6
231 The Canadian Mineralogist Vol. 48, pp. 231-235 (2010) DOI : 10.3749/canmin.48.1.231 IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT Michael D. hiGGiNS § Sciences de la Terre, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi, Québec G7H 2B1, Canada abStract Linear cross-polarized optical images reveal the birefringence of mineral grains and are very useful in petrography. However, if the vibration directions of the crystal are not at 45° to the polarizers, then the intensity of the interference colors is reduced, and in some orientations, to zero (extinction). This reduction in intensity, and extinction, can be eliminated if circular polarizers are used in place of linear polarizers. The interference colors of colorless minerals then correspond exactly with those on the Michel-Lévy chart. Similarly, isogyres are eliminated from conoscopic images. This simple, inexpensive technique can be used with ordinary petrographic microscopes and scanners. It can be very useful for quantification of textures (microstructures) from single images. Keywords: optical mineralogy, polarized light, circular polarization, textural quantification, birefringence. SoMMaire Les images optiques produites avec polarisation linéairement orthogonale révèlent la biréfringence de grains de minéraux, et s’avèrent très utiles en pétrographie. Toutefois, si les directions de vibration du cristal ne sont pas orientées à 45° des nicols polariseurs, l’intensité des couleurs d’interférence s’en trouve réduite et, dans certaines orientations, jusqu’à zéro (c’est-à-dire, jusqu’à l’extinction). On peut éliminer cette réduction en intensité, et l’extinction, en utilisant des polariseurs circulaires au lieu des polariseurs linéaires. Les couleurs d’interférence de minéraux incolores correspondent alors exactement à celles de l’abaque de Michel-Lévy. De même, les isogyres sont éliminées des images conoscopiques. On peut se servir de cette technique simple et peu couteuse avec des microscopes pétrographiques ordinaires et avec numériseurs. Elle peut être très utile pour quantifier les textures (microstructures) à partir d’une seule image. (Traduit par la Rédaction) Mots-clés: mineralogie optique, lumière polarisée, polarisation circulaire, quantification de textures, biréfringence. § E-mail address: [email protected] iNtroDuctioN Microscope observation of transparent minerals in cross-polarized light is a familiar technique discussed in all optical mineralogy textbooks (e.g., Dyar et al. 2008). The sample (generally a thin section) is illuminated with linearly polarized light and observed through a second linear polarizer oriented orthogonally to the illumi- nating polarizer. Isotropic materials are extinct (no light passes through). Anisotropic minerals are also extinct if viewed along an optic axis. All other orientations of anisotropic materials will show retardation (birefrin- gent) interference-colors, whose intensity varies with orientation. If the vibration directions of the crystal are parallel to either polarizer, then the intensity of the retardation colors will be zero, and the crystal appears extinct. These extinction positions are used to determine aspects of the orientation of the indicatrix of the crystal. They can also help the observer to distinguish adjacent crystals of the mineral. In some circumstances, they can be a hindrance, however. This is particularly the case if a petrographer wants to image a thin section and examine quantitatively the texture (microstructure) of the grains. In this case, several sections with different orienta- tions of the polarizers must be examined. Interference colors also give information on crystal orientation but,

IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT · 2018-03-20 · IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT · 2018-03-20 · IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT

231

The Canadian MineralogistVol.48,pp.231-235(2010)DOI:10.3749/canmin.48.1.231

IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT

MichaelD.hiGGiNS§

Sciences de la Terre, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi, Québec G7H 2B1, Canada

abStract

Linearcross-polarizedopticalimagesrevealthebirefringenceofmineralgrainsandareveryusefulinpetrography.However,ifthevibrationdirectionsofthecrystalarenotat45°tothepolarizers,thentheintensityoftheinterferencecolorsisreduced,andinsomeorientations,tozero(extinction).Thisreductioninintensity,andextinction,canbeeliminatedifcircularpolarizersareusedinplaceoflinearpolarizers.TheinterferencecolorsofcolorlessmineralsthencorrespondexactlywiththoseontheMichel-Lévychart.Similarly,isogyresareeliminatedfromconoscopicimages.Thissimple,inexpensivetechniquecanbeusedwithordinarypetrographicmicroscopesandscanners.Itcanbeveryusefulforquantificationoftextures(microstructures)fromsingleimages.

