 >1

210

>126

0 ~1

260

1136

0 >1

360

>129

0 >

1290

>

1240

>1

240

>940

>3

40

Page 9: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

518 NEWMAN AND KABAT

TABLE III

BLOOD GROUP B ACTIVITY AND METHYLPENTOSE CONTENT OF FRACTIONS OF Two INDIVIDUAL HORSE GASTRIC MUCOSAE OBTAINED BY

PEPSIN AND PRONASE DIGESTIONS

Pepsin digested Pronase digested

Yield Methyl- Methyl- Hemag- Yield Methyl- Methyl- Hemag- (mg) pentose pentose glutin- (mg) pentose pentose glutin-

(o/o) (mg) ation in- (%) (mg) ation in- hibition” hibition”

Horse 8 (B-active) Phenol insoluble 10% Phenol insol. 10% 2x 20% from 2nd 10% 10% from 1st 20% 20% 2x 25% Total

Standard B

Horse 11 (H-active) Phenol insoluble 10% Phenol insoluble 10% 2x 20% from 2nd 10% 10% from 1st 20% 20% 2x 25% Total

Standard H

3.7 5.7

38 153

6 19.5 12

238

3 3

28 117

2 84 44

281

11.7 0.6 6.5 5.8 2.7 4.0 5.1

3.4 2.3 8.3 7.2 4.4 7.5 6.9

-

0.43 0.03 2.50 8.90 0.16 0.78 0.61

13.41

0.10 0.07 2.32 8.42 0.09 6.30 3.04

20.34

>1230 132 >1140 46

2.4 47 2.5 17

303 4 6.8 9

41 7 262

6.3b

n.d.’ n.d. 9

16 n.d. 20 81

6.3d

95 12 19 53 24 2

39 244

10.8 0.8 9.1

11.3 2.7 4.0 5.8

3.3 2.7 7.2 6.8 5.8 7.4 4.8

14.25 19 0.37 139 4.30 8.2 1.92 54 0.11 >1360 0.40 211 0.41 670

21.76 6.3*

3.14 16 0.32 32 1.37 16 3.60 5 1.39 9 0.15 nd. 1.87 16

11.84 6.3d

n Minimum concentration @g/ml) giving complete inhibition of hemagglutination. b Standard B substance, Beach phenol insoluble. c Not done. d Standard H substance, hog 25.

the most active B materials and for those fractions obtained in highest yield. B-ac- tive fractions generally had higher fucose and gala&se as compared with non-B-ac- tive materials; the strong H-active mucosa 11 had somewhat lower fucose and the weak A, B, H or inactive mucosae had the lowest fucose. A number of fractions was analyzed for sialic acid, none was found.

Mucosae 7, 8, 9, 13 and 14 with strong B and/or H activities had substantially higher carbohydrate contents than did the others and showed somewhat lower pep- tide nitrogen. Strong serological activity correlated with the higher proportion of carbohydrate and lower peptide content in- dependently of method of digestion even though the Pronase-digested materials tended to have lower peptide nitrogen

than the pepsin-digested fractions. The weak A activity of mucosae 7,8 and 15 was not associated with higher amounts of ga- lactosamine than found in non-A-active materials.

Table III and Figs. 2 and 3 compare frac- tions prepared by pepsin and Pronase digestion from portions of the same mu- cosa. All fractions, including those in low yield for both 8 and 11 are included in Table III. Mucosa 8 is strongly B-active and weakly A- and H-active; mucosa 11 is strongly H-active. For each, the yields of purified blood group substances from pep- sin or Pronase digestions were about the same. Methylpentose, the residue most likely to be hydrolyzed under the condi- tions of peptic digestion is essentially unaf- fected, and no methylpentose was detected

Page 10: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

HORSE BLOOD GROUP-ACTIVE GLYCOPROTEINS

200~1 HUMAN ANTI-B SERUM,SUBJECT 3103 Total Volumr~3OOpl

519

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 0 2 4 6 8 IO 0 2 4 6 8 ,o 12

MlCRclGRAMS nNT,GEN noLm

FIG. 2. Precipitation by human anti-B (subject 310,) of the most active B fractions and standard human blood group B substance, Beach phenol insoluble. Arrows and numbers refer to micrograms of antigen required to precipitate 50% of the maximum amount of N precipitated by the Beach standard. (01, Phenol insoluble; (01, 10% 2x, (V), 20% from 2nd 10%; (r), 10% from 1st 20%; (01, 20% 2x. In (e) are precipitation data with the B-active and non-B-active combined materials.

