34
Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective. Rubén Pérez Nanomechanics & SPM Theory Group Departamento de Física Teórica de la Materia Condensada http://www.uam.es/ruben.perez http://www.uam.es/ruben.perez NanoSpain, Zaragoza March 9-12th 2009

Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective.

Rubén PérezNanomechanics & SPM Theory Group

Departamento de Física Teórica de la Materia Condensadahttp://www.uam.es/ruben.perezhttp://www.uam.es/ruben.perez

NanoSpain, Zaragoza March 9-12th 2009

Page 2: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

1. Nanomechanics & SPM Theory Group: Forces & Transport in Nanostructures with ab initio methods

Outline

2. “Tip-Induced Reduction of the Resonant Tunneling Current on Semiconductor Surfaces”

Phys. Rev. Lett. 101, 176101 (2008)

3. “Fullerenes from Aromatic Precursors by Surface

4. “Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force Microscopy”

Science 322, 413 (2008)

3. “Fullerenes from Aromatic Precursors by Surface Catalysed Cyclo-dehydrogenation”

Nature 454, 865 (2008)

Page 3: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Forces & Transport in Nanostructures: First-principles calculations

Page 4: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Methodology

Ab-initio total energy methods Non-equilibriumGreen’s Functions(based in Density

Functional Theory)

“The computer is a tool for clear thinking” Freeman J. Dyson

both plane wave & local orbital basis:accuracy/efficiency balance

Linked with the local orbital description

Structure + electronic properties Electronic transport

FIREBALL, OPENMXCASTEP, VASP

Page 5: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

“Tip-Induced Reduction of the Resonant Tunneling Current on Semiconductor Surfaces”

Phys. Rev. Lett. 101, 176101 (2008)

Ab initio Simulations:

UAM: P. Pou, R. PerezUAM: P. Pou, R. Perez

FZU(Prague): P. Jelinek

STM Experiments:

FZU (Prague): M. Švec, V. Chab

Page 6: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Atomic contact: metalsAtomic contact: metals�� metal metal susurfacesrfaces -- monotonicmonotonic

increaseincrease of the of the conductanceconductanceobserved while observed while approaching the tip approaching the tip to the sampleto the sample

�� transition to the contacttransition to the contactrelated relaxation of the atomsrelated relaxation of the atoms

�� correlationcorrelation between between mmultiple ultiple scatteringscattering effects and effects and SR forces:SR forces:no no longerlonger exponetial behavior exponetial behavior no no longerlonger exponetial behavior exponetial behavior

semiconductorsemiconductor surfaces surfaces –– almost almost no informationno informationJ.Krőger et. al. New Journal of Physics 9 153 (2007)

Al(111) surfaceAl(111) surface

J.M. Blanco et. al. PRB 70 085405 (2004)

Page 7: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Conductance dropConductance drop: summary: summary

Same sessionSame session

�� well well reproducible during different sessionsreproducible during different sessions�� observable only observable only at small bias voltage at small bias voltage �� tip structure slightly modify the shape but not the featuretip structure slightly modify the shape but not the feature�� observed at observed at both polaritiesboth polarities and and both scan zboth scan z--directions directions of tipof tip�� before jump almost exponential behaviorbefore jump almost exponential behavior

P. Jelinek et. al. PRL 101, 176101 (2008)

Page 8: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

DFT simulation: DFT simulation: CoACoA Si7x7 + tip W Si7x7 + tip W �� distortion of the local structure of the tip distortion of the local structure of the tip

and sample at short distances and sample at short distances �� reversible process reversible process �� attractive attractive shortshort--range force onsetrange force onset

corresponds to the corresponds to the drop in the drop in the conductance conductance

Conductance and force: Si corner Conductance and force: Si corner adatomadatom

Conductance & short-range force Conductance & Si ad. displacement

Page 9: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Electron density along the pathElectron density along the path•• chemical interaction between the chemical interaction between the

tip and sample changes the tip and sample changes the position of Si dangling bonds near position of Si dangling bonds near the Fermi levelthe Fermi level

→→ direct impact on the tunnelling direct impact on the tunnelling current along the tipcurrent along the tip--sample sample distancedistance