Keywords:opticalmineralogy,polarizedlight,circularpolarization,texturalquantification,birefringence.

SoMMaire

Lesimagesoptiquesproduitesavecpolarisationlinéairementorthogonalerévèlentlabiréfringencedegrainsdeminéraux,ets’avèrenttrèsutilesenpétrographie.Toutefois,silesdirectionsdevibrationducristalnesontpasorientéesà45°desnicolspolariseurs,l’intensitédescouleursd’interférences’entrouveréduiteet,danscertainesorientations,jusqu’àzéro(c’est-à-dire,jusqu’àl’extinction).Onpeutéliminercetteréductionenintensité,etl’extinction,enutilisantdespolariseurscirculairesaulieudespolariseurslinéaires.Lescouleursd’interférencedeminérauxincolorescorrespondentalorsexactementàcellesdel’abaquedeMichel-Lévy.Demême,lesisogyressontéliminéesdesimagesconoscopiques.Onpeutseservirdecettetechniquesimpleetpeucouteuseavecdesmicroscopespétrographiquesordinairesetavecnumériseurs.Ellepeutêtretrèsutilepourquantifierlestextures(microstructures)àpartird’uneseuleimage.

(TraduitparlaRédaction)

Mots-clés:mineralogieoptique,lumièrepolarisée,polarisationcirculaire,quantificationdetextures,biréfringence.

§ E-mail address:[email protected]

iNtroDuctioN

Microscopeobservationof transparentminerals incross-polarizedlightisafamiliartechniquediscussedinallopticalmineralogytextbooks(e.g.,Dyaret al.2008).Thesample(generallyathinsection)isilluminatedwithlinearlypolarizedlightandobservedthroughasecondlinear polarizer oriented orthogonally to the illumi-natingpolarizer.Isotropicmaterialsareextinct(nolightpasses through).Anisotropicmineralsarealsoextinctifviewedalonganopticaxis.Allotherorientationsofanisotropicmaterialswill show retardation (birefrin-gent) interference-colors,whose intensity varieswith

orientation. If the vibration directions of the crystalareparalleltoeitherpolarizer,thentheintensityoftheretardationcolorswillbezero,andthecrystalappearsextinct.Theseextinctionpositionsareusedtodetermineaspectsoftheorientationoftheindicatrixofthecrystal.Theycanalsohelptheobservertodistinguishadjacentcrystalsofthemineral.Insomecircumstances,theycanbeahindrance,however.Thisisparticularlythecaseifapetrographerwantstoimageathinsectionandexaminequantitativelythetexture(microstructure)ofthegrains.In this case, several sectionswith different orienta-tionsofthepolarizersmustbeexamined.Interferencecolorsalsogiveinformationoncrystalorientationbut,

Page 2: IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT · 2018-03-20 · IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT

232 thecaNaDiaNMiNeraloGiSt

again,intensityvariationswithrotationwillcomplicateimageanalysis.Thisisparticularlyaproblemforlow-birefringenceminerals,suchasquartzandthefeldspars.

Mostpetrographersandmineralogistsconsiderthatvariable intensity of retardation colors and extinctionareunavoidable,butthereexistsasimple,inexpensiveopticaltechniquethatcanrevealallanisotropiccrystalsinasection,exceptforthosewithaverticalopticaxis.Thecircularlypolarizedlighttechniqueisnotnew,butdeservestobemorewidelyapplied.

circularlyPolarizeDliGht

Conventional petrographicmicroscopes use twolinear polarizers to produce images of anisotropicminerals. This is generally termed cross-polarizedlight (XP).Unpolarized light passes through a linearpolarizer,whichonlyallowsasingledirectionofpolar-ization.This polarized light then passes through thesample,generallya thinsection,where it is split intotwoorthogonalcomponents.Wherethesecomponentsemergefromthecrystal,thereisadifferenceinphasecalled the retardation.The components are combinedin a second, orthogonal polarizer,where interferencecolorsareproduced.Thecolorsarecontrolledby thebirefringenceofthemineralinthedirectionofpropaga-tionofthelight.However,theintensityoftheinterfer-encecolorwilldependon theorientationof the lightcomponentswithrespect to thepolarizers: if theyareparallel,thennolightwillpassthrough,andthemineralissaid tobeatextinction.Hence, the intensityof theretardationcolorwillchangeasthestageisrotated.