B LOTUS ECTIN 6.2pg N Total Volume- 225)d

3 HORSE II PEPSIN CYGESTED HORSE II PROMSE ‘VGESTED

f FIG. 3. Quantitative precipitin curves of the lec-

tin from Lotus tetrugonolobus with fractions from pepsin- or Pronase-digested portions of strongly H- active mucose 11. (01, Standard H substance, JS phenol insoluble (2); (O), phenol insoluble; CO), 10% 2x; (V), 20% from 2nd 10%; (r), 10% from 1st 20%; CO), 20% 2x and (+l, 25%.

in dialysates of pepsin or Pronase digests. Highly B-active substances were obtained from mucosa 8 by either enzyme, though the pepsin-treated materials were slightly more active in inhibition of hemagglutina- tion. H-active blood group substances of equal potency were obtained from both por- tions of mucosa 11.

The most active B fractions in inhibition of hemagglutination, designated by an as- terisk (*) in Table Ia, were tested with the same anti-B serum for their precipitating abilities. The results are shown in Fig. 2. Figure 2a is a precipitin curve with the standard human B substance, Beach

phenol insoluble. The quantity of antigen precipitating 50% of the nitrogen precipi- tated by the Beach standard is indicated for each curve by an arrow and a number. Fractions from both digestions are as ac- tive as the standard. The somewhat weaker inhibition of B hemagglutination by Pronase-digested fractions from mucosa 8 as compared with pepsin-digested por- tions is associated with precipitation of somewhat less total nitrogen at the maxi- mum, although. no difference was noted in the quantities needed to precipitate 50% of the total specific precipitate nitrogen. The phenol-insoluble fraction from Pro- nase digestion of mucosa 3 (Fig. 24 was unchanged in precipitating ability by sub- sequent peptic digestion (Fig. 2d). The non-B-active material (Fig. 2e) precipi- tated a small amount of antibody nitrogen but much less than any of the B-active substances.

Figure 3 shows results of the precipita- tion of Lotus lectin by pepsin- and Pro- nase-digested fractions of H-active mucosa 11; both were equal in precipitating ability to the standard human H substance, JS phenol insoluble. In antigen excess the Pro- nase-digested portions tended to go into the inhibition zone more readily.

Table IV demonstrates the effect of pep- sin digestion on the phenol-insoluble frac- tion of the Pronase-digested portion of mu-

Page 11: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

520 NEWMAN AND KABAT

cosa 8; the solubility of the material in 90% phenol was not altered; all active material remained phenol insoluble. Some protein was removed as indicated by the lower total and peptide nitrogen. No significant changes in the hemagglutination inhibit- ing (Table II) or precipitating power (Fig. 2d) were found, nor were there significant changes in sugar composition.

Figure 4 shows precipitation curves with Con A and all fractions of Table Ia relative to a standard dextran. There is substantial variation in the degree of reactivity of the individual horse fractions with Con A. This was unrelated to method of digestion (Figs. 4b, c, f and g); some are almost as good as the standard dextran (Figs. 4f, g, h and j) while others are considerably less active. In most instances the 10% 2x frac- tions are the most potent (Figs. 4a, d, f, j and 1). There is no association between Con A reactivity and blood group specific- ity. Some fractions, most frequently the phenol insoluble (Figs. 4a, c and d) and 25% (Figs. 4f, k and 1) showed negligible or

low Con A activity. No consistent associa- tion was observed between Con A reactiv- ity and either hexosamine or N-acetylhex- osamine content.

DISCUSSION

The findings confirm earlier studies (1, 16) showing that some horse gastric mu- cosae are a good source of blood group B- active substances roughly similar in their chemical and immunochemical properties to human saliva (1) and ovarian cyst blood group B substances (17, 40, 41). Other mu- cosae yielded strongly H-active, weakly A- or H-active and inactive products. No Lewis activities were found. All precipi- tated with Con A and thus are similar to blood group substances from hog gastric mucosae (32, 42). H activity in horse mu- cosae was not detected in an earlier study (11, but the reagent used was goat anti- Shiga serum absorbed with A,B cells and not the Ulen europeus orLotus tetragonolo- bus lectins. Hence the three of six mucosae designated as inactive might have been H-

TABLE IV

EFFECT OF PEPSIN DIGESTION ON PHENOL-INSOLUBLE FRACTION OF PRONASE-DIGESTED B-ACTIVE HORSE 8

Yield (mg) after pepsin digestion and refractionation (starting material 125 mgl

Phenol in- 10% 104 2x 20% from 2nd 10% from 20% 2x Total Recoverv soluble Phenol in-

soluble 10% 1st 20% (VI) ”