Isosurfaces of 0.05 e/Å3

P. Jelinek et. al. PRL 101, 176101 (2008)

Isosurfaces of 0.05 e/Å3

in the energy range EF, EF-0.4 eV

6.0 Å 4.75 Å4.5 Å 3.0 Å

Charge transfer to restatoms Charge depletion on adatom

Page 10: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

“Fullerenes from Aromatic Precursors by Surface-catalysed Cyclodehydrogenation”

Nature 454, 865 (2008)

Ab initio Simulations:

UAM: G. Biddau, M. Basanta, J. Ortega, R. Perez

Surface Science:

ICMM (CSIC): G. Otero,C. Sanchez-Sanchez, R. Caillard, M.F.Lopez, C. Rogero, F.J. Palomares, J. Mendez, J.A. Martin-Gago

Chemistry:

ICMM (CSIC): B. Gomez-Lor

ICIQ: N. Cabello, A.M. Echevarren

Page 11: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

C60C

57N

3

Objective and motivationsObjective and motivations

OBJECTIVE: Study and efficient synthesis fullerenes and triazafullerenes

OBJECTIVE: Study and efficient synthesis fullerenes and triazafullerenes

MOTIVATIONS:microelectronics, superconductivity,corrosion resistence, non linear optics,organic ferromagnetism...

MOTIVATIONS:microelectronics, superconductivity,corrosion resistence, non linear optics,organic ferromagnetism...

Triazafulleres: none

Triazafulleres: none

1] Scotts et al., Science 295, 1500-1503 (2002)

Available synthesis methods:

Fullerenes: - Graphite Vaporization

(uncontrolled)

- Through dehydrogenation1

(low efficiency)

Fullerenes: - Graphite Vaporization

(uncontrolled)

- Through dehydrogenation1

(low efficiency)

Page 12: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

The ProcessThe Process

VACUUM THERMAL EVAPORATION

FULLERENE AND TRIAZAFULLERENESAdsorption process

Cyclodehydrogenation

ANNEALING (750 K)

FULLERENE AND TRIAZAFULLERENES

Efficiency ~100%Adsorption process

G.Otero et al., Nature 454, 865 (2008)

Page 13: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

“Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force

Microscopy”Science 322, 413 (2008)

Ab initio Simulations:

UAM: P. Pou, R. PerezUAM: P. Pou, R. Perez

FZU(Prague): P. Jelinek

AFM Experiments:

Osaka University:Y. Sugimoto, M. Abe, S. Morita

NIMS (Tsukuba, Japan): O. Custance

Page 14: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Dynamic AFM

http://monet.physik.unibas.ch/famars/afm_prin.htm

Page 15: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Dynamic AFM: Our GoalWhy changes observed in the dynamic properties of a vibrating cantilever with a tip that interacts with a surface make possible to:

•Resolve atomic-scale defects in UHV.

• Obtain molecular resolutionimages of biological samples in ambient conditions.

AM-dAFM

FM-dAFM

R. García and R. Pérez, Surf. Sci. Rep. 47, 197 (2002)

Page 16: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Ad1

Ad1

Ad1Ad2

Ad2

Ad2Re1 H3

Dynamic Force Spectroscopy: Access to Fts

Inversion Inversion algorithms

U. Durig, APL 76, 1203 (2000)

F.J. Giessibl, APL 78, 123 (2001)

J. E. Sader & S. P. Jarvis, APL 84, 1801 (2004).

1111 2222 3333 4444 5555 6666 7777 8888 9999-1,8-1,8-1,8-1,8

-1,6-1,6-1,6-1,6

-1,4-1,4-1,4-1,4

-1,2-1,2-1,2-1,2

-1,0-1,0-1,0-1,0

-0,8-0,8-0,8-0,8

-0,6-0,6-0,6-0,6

-0,4-0,4-0,4-0,4

-0,2-0,2-0,2-0,2

0,00,00,00,0

0,20,20,20,2

0,40,40,40,4

Exp. Adatom 2Exp. Adatom 2Exp. Adatom 2Exp. Adatom 2 Exp. Restatom 1xp. Restatom 1xp. Restatom 1xp. Restatom 1 Exp. H3Exp. H3Exp. H3Exp. H3

Short-range Force (nN)

Short-range Force (nN)

Short-range Force (nN)

Short-range Force (nN)

TTTTip-surface Distance (ip-surface Distance (ip-surface Distance (ip-surface Distance (ÅÅÅÅ))))

SR forces amenable to ab initio calculations

Page 17: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Recent developments in FM-AFM1. DISSIPATION: Characterizing the tip structure and identifying a dissipation channel due to single atomic contact adhesion.

