57
www.iap.uni-jena.de Imaging and Aberration Theory Lecture 8: Astigmatism and curvature 2018-12-07 Herbert Gross Winter term 2018

Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

  • Upload
    others

  • View
    31

  • Download
    5

Embed Size (px)

Citation preview

Page 1: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

www.iap.uni-jena.de

Imaging and Aberration Theory

Lecture 8: Astigmatism and curvature

2018-12-07

Herbert Gross

Winter term 2018

Page 2: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

2

Schedule - Imaging and aberration theory 2018

1 19.10. Paraxial imaging paraxial optics, fundamental laws of geometrical imaging, compound systems

2 26.10.Pupils, Fourier optics, Hamiltonian coordinates

pupil definition, basic Fourier relationship, phase space, analogy optics and mechanics, Hamiltonian coordinates

3 02.11. EikonalFermat principle, stationary phase, Eikonals, relation rays-waves, geometrical approximation, inhomogeneous media

4 09.11. Aberration expansionssingle surface, general Taylor expansion, representations, various orders, stop shift formulas

5 16.11. Representation of aberrationsdifferent types of representations, fields of application, limitations and pitfalls, measurement of aberrations

6 23.11. Spherical aberrationphenomenology, sph-free surfaces, skew spherical, correction of sph, asphericalsurfaces, higher orders

7 30.11. Distortion and comaphenomenology, relation to sine condition, aplanatic sytems, effect of stop position, various topics, correction options

8 07.12. Astigmatism and curvature phenomenology, Coddington equations, Petzval law, correction options

9 14.12. Chromatical aberrationsDispersion, axial chromatical aberration, transverse chromatical aberration, spherochromatism, secondary spoectrum

10 21.12.Sine condition, aplanatism and isoplanatism

Sine condition, isoplanatism, relation to coma and shift invariance, pupil aberrations, Herschel condition, relation to Fourier optics

11 11.01. Wave aberrations definition, various expansion forms, propagation of wave aberrations

12 18.01. Zernike polynomialsspecial expansion for circular symmetry, problems, calculation, optimal balancing,influence of normalization, measurement

13 25.01. Point spread function ideal psf, psf with aberrations, Strehl ratio

14 01.02. Transfer function transfer function, resolution and contrast

15 08.02. Additional topicsVectorial aberrations, generalized surface contributions, Aldis theorem, intrinsic and induced aberrations, revertability

Page 3: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

1. Geometrical astigmatism

2. Point spread function for astigmatism

3. Field curvature

4. Petzval theorem

5. Correcting field curvature

6. Examples

3

Contents

Page 4: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Reason for astigmatism:

chief ray passes a surface under an oblique angle,

the refractive power in tangential and sagittal section are different

The astigmatism is influenced by the stop position

A tangential and a sagittal focal line is found in different

distances

Tangential rays meets closer to the surface

In the midpoint between both focal lines:

circle of least confusion

Astigmatism

4

O'tansagO'

optical axis

chief ray

tangentialdifferential ray

sagittaldifferential

ray

y

x

O'circle

image points

Page 5: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Beam cross section in the case of astigmatism:

- Elliptical shape transforms its aspect ratio

- degenerate into focal lines in the focal plane distances

- special case of a circle in the midpoint: smallest spot

y

x

z

tangential

focus

sagittal

focuscircle of least

confusion

tangential

aperture

sagittal

aperture

Astigmatism

5

Page 6: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Primary Aberration Spot Shape for Astigmatism

Seidel formulas for field point only in y‘ considered

Field curvature:

circle

Astigmatism:

focal line

General spot with defocus:

wave aberration

Transverse aberrations

Circle/ring in the pupil

delivers an elliptical spot in the image

Special case for c20 = - c22/2:

circle of least confusion

PpPppp

PpPppp

ryPryCrSx

yDryPAryCrSy

sin'''2sin'''sin'''

''cos'')''2()2cos2('''cos'''