65.2 2.8 7.8 0.3 1.9 2.1 80.1 64

Percent composition of phenol-insoluble fractions

Total Peptide Methyl- Hexose Hexos- N-ace- Galactos- N N pentose (galactose) amine ty1- amine

hexos- amine

Pronase digested 5.1 3.6 11.3 26.2 19.4 22.8 7.7 Pepsin + Pronase digested 4.4 2.7 10.6 27.6 22.5 26.8 8.3

Minimum concentration (pg/ml) of each phenol insoluble fraction required for complete inhibition of hemagglutination

Activity B A H

Pronase digested Pepsin + Pronase digested Standard

19 >I230 68 17 >1280 68

6.3" 1.6" 6.3'

II Standard B substance, Beach phenol insoluble. D Standard A substance, MSM. f Standard H substance, hog 25.

Page 12: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

HORSE BLOOD GROUP-ACTIVE GLYCOPROTEINS 521

CONCANAVALIN A 8.INg N Total Volume = 260~11

nOmE 7 HORSE 8 8 HORSE HORSE 9 PRONASE DIGESTED PEPSIN DIGESTED PRONASE OIGESlEO PRONASE DIGESTED

PEPSIN DIGESTED

7 PEPSIN DIGESTED

. ---

PEPSIN DlGES

FIG. 4. Quantitative precipitin curves of concanavalin A with blood group fractions from horse mucosae (Tables Ia and II). Dextran B 1355-S-4 is included as a standard in (a) (0) (30). CO), Phenol insoluble; (x), 10% phenol insoluble; (01, 10% 2x; CO), 20% from 2nd 10%; (r), 10% from 1st 20%, CO), 20% 2x and (+), 25%.

active. Only one of ten mucosae in the present study showed no A, B or H activ- ity.

The range of analytical values for the fractions as outlined in Table Ib is quite large, in agreement with earlier findings (1). The most highly B-active fractions tended to show higher carbohydrate con- tents, especially methylpentose and galac- tose. In the previous investigation (1) only one horse B fraction of 30 mg had a methyl- pentose content of 9.3%, the next highest value being 6.9%. Table Ia shows that at least six H-active fractions from three mu- cosae isolated in amounts of 84-153 mg had methylpentose contents of 9.2-11.3%. The next highest in methylpentose content was H-active mucosa 11; inactive mucosa 10 had the lowest values. This decrease suggests the existence of a genetic system involving precursor I, H- and B-active horse mucosae analogous to that in hu- mans (43-46). Moreover, no evidence of fucose being split off was found either by examination of dialysates from digestions or by differences in methylpentose con- tents of the pepsin- and Pronase-treated purified substances from individual mu- cosae. Pepsin digestion appears satisfac-

tory, but Pronase digestion has been used effectively with porcine submaxillary mu- tin (471, ovarian cyst and other glycopro- teins (48, 49) and is as satisfactory as pep- sin for horse gastric mucosae.

Yields of purified blood group substance are comparable to those in the previous study (1); no differences related to method of digestion were observed. Horse mate- rials differ from human ovarian cyst blood group substances of the same specificity in containing more peptide nitrogen and less methylpentose. The range in carbohydrate composition of different cysts (18) is nar- rower than that for horse mucosae.

It should be emphasized that a substan- tial contribution to the wide range in com- position of different mucosae is made by the different A, B, H and Con A specific- ities, each of which is associated with dif- ferent sugars.

The most active B materials are compa- rable to the standard human ovarian cyst substance in quantitative precipitation. Highly H-active blood group substance from mucosa 11 was as potent as human H substance in quantitative precipitation with the Lotus lectin and equivalent to hog H substance in inhibition of hemagglu-

Page 13: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

522 NEWMAN AND KABAT

tination with the Ulex lectin. The most active B materials were isolated most of- ten in the phenol-insoluble and 10% 2x fractions from Pronase digests and from the 10% 2x and 20% from 2nd 10% frac- tions of pepsin digests. This difference based upon method of digestion was not seen in substances with A or H activities or with no activity. The most active Pro- nase-digested B materials tended to show somewhat lower peptide nitrogen.

Mucosae with strong B and/or H activ- ites contain significantly higher amounts of carbohydrate and lower amounts of pep- tide nitrogen than those with weak A or H activities. The high H reactivity with the Lotus lectin in all but one fraction from mucosa 11 would indicate the presence of type 2 chains (44) in horse mucosae with the following structure: ~Fucal - 2nGalPl -+ 4oGlcNAc.... (33).