N. Oyabu et al. Phys. Rev. Lett. 96, 106101 (2006).

2. IMAGING: changes in topography: access to the real surface structure?

Y. Sugimoto et al Phys. Rev. B 73, 205329 (2006).

1111 2222 3333 4444 5555 6666 7777 8888 9999

-0.2-0.2-0.2-0.2

0.00.00.00.0

0.20.20.20.2

0.40.40.40.4

0.60.60.60.6

0.80.80.80.8

1.01.01.01.0

1.21.21.21.2

1.41.41.41.4

1.61.61.61.6

Exp. Adatom 2 Exp. Restatom 1 Exp. H3

Disspation (eV

per Cycle)

Disspation (eV

per Cycle)

Disspation (eV

per Cycle)

Disspation (eV

per Cycle)

TTTTip-surface Distance (ip-surface Distance (ip-surface Distance (ip-surface Distance (ÅÅÅÅ))))

Ad1

Ad1

Ad1Ad2

Ad2

Ad2Re1 Re2 H3

3. CHEMICAL IDENTIFICATION:

Y. Sugimoto et al Nature 446, 64 (2007).

-6.3 fN√m -7.3 fN√m -8.4 fN√m

based on the relative interaction ratio of the maximum attractive force measured by dynamic force spectroscopy

Page 18: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Recent developments in FM-AFM

4. LATERAL MANIPULATION: Si vacancy on Si(111)-7x7 (tip assisted thermal hopping)

Understanding RT DFM-based single-atom manipulation

5. VERTICAL MANIPULATION:

Tip/sample exchange of atoms on Sn/Si(111)

Y. Sugimoto et al. Phys. Rev. Lett. 98, 106104 (2007).

Y. Sugimoto et al., Science 322, 413 (2008).

αααα-Sn/Si(111)-(√√√√3x√√√√3)

Page 19: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

∆f=-7.3 Hz

Interchange vertical manipulation: Si→SnTip positioning over a selected Si atom

SiSn Sn

M. Abe, Y. Sugimoto, O. Custance, and S. Morita, Appl. Phys. Lett. 87 (2005) 173503.

M. Abe, Y. Sugimoto, O. Custance, and S. Morita, Nanotechnology 16 (2005) 3029.

Atom tracking technique

Lateral precision: ±0.1 Å

Page 20: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Tip approach toward the Si atom

Interchange vertical manipulation: Si→Sn

∆f=-7.3 Hz

SiSn Sn Sn SnSi

Sn

0000 2222 4444 6666 8888 10101010 12121212 14141414 16161616 18181818 20202020

-25-25-25-25

-20-20-20-20

-15-15-15-15

-10-10-10-10

-5-5-5-5

0000

-20-20-20-20

-15-15-15-15

-10-10-10-10

-5-5-5-5

0000

∆∆ ∆∆f

[Hz]

Z [Å]

γ γ γ γ [[[[f� √m]special shape

Ref. Typical ∆f-Z curve

jump

Page 21: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Tip retraction from the surface

∆f=-7.3 Hz

Interchange vertical manipulation: Si→Sn

∆f=-7.3 Hz

SiSn Sn Sn SnSnSn SnSi

Sn

0000 2222 4444 6666 8888 10101010 12121212 14141414 16161616 18181818 20202020

-25-25-25-25

-20-20-20-20

-15-15-15-15

-10-10-10-10

-5-5-5-5

0000

-20-20-20-20

-15-15-15-15

-10-10-10-10

-5-5-5-5

0000

∆∆ ∆∆f

[Hz]

Z [Å]

γ γ γ γ [[[[f� √m]jump

special shape

• The Si atom on the surface was interchanged with a Sn atomat the tip apex.

