21
AIT Austrian Institute of Technology University for Natural Resources and Life Sciences Vienna, Austria LFZ Klosterneuburg AGES Wien Immobilization of copper in vineyard soils – the role of the organic additives biochar and compost Gerhard Soja, Franz Zehetner, Katharina Keiblinger, Franz Rosner, Florian Faber, Georg Dersch, Vladimir Fristak

Immobilization of copper in vineyard soils – the role of ... · Austrian standardfor agricultural / horticultural soils: 100 mg Cu kg-1. Potential benefits of organic addives (compost,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • • AIT Austrian Institute of Technology • University for Natural Resources and Life Sciences Vienna, Austria• LFZ Klosterneuburg• AGES Wien

    Immobilization of copper in vineyard soils –the role of the organic additives

    biochar and compost

    Gerhard Soja, Franz Zehetner, Katharina Keiblinger, Franz Rosner,Florian Faber, Georg Dersch, Vladimir Fristak

  • The Bordeaux mixture:Cu as active ingredientinhibits the germination offungal spores – preventiveaction

    Pre-WW II: Cu input rates tovineyard soils reached levels up to50 kg ha-1 yr-1

    2Source: Gallica Digital Library

  • Cu-concentrations in the soils ofAustrian wine-growing regions Analytical Basis

    comprehensive soil analysis survey about Cu-concentrations in agricultural regions

    EDTA-extractable Cu (= exchangeable Cu) 75 % percentile for all analytical results: 61-75 EDTA-Cu (mg.kg-1) in

    the most important wine growing regions (=11 000 of 45 000 ha vineyards)

    3Source: www.oewm.at; Berger et al., 2012

  • The Wachau valley of the riverDanube 26 % of Wachau vineyard soils show >150 mg Cu kg-1 (= 390 ha;

    Berger et al., 2012)

    4

    Austrian standard foragricultural / horticulturalsoils: 100 mg Cu kg-1

  • Potential benefits of organic addives(compost, biochar)

    Reduction of Cu-availability (= general project objective): Lower ecotoxicity for soil cover crops or for re-planting of a new

    vineyard Higher activity for soil life, including rhizobia

    Increase of soil organic matter (Corg): Erosion reduction, better infiltration Higher water storage capacity Carbon sequestration Hypothesis: lower release of spores of soil fungi

    5

  • Methodology of the research projectKUSTAW (copper stabilization in vineyard soils)

    Lab experiments Sorption behaviour Microbiological effects

    Greenhouse pot experiment Additive combinations Cu-translocation, 1 vine + soil cover crops

    Field experiment 1 Application technology

    Field experiment 2 Cu-translocation to soil cover crops, soil microbiology, phytopathology,

    grape and wine analysis

    6

  • 7

    (sandy soil, pH 7.3) (soil rich in Corg, pH 6.5)

    Source: Deinhofer, 2015

    Lab results I:Effects of different additives on exchangeable Cuand ionic Cu

    Effect of pH-shift: clearer Cu-reductionsin more acidic soil

    In acidic soil reductionof ionic Cu is still more apparent than ofexchangeable Cu

  • 8

    3.0

    3.5

    4.0

    4.5

    5.0

    0 65 130 251

    Qeq

    (mg

    g-1 )

    DOC (mg L-1)

    Rossatz Rossatz + 3% BC

    4.0

    4.5

    5.0

    5.5

    6.0

    0 65 130 251

    Qeq

    (mg

    g-1 )

    DOC (mg L-1)

    Stroh Stroh + 3% BC

    Grey columns: soil onlyRed columns: soil + 3 % biochar

    DOC was added as extract ofhumic acids from forest litter, in combination with 300 mg Cu l-1

    More DOC more complexesmore sorption to soil-clay mineralcomplexes

    Source: Bell, 2016

    Lab results II:Analysis of Cu-DOC sorption interactions

    (sandy soil, pH 7.3)

    (soil rich in Corg, pH 6.5)

  • Greenhouse pot experiment

    2 soils, differing in pH (6.5 and 7.3) elevated copper (110 and 251 mg EDTA-Cu kg-1) humus (5.0 vs. 1.5 % SOM)

    8-10 treatments each n = 4 Seepage water collection with suction plate

    9

  • 10

    PLFA used as indicator formicrobiological activity Additives were more beneficial

    in the sandy soil, poor in Corg Some enzymes (e.g.

    peroxidase) are moreexpressed if there is an easilyavailable C source at themodified biochar surface

    Pot experiment:Effects of different additives on soilenzymatic activity

    Source: Johnen, 2015

    (sandy soil, pH 7.3)

    (soil rich in Corg, pH 6.5)

    (sandy soil, pH 7.3)

    (soil rich in Corg, pH 6.5)

  • 11

    Source: Keiblinger, 2016

    y = 1152.4x‐0.603R² = 0.9689

    0

    100

    200

    300

    400

    500

    600

    700

    0 1000 2000 3000 4000EDTA‐Cu

    Acremonium OTUs L‐soil

    y = 8489x‐0.228R² = 0.8219

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    0 1000 2000 3000 4000EDTA‐Cu