It is commonly taught that retardation colors allfall on theMichel-Lévy chart. In fact, theMichel-Lévy chart shows the brightest interference-colors,visiblewherethevibrationdirectionsareat45°tothepolarizers.Ifthestageisnotrotated,thenmostoftheinterference colorswill be less intense than those ontheMichel-Lévychart.Thisisthesituationinasimplephotomicrograph.

Theproportionofmineralgrainsthatareatextinc-tion in a samplewithout preferredorientation canbecalculatedreadily.Therearetwooriginsforextinction:1) alignment of the optic axis close to the vertical,and2)alignmentofthevibrationdirectionsparalleltothe polarizers.Althoughboth effects apply to uniquedirections, in reality extinction extends over a bandoforientations.Thewidthofthisbandwilldependonmanyfactors,butprincipallythebirefringence.Forthepurposes of calculation, the band is considered to be±5°,avaluetypicalforlow-birefringencemineralslikequartzandthefeldspars.Forthefirstsituation,considerasphereofradius180/pmm;eachdegreeonthesurfacehasalengthof1mm.Theareaatextinctionaroundanopticaxisispr2,here78.5mm2.Theareaofthesphereis4pr2,here41250mm2.Thepercentofextinctposi-tionsforabiaxialmineralisthen0.76%,andhalfthatvalueforauniaxialmineral.Forthesecondsituation,

thecalculationisevensimpler. Ifamineral isextinctfor±5° of each90° segment, then10/90, or 11%,ofcrystalswillbeextinct.

Thetechniquepresentedhereusescircularlypolar-ized (CP) light.This simple treatment is for a singlewavelengthoflight.Asbefore,unpolarizedlightpassesthrough the lower polarizer (Fig. 1). It then passesthroughaquarter-waveplateorientedwithafastdirec-tionat45°tothepolarizationdirection,whichsplitsthelight into twocomponentswithaphasedifferenceof90°.Theelectricvectorofthislighttracesoutahelicalpath,hencethetermcircularlypolarizedlight.TheCPlight thenpasses through thesample.Here thediffer-ences in indexof refraction for different orientationsorthogonaltothepropagationdirectionwillmodifytheshapeofthehelixandmakethelightellipticallypolar-ized.The light thenpasses througha secondquarter-waveplatewithitsfastdirectionorthogonaltothatofthefirstquarter-waveplate.Theellipticalpolarizationisthenresolvedbackintolinearlypolarizedlightwitha different orientation from the initial polarizer.Thisthenpassesthroughtheanalyzingpolarizer,producingasimilarresulttothefirstcasewithlinearlypolarizedlight.Thereisnoextinctionforanyorientationofthecrystalbecauseallpolarizationorientationsarepresent.Indeed,thereisnochangeintheintensityofthefinalinterference-colorswithrotationofthesample.

Circularpolarization isonlyproducedforasinglewavelengthoflightinthissetup,fourtimestheretarda-tionofthequarter-waveplates.Fortypicalquarter-waveplates, this is in the range560–620nm, i.e.,orangelight.However,despitethislimitation,theCPtechniqueworks remarkablywell for polychromatic light, asdepartures fromcircularity of polarization areminor.The interference colors of colorlessmineralsmatchexactlythoseoftheMichel-Lévychart,withoutthelossinintensityobservedinXPimages.