223

3223

0',cos'''2' 2 xryAy Pp

24222

22

'''''

sin'''',cos''''

p

PpPp

ryPyx

ryPxryPy

2

22

22

20),( ycyxcyxW

222020 2,2 ccRyy

WRyxRc

x

WRx

r x y2 2 2

12)2(

2

2220

2

2

20

2

ccRr

y

Rrc

x

1)()( 2

22

2

2

22

2

Rrc

y

Rrc

x

6

Page 7: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

At sagittal focus

Defocus only in tangential cross section

Astigmatism

Wave aberration

tangential sagittal

22

Primary astigmatism at sagittal focus

Transverse ray aberration y x y

Pupil: y-section x-section x-section

0.01 mm 0.01 mm 0.01 mm

Modulation Transfer Function MTF

MTF at paraxial focus MTF through focus for 100 cycles per mm

Geometrical spot through

focus0.0

2 m

m

sagittal

tangential

tangential

sagittal

z/mm-0.04 0.040.0-0.02 0.02

1

0

0.5

0 100 200cyc/mm z/mm

1

0

0.5

0.040.0-0.04

Ref: H. Zügge

7

Page 8: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

At median focus

Anti-symmetrical defocus in T-S-cross

section

Astigmatism

Wave aberration

tangential sagittal

22

Primary astigmatism at medial focus

Transverse ray aberration y x y

Pupil: y-section x-section x-section

0.01 mm 0.01 mm 0.01 mm

Modulation Transfer Function MTF

MTF at paraxial focus MTF through focus for 100 cycles per mm

sagittaltangential

tangentialsagittal

1

0

0.5

0 100 200cyc/mm z/mm

1

0

0.5

0.040.0-0.04

Geometrical spot through

focus

0.0

2 m

m

z/mm-0.04 0.040.0-0.02 0.02

Ref: H. Zügge

8

Page 9: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Imaging of a polar grid in different planes

Tangential focus:

- blur in azumuthal direction

- rings remain sharp

Sagittal focus:

- blur in radial direction

- spokes remain sharp

sagittal line

tangential line

entrance

pupil

exit

pupil

object

circlesagittal

focus

tangential

focus

best focus

image space

Astigmatism

9

Page 10: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Astigmatism

Behavior of a local position of the field:

1. good resolution of horizonthal structures

2. bad resolution of vertical structures

Imaging of polar diagram shows not the

classical behaviour of the complete field

10

Page 11: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

For an oblique ray, the effective curvatures of the spherical surface depend on azimuth

There are two focal points for sagittal / tangential aperture rays

This splitting occurs already for infinitesimal aperture angles around the chief ray

Intersection lengths along the chief ray: Coddington equations

Right side: oblique power of the spherical interface

The sagittal image must be located on the auxiliary axis by symmetry

chief ray

auxiliary ray through

the center of

curvature

C

surface

tangential

imagesagittal

image

object

stop

R

tanl'

sagl'

i'i

tan,sagl

Coddington Equations

R

inin

l

in

l

in cos'cos'cos

'

'cos'

tan

2

tan

2

R

inin

l

n

l

n

sagsag

cos'cos'

'

'

11

Page 12: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Wavefront for Astigmatiusm with Defocus

Astigmatic wavefront (c5) with defocus (c4)

Purely cylindrical for focal lines in x/y

Purely toroidal without defocus: circle of least confusion

c4 = 0

toroidal

c5 only

c4 = 0.25

c4 = 1.0

c4 = 0.5

c4 = -0.25

c4 = -1.0

c4 = -0.5

cylindrical x

cylindrical y

12

Page 13: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Psf for Astigmatism

Zernike coefficients c in

Pure astigmatism

Shape is not circular symmetric due to finite width of focal lines

c5 = 0.2

c5 = 0.7

c5 = 0.5

c5 = 1.0

13

Page 14: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

In Seidel contribution term (3B3 + B4) ry²cosf corresponds to astigmatism and Petzval

For a single positive lens:

chief ray passes surface under oblique angle

projection of surface curvatures

different powers in tangential and sagittal section

tangential and sagittal focal lines

tangential rays meet at first

circle of least confusion with smalles spot size

sagittal focus before paraxial focus

Imaging of a circular grid in different planes

Astigmatism

14

Tangential

ray fan

Sagittal

ray fan

Tangential

focus Sagittal

focus

Circle of least

confusion

sagittal

focusbest focustangential

focus

Ref: B. Böhme

Page 15: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Geometrical spot shape: perfect spherical

Medium aberration with diffraction:

squared, cartesian symmetry due to finite focal line width

Large aberrations: nearly spherical, large astigmatic difference, finite line width negligible