Results with Con A extend earlier obser- vations on its reactivity with hog stomach A and H materials (32, 421, human gastric aspirates, saliva (50) and group 0 erythro- cyte membrane glycoprotein (51) and its failure to react with human ovarian cyst blood group substances (50). Most horse fractions reacted with Con A, probably in- dicating, as for other blood group sub- stances (32, 421, the presence of terminal nonreducing a-linked DG~cNAc; heteroge- neity of fractions with respect to this pa- rameter is present since the 10% 2x frac- tions were generally the most active, with considerable variation among the others and some showed negligible activity (Fig. 4).

Of interest is the finding that pepsin digestion of the phenol-insoluble fraction from Pronase-digested mucosa 8 did not alter the solubility in 90% phenol; after refractionation all active material re- mained phenol insoluble. Pepsin digestion of crude blood group substance will usually solubilize phenol-insoluble material (17). Purified blood group substance that is al- ready insoluble in 90% phenol presumably contains a minimum of peptide material; the additional peptide removed by pepsin left its insolubility in phenol unaltered. Consistent with an earlier study on horse mucosae Cl), little phenol-insoluble mate-

rial was isolated from peptic digests of horse gastric mucosae.

ACKNOWLEDGMENT

The expert technical assistance of Mr. Jerry Liao is gratefully acknowledged.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. 11.

12.

13.

14.

15.

16.

17.

18.

19.

REFERENCES

BAER, H., KABAT, E. A., AND KNAUB, V. (1950)

J. Exp. Med. 91, 105-114.

SCHIFFMAN, G., KABAT, E. A., AND THOMPSON, W. (1964) Biochemistry 3, 113-120.

IYER, R. N., AND CARLSON, D. M. (1971) Arch. Biochem. Biophys. 142, 101-105.

LUDOWIEG, J. AND BENMAMAN, J. D. (1967) Anal. Biochem. 19. 80-88.

GINSBURG, V. (1972) in Methods in Enzymology (Ginsburg, V., ed.), Vol. 38, Part B, pp. 3-201, Academic Press, New York.

CLAMP, J., BHATTI, T., AND CHAMBERS, R. (1972) in Glycoproteins (Gottschalk, A., ed.), 2nd ed., Part A, pp. 300-321, Elsevier, Amster- dam.

ROVIS, L., ANDERSON, B., KABAT, E. A., GRUEZO, F., AND LIAO, J. (1973) Biochemistry 12, 53405354.

LONNGREN, J., AND SVENSSON, S. (1974) in Ad- vances in Carbohydrate Chemistry (Tipson, R. S., and Horton, D., eds.), Vol. 29, pp. 42- 106, Academic Press, New York.

STELLNER, K., AND HAKAMORI, S. (1974) in Meth- odologie de la Structure et du Metabolisme des Glycoconjugues, pp. 95-109, Centre Na- tional de la Recherche Scientifique, Paris.

SCOTT, C. D. (1974) Science 186, 226-233. SCOTT, C. D., JOLLEY, R. L., PITT, W. W., AND

JOHNSON, W. F. (1970) Amer. J. Ctin. Pathol. 53, 701-712.

KATZ, S., DINSMORE, S. R., AND PITT, W. W. (1971) Clin. Chem. 17, 731-743.

BELUE, G. P., AND MCGINNIS, G. D. (1974) J. Chromatogr. 97, 25-31.

WITEBSKY, E., KLENDSHOJ, N. C., AND MCNEIL,

C. (1944) Proc. Sot. Exp. Biol. Med. 55, 167- 170.

WITEBSKY, E. (1946) Ann. N. Y. Acad. Sci. 46, 887-898.

KAZAL, L. A., HIGASHI, A., BRAHINSKY, R., DE-

YOUNG, M., AND ARNOW, L. E. (1947) Arch. B&hem. 13, 329-342.

KABAT, E. A. (1956) Blood Group Substances, Their Chemistry and Immunochemistry, Aca- demic Press, New York.

WATKINS, W. M. (1972) in Glycoproteins (Gotts- chalk, A., ed.), 2nd ed., Part B, pp. 830-891, Elsevier, Amsterdam.

EYQUEM, A., PODLIACHOUK, L., AND MILLOT, P. (1962) Ann. N. Y. Acad. Sci. 97, 320-328.

Page 14: Immunochemical studies on blood groups: Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae

HORSE BLOOD GROUP-ACTIVE GLYCOPROTEINS 523

20. SKORYNA, S. C., AND WALDRON-EDWARD, D.

(1967) <Ann. N. Y. Acad. Sci. 140, 835-847. 21. LOFQVIST, B., AND SJOBERG, L. (1971) Actu

Chem. Scund. 25, 1663-1678. 22. SPIRO, R. G. (1966) in Methods in Enzymology

(Neufeld, E. F., and Ginsburg, V., eds.), Vol. 8, pp. ‘29-30, Academic Press, New York.