    Fusarium OTUs L‐soil

    y = 4345.8x‐0.711R² = 0.831

    0

    500

    1000

    1500

    2000

    2500

    0 1000 2000 3000 4000EDTA‐Cu

    Dactylonectria OTUs L‐soil

    y = 13.772x0.6327R² = 0.9035

    0

    500

    1000

    1500

    2000

    2500

    3000

    0 1000 2000 3000 4000EDTA‐Cu

    Plectosphaerella OTUs D‐soil

    y = 0.1326x1.0573R² = 0.9025

    0

    200

    400

    600

    800

    1000

    1200

    1400

    0 1000 2000 3000 4000EDTA‐Cu

    Pseudogymnoascus OTUs D‐soil

    0

    2000

    4000

    6000

    8000

    10000

    12000

    1 10 100 1000 10000Cu EDTA

    Thelebolus OTUs L‐soil

    Wurzel PathogeneWurzel‐ und Pflanzen Pathogene

    Pflanzenparasiten, Endophyten & Biocontrol

    Saprotrophe & Ericoide Mykorrhiza

    Saprotrophe

    Wurzel Pathogene

    Correlation soil fungi and soil Cu-concentration

  • 12

    Cu speciation in Cu-impacted soilwith organic additives

    Cu in 0.01 M CaCl2 Soil pH = 7.3 Proportion of Cu2+ (Visual Minteq)

    Source: Deinhofer, 2015

  • Seepage water analysis from the pot experiment

    13

    01020304050607080

    DOC [m

    g l‐1]

    Additive

    DOC in seepage water (2nd sampling)

    01020304050607080

    DOC [m

    g l‐1]

    Additive

    DOC in seepage water (1st sampling)

    Total Cu in seepage water 2

    Cu2+ in seepage water 2

    Green: sandy neutral soil; blue: acidic soil, rich in Corg

    Sou

    rce:

    Cha

    mie

    r-Glis

    czin

    ski,

    2016

  • 14

    Field experiment 1 (application technique): before soilincorporation

    Field experiment 1 (application technique): after soilincorporation

  • Effects of different soil incorporation techniques on soil bulkdensity (biochar : compost = 1 : 1 (40 t ha-1))

    15

    Bodenfräse Grubber Spatenpflug oberfl. Aufbringung Kontrolle

    Lage

    rung

    sdic

    hte

    [g/c

    m3 ]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6a a bab ab

    Rotary hoe tooth cultivator spade plough surface spread no application

  • 16

    Field experiment 2: additive comparison

    ControlBiochar

    Biochar:Compost = 1:1Biochar:Compost = 1:1

    Compost

  • Green cover crops in the field 2015: Biochar reduced Cu uptake into the rootsbut not in combination with compost

    17

    0

    20

    40

    60

    80

    100

    120

    140

    Control Biochar (BC) Compost (CP) BC/CP 4 kgm‐2

    BC/CP 10 kgm‐2

    Copp

    er[m

    g kg

    ‐1  ]

    Cu in Trifolium repens roots

    Source: Chamier-Glisczinski, 2016

  • Green cover crops in the field 2016: Biochar again reduced Cu uptake into the rootsbut not to above-ground parts

    18

    Copper in green cover crops: Lolium perenne

    Contr

    olCo

    mpos

    t

    4 kg/m

    ² mixt

    ure

    10 kg

    /m² m

    ixture

    Bioch

    ar

    Contr

    olCo

    mpos

    t

    4 kg/m

    ² mixt

    ure

    10 kg

    /m² m

    ixture

    Bioch

    ar

    Cu

    (mg

    / kg)

    0

    20

    40

    60

    80

    100

    120

    140c c c c c a ab a bc ab

    L E A V E S R O O T S

    Sou

    rce:

    Mlin

    kov,

    201

    6

  • 19

    Sequential extraction of Cu from rhizosphere soil after 13 months in the field

    Contr

    ol

    Comp

    ost

    4 kg/m

    ² mixt

    ure10

    kg/m

    ² mixt

    ure

    Bioch

    ar

    % o

    f tot

    al C

    u

    0

    10

    20

    30

    40

    50

    60

    a ab ab b ab

    acid-exchangeable fraction (weak acetic acid)

    Contr

    ol

    Comp

    ost

    4 kg/m

    ² mixt

    ure10

    kg/m

    ² mixt

    ure

    Bioch

    ar

    % o

    f tot

    al C

    u

    0

    10

    20

    30

    40

    50

    60a ab b b b

    reducible fraction (hydroxyl amine)

    Contr

    ol

    Comp

    ost

    4 kg/m

    ² mixt

    ure10

    kg/m

    ² mixt

    ure

    Bioch

    ar

    % o

    f tot

    al C

    u

    0

    10

    20

    30

    40

    50

    60ab b ab ab a

    residual fraction (aqua regia)

    Contr

    ol

    Comp

    ost

    4 kg/m

    ² mixt

    ure10

    kg/m

    ² mixt

    ure

    Bioch

    ar

    % o

    f tot

    al C

    u

    0

    10

    20

    30

    40

    50

    60b a a a a

    oxidizable fraction (hydrogen peroxide)

    Biochar reduced theproportionof Cu in themoreavailablefractions

    Sou

    rce:

    Mlin

    kov,

    201

    6

  • Soil characteristics determine the efficacy of different additive applications: especially pH, Corg-content

    Complexation of Cu with soil organic matter determines theavailability of Cu

    Surface modification of biochar was less important for Cusorption than the organic complexation option

    Additives have more benefits for reducing theecotoxicologically relevant Cu2+ fraction, but not the mobile fraction of total Cu

    Effects appear clearer in acidic soils than in neutral soils Biochar without compost or high doses of biochar/compost

    mixtures in the field reduce Cu uptake into the roots of covercrops

    20

    Conclusions (and outlook)

  • 21

    Thank youfor your attention!