15

Symmetry of the Astigmatic Spot

c5=20c5=5c5=2

c5=0.75c5=0.5c5=0.35 c5=1

c5=1.5

c5=0.25

c5=10

Page 16: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Psf bei Astigmatismus

Ref: Francon, Atlas of optical phenomena

16

Page 17: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Bending effects astigmatism

For a single lens 2 bending with

zero astigmatism, but remaining

field curvature

Astigmatism: Lens Bending

Ref : H. Zügge

20

-0. 01 0-0.02-0. 03 0.01-0. 04

Surface 2

Surface 1

Sum

Curvature of surface 1

15

10

5

0

-5

Astigmatism

Seidel coefficients

in []

ST

-2.5 0 2.5

ST S T ST ST

-2.5 0 2.5 -2.5 0 2.5 -2.5 0 2.5 -2.5 0 2.5

17

Page 18: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Conic Sections

222

22

111 yxc

yxcz

1

2

b

a

2a

bc

1

1

cb

1

1

ca

Explicite surface equation, resolved to z

Parameters: curvature c = 1 / R

conic parameter

Influence of k on the surface shape

Relations with axis lengths a,b of conic sections

Radii of curvature

Parameter Surface shape

= - 1 paraboloid

< - 1 hyperboloid

= 0 sphere

> 0 oblate ellipsoid (disc)

0 > > - 1 prolate ellipsoid (cigar )

2/1222/322 11

,11

xcc

Rxcc

R ST

18

Page 19: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Astigmatism of Oblique Mirrors

Mirror with finite incidence angle:

effective focal lengths

Mirror introduces astigmatism

Parametric behavior of scales astigmatism

2

costan

iRf

i

Rfsag

cos2

i

Rs

iRsi

iRss ast

cos22

coscos2

sin'

22

i0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s / R = 0.2

s / R = 0.4

s / R = 0.6

s / R = 1

s / R = 2

s' / R

s'ast

R

focal

line L

i

C

s

s'sag

mirror

19

Page 20: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Basic observation:

A plane object gives a curved image

20

Field curvature

plane

object curved

image

Page 21: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Human eye

Detector of NASA’s Kepler space telescope

Also small, curved CMOS image detectors have

recently become available for consumer optics.

21

Curved Detector Surfaces

Ref.: D. Ochse

Page 22: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Focussing into different planes of a system with field curvature

Sharp imaged zone changes from centre to margin of the image field

focused in center

(paraxial image plane)focused in field zone

(mean image plane)

focused at field boundary

z

y'

receiving

planes

image

sphere

Field Curvature

22

Page 23: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Field Curvature and Image Shells

Imaging with astigmatism:

Tangential and sagittal image shell sharp depending on the azimuth

Difference between the image shells: astigmatism

Astigmatism corrected:

It remains one curved image shell,

Bended field: also called Petzval curvature

System with astigmatism:

Petzval sphere is not an optimal

surface with good imaging resolution

No effect of lens bending on curvature,

important: distribution of lens

powers and indices

23

ideal

image

plane

sagittal

shell

image surfaces

y'

s'sag

s'tan

tangential

shell

astigmatism

curved best

image shell

z

Page 24: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Astigmatisms and Curvature of Field

ss s

best

sag'

' 'tan

2

s s s spet sag pet' ' ' 'tan 3

s s sast sag' ' 'tan

Image surfaces:

1. Gaussian image plane

2. tangential and sagittal image shells (curved)

3. mean image shell of best sharpness

4. Petzval shell, arteficial, not a good image

Seidel theory:

Astigmatism is difference

Best image shell

2

''3'

tansss

sag

pet

z

y'

Petzval

surface

sagittal

surface

tangential

surface

Gaussian

image

plane

medium surface

best image

s'sag

s'tan

s'pet

24

Page 25: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Correction of Astigmatism and Field Curvature

Different possibilities for the correction of astigmatism and field curvature

Two independend aberrations allow 4 scenarious

ST

-2.5 0 2.5

ST S T S T

-2.5 0 2.5 -2.5 0 2.5 -2.5 0 2.5

a) bended

image plane

residual

astigmatism

b) bended

image plane

corrected

astigmatism

c) flattened

image plane

residual

astigmatism

d) flattened

image plane

corrected

astigmatism

zz zz

y yy

25

Page 26: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Petzval Shell

The Petzval shell is not a desirable image surface

It lies outside the S- and T-shell:

The Petzval curvature is a result of the Seidel aberration theory

26

sagtan

petsag

ast

ss

ss

s

0(a)

pettan

petsag

ast

ss

ss

s

0(b)

T PST PS

sagtan

petsag

petast

ss

ss

ss

)21(

TP S

(d)

TP S

0

)32(

)32(

tan

petsag

petast

s

ss

ss(c)

pettan

sag

petast

ss

s

ss

2

0

2

TP S

(e)

2

''3'

tansss

sag

pet

Page 27: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

The image splits into two curved shells in the field

The two shells belong to tangential / sagittal aperture rays

There are two different possibilities for description:

1. sag and tan image shell

2. difference (astigmatism) and mean (medial image shell) of sag and tan

Field Curvature

Ref: H. Zügge

fieldfield field

Paraxial focus Sagittal focus Medial focus

Longitudinal

Astigmatism, sagittal and tangential field curvature

27

Page 28: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

The image is generated on a curved shell

In 3rd order, this is a sphere

For a single refracting surface, the Petzval radius is given by

For a system of several lenses, the Petzval curvature is given by

Field for Single Surface

1 1

rn

n fp k kk

'

rnr

n np

'

surface

n n'

stop

curved image

shell

object

plane

C

28

Page 29: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

29

Field Curvature

Special visualization of field curvature

in case of a telecentric ray path

Ref: J. Sasian

z

yreal

image shell

telecentric

chief rays

image

plane

Page 30: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Petzval Theorem for Field Curvature

Petzval theorem for field curvature:

1. formulation for surfaces

2. formulation for thin lenses (in air)

Important: no dependence on

bending

Natural behavior: image curved

towards system

Problem: collecting systems

with f > 0:

If only positive lenses:

Rptz always negative

k kkk

kkm

ptz rnn

nnn

R '

''

1

j jjptz fnR

11

optical system

object

plane

ideal

image

plane

real

image

shell

R

30

Page 31: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Petzval Theorem

Elementary derivation by a momocentric system of three surfaces:

interface surface with r, object and image surface

Consideration of a skew auxiliary axis

Imaging condition

For the special case of a flat object gives with

surface

object

image

auxiliary axis

C

s

a

s'

a'

r

rsarsa '',

r

nn

s

n

s

n

'

'

'

nr

nn

Rp

'1

aRa p ,'

31

Page 32: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Petzval Theorem for Field Curvature

Goal: vanishing Petzval curvature

and positive total refractive power

for multi-component systems

Solution:

General principle for correction of curvature of image field:

1. Positive lenses with:

- high refractive index

- large marginal ray heights

- gives large contribution to power and low weighting in Petzval sum

2. Negative lenses with:

- low refractive index

- samll marginal ray heights

- gives small negative contribution to power and high weighting in Petzval sum

j jjptz fnR

11

jj

j

fh

h

f

11

1

32

Page 33: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Correction Options for Field Curvature

Petzval curvature

thin lenses:

thick lenses

and positive total refractive power

Solutions:

1. Mirrors: formal n < 0, positive contribution to field curvature

2. Negative field lens near image plane with minor effect of image formation: h = 0

3. Thick mensicus lenses with positive contribution

to field curvature

4. Combination of lenses with P-N-P

power positive (n large) - negative (n small) - positive (n large)

j jjptz fnR

11

jj

j

fh

h

f

11

1

21

22

1

11

'

'1

rr

d

n

n

fnrnn

nn

R k kkk

kk

ptz

011

mirrorptz fR

011

21

2

rr

d

n

n

Rptz

Page 34: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Flattening Meniscus Lenses

Possible lenses / lens groups for correcting field curvature

Interesting candidates: thick meniscus shaped lenses

1. Hoeghs mensicus: identical radii

- Petzval sum zero

- remaining positive refractive power

2. Concentric meniscus,

- Petzval sum negative

- weak negative focal length

- refractive power for thickness d:

3. Thick meniscus without refractive power

Relation between radii

Fn d

nr r d'

( )

( )

1

1 1

r r dn

n2 1

1

21

211

'