23. KABAT, 15. A. (1961) Kabat and Mayer’s Experi- mental Immunochemistry, 2nd ed., C. C Thomas, Springfield, Ill.

24. MORGAN, W. T. J., AND KING, H. K. (1943) Bio- them. J. 37, 640-651.

25. ALLEN, F’. Z., AND KABAT, E. A. (1959)5. Immu- nol. 82, 340-357.

26. MORENO, C., AND KABAT, E. A. (1969) J. Exp. Med. 129, 871-896.

27. BERKMAN, E., NUSBACHER, J., KOCHWA, S., AND ROSENFIELD, R. E. (1971) Transfusion 11,317- 332.

28. BAR-SHANY, S., BEN-DAVID, A., NUSBACHER, J., SZYMANSKI, I., KOCHWA, S., AND ROSENFIELD,

R. E. (1970) Ann. N. Y. Acad. Sci. 169, 217- 224.

29. AGRAWAL, B. B. L., AND GOLDSTEIN, I. J. (1967) B&him. Biophys. Acta 147, 262-271.

30. JEANES, A., HAYNES, W. C., WILHAM, C. A., RANKIN, J. C., MELVIN, E. H., AUSTIN, M. J., CLUSKEY, J. E., FISHER, B. E., TSUCHIYA, H. M., APED RIST, C. E. (1954) J. Amer. Chem. Sot. 76, 5041-5052.

31. So, L. L., AND GOLDSTEIN, I. J. (1467) J. Biol. Chem. 242. 1617-1622.

32. LU)YD, K. O., KABAT, E. A., AND BEYCHOK, S.

(1969) ,J. Immunol. 102, 1354-1362. 33. PEREIRA., M. E. A., AND KABAT, E. A. (1974)

Biochemistry 13, 3184-3192. 34. WARREN, L. (1959) J. Biol. Chem. 234, 1971-

1975. 35. SCHIFFMAN, G., KABAT, E. A., AND LESKOWITZ,

S. (1960) J. Amer. Chem. Sot. 82, 1122-1127.

36. BENDICH, A., KABAT, E. A., AND BEZER, A. E. (1947) J. Amer. Chem. Sot. 69, 2163-2167.

37. KABAT, E. A., AND LESKOWITZ, S. (1955) J. Amer. Chem. Sot. 77, 515995164.

38. LU)YD, K. O., KABAT, E. A., AND LICERIO, E. (1968) Biochemistry 7, 2976-2990.

39. NEWMAN, W., AND KABAT, E. A. (1976) Arch. Biochem. Biophys. 172, 524-534.

40. WATKINS, W. M., AND MORGAN, W. T. J. (1962) VOX Sung. 7, 129-150.

41. PUSZTAI, A., AND MORGAN, W. T. J. (1961) Bio- them. J. 80, 107-121.

42. ETZLER, M. E., ANDERSON, B., BEYCHOK, S., GRUEZO, F., LLOYD, K. O., RICHARDSON, N. G., AND KABAT, E. A. (1970) Arch. Biochem. Biophys. 141, 588-601.

43. CEPPELLINI, R. (1959)in Ciba Foundation Sympo- sium Biochemistry of Human Genetics (Wol- stenholme, G. E. W., and O’Connor, C. M., eds.), pp. 242-263, Churchill, London.

44. WATKINS, W. M., AND MORGAN, W. T. J. (1959) VOX Sang. 4.97-119.

45. WATKINS, W. M. (1970) in Blood and Tissue Anti- gens (Aminoff, D., ed.), pp. 441-459, Aca- demic Press, New York.

46. GINSBURG, V. (1972) in Advances in Enzymology (Meister, A., ed.), Vol. 36, pp. 131-149, Wiley, New York.

47. PAYZA, N., RIZVI, S., AND PIGMAN, W. (1969) Arch. Biochem. Biophys. 129, 68-74.

48. LAMPORT, D. T. A. (1969) Biochemistry 8, 1155- 1163.

49. DONALD, A. S. R. (1973) B&him. Biophys. Acta 317,420-436.

50. CLARKE, A. E., AND DENBOROUGH, M. A. (1971) B&hem. J. 121, 811-816.

51. FUKUDA, M., AND OSAWA, T. (1973) J. Biol. Chem. 248, 5100-5105.

52. MARCUS, D. M., AND GROLLMAN, A. P. (1966) J. Immunol. 97, 867-875.