• The contrast of the images before and after manipulation are almost same.

Page 22: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

∆f=-7.3 Hz

Tip positioning over the previously deposited Sn atom

Interchange vertical manipulation: Sn→Si

SiSn SnSn

M. Abe, Y. Sugimoto, O. Custance, and S. Morita, Applied Physics Letters 87 (2005) 173503.

M. Abe, Y. Sugimoto, O. Custance, and S. Morita, Nanotechnology 16 (2005) 3029.

Atom tracking technique

Lateral precision: ±0.1 Å

Page 23: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Tip approach toward the deposited Sn atom

Interchange vertical manipulation: Sn→Si

Sn SnSnSn SnSn

Si

∆f=-7.3 Hz

0000 2222 4444 6666 8888 10101010 12121212 14141414 16161616 18181818 20202020

-25-25-25-25

-20-20-20-20

-15-15-15-15

-10-10-10-10

-5-5-5-5

0000

-20-20-20-20

-15-15-15-15

-10-10-10-10

-5-5-5-5

0000

∆∆ ∆∆f

[Hz]

Z [Å]

γ γ γ γ [[[[f� √m]special shape

jump

Page 24: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Tip retraction from the surface

Interchange vertical manipulation: Sn→Si

Sn SnSn

∆f=-7.3 Hz

Sn SnSn

Si

Si SnSn

∆f=-7.3 Hz

0000 2222 4444 6666 8888 10101010 12121212 14141414 16161616 18181818 20202020

-25-25-25-25

-20-20-20-20

-15-15-15-15

-10-10-10-10

-5-5-5-5

0000

-20-20-20-20

-15-15-15-15

-10-10-10-10

-5-5-5-5

0000

∆∆ ∆∆f

[Hz]

Z [Å]

γ γ γ γ [[[[f� √m]

jump

• The Sn atom on the surface was interchanged with a Si atomat the tip apex.

• The image contrast dramatically changed after atom interchange.

Page 25: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Atomic “dip-pen” nanolithography

• 11 Interchange vertical manipulations+ 1 Interchange lateral manipulation

• The construction time was reduced to 1.5 hours.SiSn

Page 26: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Reproducibility

0000 2222 4444 6666 8888 10101010 12121212 14141414 16161616 18181818 20202020-30-30-30-30-25-25-25-25-20-20-20-20-15-15-15-15-10-10-10-10-5-5-5-50000 -15-15-15-15-10-10-10-10-5-5-5-50000

∆∆ ∆∆f

[Hz]

Z [Å]

γ γ γ γ [[[[f� √m]Si →Sn

-25-25-25-25-20-20-20-20-15-15-15-15-10-10-10-10-5-5-5-50000 -15-15-15-15-10-10-10-10-5-5-5-50000

∆∆ ∆∆f

[Hz] γ γ γ γ [[[[f� √m]

Sn→Si 0000 2222 4444 6666 8888 10101010 12121212 14141414 16161616 18181818 20202020-30-30-30-30 -15-15-15-15Z [Å]

Sn→Si

0000 2222 4444 6666 8888 10101010 12121212 14141414 16161616 18181818 20202020-30-30-30-30-25-25-25-25-20-20-20-20-15-15-15-15-10-10-10-10-5-5-5-50000 -15-15-15-15-10-10-10-10-5-5-5-50000

∆∆ ∆∆f

[Hz]

Z [Å]

γ γ γ γ [[[[f� √m] Si→Sn

0000 2222 4444 6666 8888 10101010 12121212 14141414 16161616 18181818 20202020-30-30-30-30-25-25-25-25-20-20-20-20-15-15-15-15-10-10-10-10-5-5-5-50000 -15-15-15-15-10-10-10-10-5-5-5-50000

∆∆ ∆∆f

[Hz]

Z [Å]

γ γ γ γ [[[[f� √m]Sn→Si

Page 27: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

A complex phase space...A complex phase space...• Manipulation in the strong tip-surface interaction regime.• Tip and sample modification, several solutions (complex phase space): plastic deformations.• Jumps between solutions also upon retraction. Different “final” configurations!!

(depending on the indentation depth, the position or the atomic structure of the tip).