'1

rr

d

n

n

fnrnn

nn

R k kkk

kk

ptz

r2

d

r1

2

2)1('

rn

dnF

drr 12

drrn

dn

Rptz

11

)1(1

0

)1(

)1(1

11

2

ndnrrn

dn

Rptz

34

Page 35: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Group of meniscus lenses

Effect of distance and

refractive indices

Correcting Petzval Curvature

r 2r 1

collimated

n n

d

3020 5010

-3

10-1

10-2

1/Rpet [1/mm]

40r

1

[mm]10

K5 / d=15 mm

SF66 / d=15 mm

K5 / d=25 mm

Ref : H. Zügge

35

Page 36: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Compensating the field curvature of an

achromate by a meniscus lens

Meniscus with power F = 0 and

Variation of curvature and thickness

Optimal thickness decreases for

stronger meniscus bending

Orientation of meniscus not identical

for larger t-values:

negative R1 more beneficial

36

Field Flattening by Meniscus Lens

sag of field curvature

in mm

correction line

with z = 0

-0.1

01 100

thickness t meniscus in mm

0 0.5-10 0

2

1 1

1 ( 1)

( 1)ptz

n t

R n r nr t n

Page 37: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Triplet group with + - +

Effect of distance and

refractive indices

Correcting Petzval Curvature

r 2r 1

collimated

n1

n2

r 3

d/2

7050 10010

-3

10-1

10-2

1/Rpet [1/mm]

r1

[mm]

BK7

SF66 / FK3 / SF66

Ref: H. Zügge

37

Page 38: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

imageshell

flatimage

fieldlens

Effect of a field lens for flattening the image surface

1. Without field lens 2. With field lens

curved image surface image plane

Flattening Field Lens

38

Page 39: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Field Curvature of a Mirror

Mirror: opposite sign of curvature than lens

Correction principle: field flattening by mirror

Gaussian

image

planeGaussian

image plane

lens

mirror

Petzval

surface Petzval surface

f' > 0 / R > 0f' > 0 / R < 0

39

Page 40: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Microscope Objective Lens

Possible setups for flattening the field

Goal:

- reduction of Petzval sum

- keeping astigmatism corrected

Three different classes:

1. No effort

2. Semi-flat

3. Completely flat

d)

achromatized

meniscus lens

a)

single

meniscus

lense

e)

two meniscus

lenses

achromatized

b)

two

meniscus

lenses

c)

symmetrica

l

triplet

f)

modIfied

achromatized

triplet solution

DS

rel.

field0 0.5 0.707 1

1

0.8

0.6

0.4

0.2

0

diffraction

limit

plane

semi

plane

not

plane

40

Page 41: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

New Achromate

An achromate is typically corrected for axial chromatical aberration

The achromatization condition for two thin

lenses close together reads

The Petzval sum usually is negative

and the field is curved

A flat field is obtained, if the following condition is fulfilled

This gives the special condition of simultaneous correction of achromatization

and flatness of field

perfect

image

plane

Petzval

shell

y'

f

RP

mean

image shell02

2

1

1

FF

j jjP fnR

11

02

2

1

1 n

F

n

F

2

1

2

1

n

n

41

Page 42: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

New Achromate

This condition correponds to the

requirement to find two glasses on one

straight line in the glass map

The solution is well known as simple

photographic lens

(landscape lens)K5 F2stop

42

Page 43: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Field Curvature

Correction of Petzval curvature in photographic lens Tessar

Positive lenses: green nj small

Negative lenses : blue nj large

Correction principle: special choice of refractive indices

Cemented component: New Achromate

Spherical aberration not correctable in the New Achromate

j j

j

n

F

R

1

43

Page 44: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Antiplanet

Protar

Dagor

Orthostigmat

Asymmetrical Anastigmatic Doublets

44

Page 45: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Field Curvature

Symmetrical system

Astigmatism corrected

Field curvature remainsfield

curvature

symmetrical

system

s'

T S y'