TheCPtechniquecanalsobeappliedtoconoscopicobservations.Indeedoneoftheearliestreferenceswasin this context:Craig (1961) described the “BenfordPlate”forthestudyofinterferencefigures.SuchfiguresinCParesimplerthantheconventionalimagesinthattheylackthefamiliarisogyres.However,theystillhavemelatopesandisochromes.Hencetheycanbeusedfordistinguishinguniaxialandbiaxialminerals,aswellasfor the determination of optic signs.TheCPmethodhasalsobeenusedtomakebombsights(Gunter2003).

One should note that CP does not completelyreplacelinearpolarizers.Extinctioncanhelpdistinguishadjoiningmineralgrains,anditgivestheorientationofvibrationdirections.Alsoalinearpolarizerisnecessaryfor the identification of pleochroic colors.Combina-tionsofalinearpolarizerandcircularanalyzer,andtheinverse,havebeenexploredprincipallybyresearchersinmaterials science andbiology (Glazeret al. 1996,Oldenbourg&Mei1995).Thesemethodshaveconsid-erableadvantagesfortheanalysisoflow-birefringencematerials.

Page 3: IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT · 2018-03-20 · IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT

iMaGiNGbirefriNGeNtMiNeralSwithoutextiNctioN 233

aPPlicatioNofthecPtechNique

Somemicroscopemanufacturerscansupplycircularpolarizers and analyzers, but generally thesemustbe improvised.Quarter-wave plates (also known asretarder plates) aremanufactured fromquartz,micaandplastic.The twoquarter-waveplates shouldhavethesameretardation:140to155nmaretypicalvalues.Thoseforpetrographicmicroscopesarereadilyavail-able and are generallymade of quartz.Most petro-graphicmicroscopeshaveapositionforaquarter-waveaccessoryplatebetweenthesampleandtheupperpolar-izer.However,veryfewmicroscopeshaveapositionfortheotherquarter-waveplatebetweenthelowerpolarizerand the sample. In somemicroscopes, anunmounted20-mm-diameter wave plate can be placed on thecondenser.Otherwise,a lowerquarter-waveplatecanbeplacedunderthesampleonthestage.Ofcoursethe

stagecannotberotated,butthisisnotnecessaryusingtheCPset-up.Aholdercanalsobemadethatholdsthefilterunderthestage.

Scanners areveryuseful for imagingboth regularand largewhole thin sections. Inexpensive flat-bedscannerswithanupperlightsourcecaneasilyachieve10mmresolution,andslidescannerscansurpass this(Tarquini&Armienti2001).Forthistypeofimaging,thepolarizingandquarter-waveplatesneed tobe thesame size as the thin section. Polarizingmaterial isavailableasrigid,mountedsheets,butunmountedmate-rial reduces the scanner–slide distance.Quarter-waveplasticretarderfilmisalsoavailablewithgoodopticalquality.Bothmaterials are inexpensive and availablein large sheets. Suitable sources of thesematerialsare available at http:// geologie.uqac.ca/~mhiggins/cp_images.htm

fiG.1. Circularlypolarizedlightobservationsofanisotropicmaterials.Thedirectionsofthelinearpolarizersareindicatedbyhatching.Thefastdirectionofthequarter-waveplatesisindicatedbyanarrow.Petrographicmicroscopestypicallyhaveallofthesecomponentsexceptthelowerquarter-waveplate.Asimilarsetupcanbeusedonaflatbedscannerwithanupperilluminator.

Light source

Lower polarizer

Linearlypolarizedlight

Circularlypolarizedlight

Ellipticallypolarizedlight

Linearlypolarizedlight

Upper polarizer(analyzer)

Lower quarter-wave plate

Upper quarter-wave plate

Sample

Observer / camera

Page 4: IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT · 2018-03-20 · IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT

234 thecaNaDiaNMiNeraloGiSt

exaMPleS

Thefirstexampleshowstheapplicationof theCPmethod to low-birefringenceminerals.A sample ofvesiculardacite lava fromTaapacavolcano, inChile,containsabundantplagioclaseandminorsanidine.Animageof the feldsparcrystalswasneededso that thecrystal-size distribution could be calculated (Higgins2006).The simplestway to produce such images isbythresholdingtheimage.Itisdifficulttodistinguishconsistently the feldspars from vesicles in unpolar-

izedlight,asbotharebright.Inlinearcross-polarizedlight(XP),thefeldsparsareclearlydistinguishedfromvesicles,butsomecrystalsareatextinction(Fig.2A).InCP, almost all crystals are revealed, except for asmallproportionwithverticalopticaxes(Fig.2B).ThedifferencesbetweentheimageshavebeenbroughtoutinFigure2C.ImagesofthefeldsparsinFigures2Aand2Bwereproducedbythresholding.TheseimageswerethencoloredandcombinedtoproduceFigure2C.Inthisimage,crystalsinblackarepresentinbothimages;bluecrystalsareonlypresentintheCPimages.Thefewred

fiG.2. Thinsectionimagesobtainedusingaflat-bedscanner.A)Linearcross-polarizedimage(XP)andB)circularcross-polarizedimage(CP)ofadacitelava.MorecrystalsarevisibleintheCPimage.C)DifferenceimageforplagioclaseinA)andB).CrystalsvisibleintheCPimageonlyareshowninblue.D)Linearcross-polarizedimage(XP)andE)circularcross-polarizedimage(CP)ofagabbro.

Page 5: IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT · 2018-03-20 · IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT

iMaGiNGbirefriNGeNtMiNeralSwithoutextiNctioN 235

crystals,whichareonlypresent in theXP image,areprobablyduetoslightdifferencesinthethresholdusedtomakeeachimage.

A second example involvesmineralswith higherbirefringence.Figures2D (XP)and2E (CP) areof agabbrofromtheSkaergaardintrusion,ineasternGreen-land.The rock contains plagioclase, olivine, clinopy-roxeneandanFeoxide.Intheconventionalimage(XP),somecrystalsofalltransparentphasesareatextinction,andmanyothershaveintensitiesofretardationcolorssignificantlylessthantheirmaximumvalues.IntheCPimage,veryfewtransparentcrystalsareatextinction,andtherestshowretardationcolorsthatresemblethosein theMichel–Lévychart. It isconsiderablyeasier toidentifymineralsinthisimage.

coNcluSioNS

Thecircularpolarization(CP)techniqueisausefuladdition to the petrographer’s toolkit. It is especiallyusefulforproducingimagesforillustrationandquan-tificationoftextures.Itiseasilyappliedtopetrographicmicroscopes for detailedwork and to scanners forimagesofwholethinsections.

ackNowleDGeMeNtS

IthankJ.M.Derochette,whodrewmyattentiontotheBenford plate technique.MickeyGunter andW.RevellPhillipsgaveclearreviews.MytexturalresearchissupportedbyaDiscoverygrantfromNSERCCanada.

refereNceS

craiG,D.b. (1961):TheBenford plate.Am. Mineral.46,757-758.

Dyar,M.D.,GuNter,M.e.&taSa,D. (2008):Mineral-ogy and Optical Mineralogy.Mineralogical Society ofAmerica,Chantilly,Virginia.

Glazer,a.M., lewiS, J.G.,&kaMiNSky,w. (1996):Anautomaticopticalimagingsystemforbirefringentmedia.Proc. R. Soc. London, Ser. A: Mathematical, Physical and Engineering Sci.452(1955),2751-2765.

GuNter,M.e. (2003):A lucky break for polarization: theopticalpropertiesofcalcite.ExtraLapis English4,40-45.

hiGGiNS,M.D.(2006):Quantitative Textural Measurements in Igneous and Metamorphic Petrology. CambridgeUniver-sityPress,Cambridge,UK.

olDeNbourG, r.&Mei, G. (1995):New polarized-lightmicroscopewith precision universal compensator. J. Microscopy180,140-147.

tarquiNi,S.&arMieNti,P.(2001):Filmcolorscannerasanewandcheaptoolforimageanalysisinpetrology.Image Anal. Stereol.20(Suppl1),567-572.

Received September 1, 2009, revised manuscript accepted November 26, 2009.

Page 6: IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT · 2018-03-20 · IMAGING BIREFRINGENT MINERALS WITHOUT EXTINCTION USING CIRCULARLY POLARIZED LIGHT