Final configuration| |

Initial configuration

Final configuration:Surface atom transferred to tip. Creation of an atomic vacancy

(N. Oyabu et al, PRL 2003)

Final configuration:Atom interchange

(Sugimoto et al,Science 322, 413, 2008)

(N. Oyabu et al, PRL 2003)

Final configuration:Deposition of a tip atom in the surface (N. Oyabu et al, PRL 2003)

Page 28: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Mechanism: Tip modelMechanism: Tip model•Small tip surface distances: multi-atom contact•Complex phase space•Experimental tip: stable at the strong tip-surface interaction regime•Apex model: all the atoms fixed but the two outermost ones.

Advantages:Advantages:I. StabilityII. Simplification of

the phase space

Page 29: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Mechanism: Vertical scanMechanism: Vertical scan• Vertical manipulation

as combination of mechanical and thermal process.

• Formation of characteristic dimerstructure along deformation path (energetically stable).

• Atomic rearrangement reflects by energy & forces discontinuities.

• Local character of the tip-sample deformation.

• Temperature effect not included in the simulation.

Page 30: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

• Tip model: 4 atoms free• Complicated configuration space;

only limited phase space explored

Mechanism: Energy BarriersMechanism: Energy Barriers

C’

A’

B’

Page 31: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

• Explore possible dimerrearrangement due to thermal & mechanical movement

• Complicated configuration space; only limited phase space explored

• Estimated energy barriers ~ 0.4 eV(Nudged elastic band calculation).

• Dependence on the tip-sample

Mechanism: Energy BarriersMechanism: Energy Barriers

A’

B’

C’

B’

• Dependence on the tip-sample distance, tip elasticity & structure, temperature...

C’

B’

C’

Page 32: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

ConclusionsConclusionsSingle-atom manipulations: atomistic insight into these processes.

• Significant reduction of activation energy due to the tip proximity

• Operating at the attractive force regime

Lateral Si-vacancy manipulation

Y. Sugimoto et al, Phys. Rev. Lett. 98, 106104 (2007)

• New manipulation method: ‘Interchange vertical manipulation’

• Characteristic mechanical deformation: the “hybrid tip-surface” dimer structure

• Operating at the repulsive force regime• Combination of mechanical and

thermal processes

Vertical Si/Sn-exchange manipulation

Y. Sugimoto et al, Science 322, 413 (2008).

Page 33: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

1. Nanomechanics & SPM Theory Group: Forces & Transport in Nanostructures with ab initio methods

Summary

2. “Tip-Induced Reduction of the Resonant Tunneling Current on Semiconductor Surfaces”

Phys. Rev. Lett. 101, 176101 (2008)

3. “Fullerenes from Aromatic Precursors by Surface

4. “Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force Microscopy”

Science 322, 413 (2008)

3. “Fullerenes from Aromatic Precursors by Surface Catalysed Cyclo-dehydrogenation”

Nature 454, 865 (2008)

Page 34: Imaging, Manipulation and Chemical Identification of ... · Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective

Acknowledgements & FundingTHEORY: UAM, Spain:

Pablo Pou, Wojciech Kaminski, Pavel Jelinek (FZU,Prague)Giulio Biddau, Krzysztof Kosmider

FULLERENES: ICMM (CSIC): G. Otero,C. Sanchez-Sanchez, R. Caillard,

EXPERIMENTS:FM-AFM: Osaka University & NIMS (Tsukuba), Japan:

N. Oyabu, Y. Sugimoto, M. Abe, S. Morita & O. Custance

STM: FZU (Prague): M. Švec, V. Chab

FULLERENES: ICMM (CSIC): G. Otero,C. Sanchez-Sanchez, R. Caillard, M.F. Lopez, C. Rogero, F.J. Palomares, J. Mendez, J.A. Martin-GagoChemistry ICMM: B. Gomez-Lor ICIQ: N. Cabello, A.M. Echevarren

MEC (Spain): Projects MAT2005-01298, NAN2004-09183-C10-07

EU FP-6: STREP project FORCETOOL (NMP4-CT-2004-013684)

RES (Computing): Magerit (CesViMa) & Mare Nostrum (BSC)