-2 -1 0 +1 +2

45

Page 46: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Field Curvature

Correction of Petzval field curvature in lithographic lens

for flat wafer

Positive lenses: green hj large, nj large

Negative lenses : blue hj small , nj small

Correction principle: certain number of bulges

j j

j

n

F

R

1

j

j

jF

h

hF

1

46

Page 47: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Field Flatness

Principle of multi-bulges to

reduce Petzval sum

Seidel contributions show principle

-0.2

0

0.2

10 20 30 40 6050

1. bulge 2. bulge 3. bulge1. waist 2. waist

one waist two waists

Petz Petz

1 1

rn

n fp k kk

'

47

Page 48: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Field Flatness

Effect of mirror on Petzval

sum

Flatness of field for cata-

dioptric lenses

-1

0

1

concave

mirror1. intermediate

image2. intermediate

image

48

Page 49: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Astigmatism of Eyeglasses with Rotating Eye

Rotating eye: Astigmatism

Coddington equations:

Elliptical line with vanishing

astigmatism:

Tscherning ellipses

a

object

s'

image

pupil

s

20

15

10

5

0

-5-20 -10 0 5-5-15 10

no astigmatism

Wollaston-

lens

Ostwald-

lens

front

refractive

power

F2 [dpt]

refractive

power F [dpt]

49

Page 50: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Semiconductor laser sources show two types of astigmatism:

1. elliptical anamorphotic aperture (not a real astigmatism)

2. z-variation of the internal source points in case of index guiding)

In laser physics, the quadratic

astigmatic beam shape is not

considered to be a

degradation, the M2 is constant,

it can be corrected by a simple

cylindrical optic

Semiconductor Laser Beams

z

z

Q

parallel

Q

perpendicular

semiconductor

junction plane

Q

perpendicular

parallel

semiconductor

junction plane

50

Page 51: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Anamorphotic or cylindrical/toroidal system are used to get a circular profile form a

semiconductor laser

Example:

laser beam collimator

Anamorphotic Systems

x

y

x-z-section

NA = 0.1

y-z-section

NA = 0.5

z

cylindricalaxi-symmetric

z

51

Page 52: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

45° Effects of Anamorphotic Systems

Example of two aspherical cylindrical

lenses with different focal lengths

For high numerical apertures:

no longer additivity and decoupling

of x-and y-cross section

The wavefront shows the deviations

in the 45° directions

50

y-z-section

NA = 0.4

x-z-section

NA = 0.57

52

Page 53: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Decentered System

Real systems with centering errors:

- non-circular symmetric surface on axis

- astigmatism on axis

- point spread function no longer

circular symmetric

x

[mm]-0.07-1

-0.063

-0.8

-0.056

-0.6

-0.049

-0.4

-0.042

-0.2

-0.035

0

-0.028

0.2

-0.021

0.4

-0.014

0.6

-0.007

0.8

0

1decenter

x

surface local

astigmatic

53

Page 54: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Astigmatism due to Fabrication Errors

Real surfaces with varying radius of curvature

Toroidal surface shape with Rmax, Rmin

Astigmatic effects on axis

Irregularity errors in tolerancing

measured by interferometry as ring difference

circular symmetric

surface surface with

irregularity error

Rmin

Rmax

Rmin

Rmax

Rspec

54

Page 55: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Astigmatic Correction by Clocking

Two lens surfaces nearby with equal astigmatism

due to manufacturing errors

Azimuthal rotation of one lens against the other

compensates astigmatism in first approximation

This clocking procedure is used in practice for

adjusting sensitive systems

t = 0°t = 45°t = 90° t = 22.5°t = 67.5°

cylindrical power

fixed orientation

cylindrical power

rotated by t

astigmatic

caustic

astigmatism

corrected

-50

5.5

18

16

36

26.5

54

37

72

47.5

90

58

108

68.5

126

79

144

89.5

162

100

180

c5 [a.u.]

55

Page 56: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Example Microscopic lens

Adjusting:

1. Axial shifting lens : focus

2. Clocking: astigmatism

3. Lateral shifting lens: coma

Ideal : Strehl DS = 99.62 %

With tolerances : DS = 0.1 %

After adjusting : DS = 99.3 %

Adjustment and Compensation

Ref.: M. Peschka

56

Page 57: Imaging and Aberration Theory - Friedrich-Schiller-Universität Jena · 2018. 11. 20. · Schedule - Imaging and aberration theory 2018 1 19.10. Paraxial imaging paraxial optics,

Adjustment and Compensation

Ref.: M. Peschka

57

Sucessive steps of improvements