16
Imaging Instrumentation and Measurement n Types of instruments n Types of detectors n Basic instrument parameters

Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Imaging Instrumentation and Measurement

n Typesofinstrumentsn Typesofdetectorsn Basicinstrumentparameters

Page 2: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Types of instruments

•  Framing cameras

•  Scanning systems – Whiskbroom imagers

•  Pushbroom imagers

Page 3: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Multi- and Hyperspectral Image Cubes are 3-Dimensional Data Structures

But a single detector cannot acquire all three dimensions at once.

Page 4: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90
Page 5: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Framing Camera

•  Simultaneous sampling

•  Good geometric control

•  Not suited to high spectral resolution

Page 6: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Scanning Systems •  Simple detector

•  Easy to get multiple wavelengths

•  Low detector dwell time

e.g.,Landsat1-7

Page 7: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

• Long detector dwell time

• Good cross-track fidelity

• No moving parts

Pushbroom Imager

e.g.,EO-1

Page 8: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Semiconductor-based detectors

•  Incidentradia=onexciteselectronsintoconduc=onband•  Photovoltaicdevicesmeasuretheresul=ngcurrent•  Photoconduc0vedevicesmeasureresul=ngchangeinconduc=vity(resistance)

Page 9: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Detector Materials

Page 10: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

•  Aisdetectorareaincm2

•  ΔfisthesignalbandwidthinHz=1/(2πτ),whereτistherequiredintegra=on=me(“=meconstant”)

•  NEP(noise-equivalentpower)ispowerinwaNsrequiredonthedetectortoproduceS/N=1

D*(“detec=vity”)isa“figureofmerit”forphotodetectors

Page 11: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Siliconatvisiblewavelengths

Page 12: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Most Common Detector Materials

•  0.4 – 1.0 µm: Silicon (Si) – E.g., Mars Reconnaissance Orbiter CRISM VNIR

•  1.0 – 5.0 µm: Indium Antimonide (InSb)

– E.g., Mars Express OMEGA

•  8 – 14 µm (or shorter IR wavelengths w/ larger x): Mercury Cadmium Telluride (Hg1–xCdxTe) – E.g., Mars Reconnaissance Orbiter CRISM IR

Page 13: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Basic Instrument Parameters

Spatial, Spectral, and Radiometric Properties

•  Spatial: –  Instantaneous Field of View (IFOV) – Ground Sampling Distance (GSD) – Field of View (FOV) or Field of Regard –  Image size (pixels)

Page 14: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Importantspa+alproper+esinimages°Fieldofview(“FOV”)

-Distanceacrosstheimage(angularorlinear)°Pixelsize

-InstantaneousFieldofview(“IFOV”)SizeinmetersorisrelatedtoangularIFOVandheightabovegroundex:2.5milliradian,at1000mabovetheterrain 1000m*(2.5*10-3rad)=2.5m

Eachpixelrepresentsa~squareareainthescenethatisameasureofthesensor'sabilitytoresolveobjects

Examples: Landsat7/ASTERVIS 15meters Landsat5/ASTERNIR 30meters ASTERTIR 90meters

Page 15: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Spatial Resolution

15 m/pixel 100 m/pixel 3000 m/pixel

Note: Angular resolution is an instrumental property. Spatial resolution (GSD) is an experimental property (it is determined both by the instrument and how it is used).

Page 16: Imaging Instrumentation and Measurementwray.eas.gatech.edu/remotesensing2017/LectureNotes/RS_Lecture7.pdfLandsat 7 / ASTER VIS 15 meters Landsat 5 / ASTER NIR 30 meters ASTER TIR 90

Diffraction Limit

•  Best possible angular resolution as a function of wavelength:

(θ is in radians)