72
Image Representation Anita Sellent

Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

Image Representation

Anita Sellent

Page 2: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 2

Last Time: Image Formation

● Incoming Light ( ray optics )● Lenses

– Point Spread Functions● Defocus● Airy Disk

● Sensor Setup● Sampling and Representation● Colors

Page 3: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 3

Array of Integers

Page 4: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 4

Mathematical Basics

● Introduction● Get experience in exercises● Get experience in applications

Page 5: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 5

Basis of Vector-Spaces

● Canonical basis v∈ℝ3

v=(v1

v2

v 3)=v1(

100)+v2(

010)+v3(

001) v1, v2, v3∈ℝ

e1 e2 e3

Page 6: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 6

Basis of Vector-Spaces

● Canonical basis

● Other basis

v∈ℝ3

v=(v1

v2

v 3)=v1(

100)+v2(

010)+v3(

001) v1, v2, v3∈ℝ

v=a(√31784 )+b(

π21)+c (

??? )

Page 7: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 7

Basis of Vector-Spaces

● Canonical basis

● Other basis

Page 8: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 8

Basis of a Vector Space

● Set of independent vectors

● Spans the entire vector space

a (100)+b(

010)≠(

001) ∀a ,b∈ℝ

v=(v1

v2

v 3)=v1(

100)+v2(

010)+v3(

001) ∀ v∈ℝ

3

Page 9: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 9

Images as Vectors

● Canonical Basis

I=∑i=1

N

∑j=1

M

I i , j ei , j

j

i

Page 10: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 10

Quiz

● How many canonical images are required to represent all N x M images?

1) 255 * ( M + N )

2) MN

3) NM

4) N*M

5) ( N * M )255

6) Don't know

j

i

Page 11: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 11

Images as Vectors

● Canonical Basis

● Other Basis

I=∑i=1

N

∑j=1

M

I i , j ei , j

Page 12: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 12

Images as Vectors

● Canonical Basis

● Other Basis

I=∑i=1

N

∑j=1

M

I i , j ei , j

Page 13: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 13

Image Representation

● Which representations make sense?– Canonical Basis

● Easy access to pixels

– Stripes● Describe patterns (e.g. for compression )● Describe optics ( e.g. effect of point spread functions )

Page 14: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 14

Literature

● Gonzales, Woods: Digital Image Processing– Chapter 4

● Weeks: Fundamentals of Electronic Image Processing– Chapter 2

● Easton: Fourier Methods in Imaging– Chapter 9 + 10

Page 15: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 15

Describe Stripes

● 1D case cm( t)=cos(2 πmM

t) m∈ℤ

M-periodic

m=0

Page 16: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 16

Describe Stripes

● 1D case cm( t)=cos(2 πmM

t) m∈ℤ

M-periodic

m=1

Page 17: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 17

Describe Stripes

● 1D case cm( t)=cos(2 πmM

t) m∈ℤ

M-periodic

m=2

Page 18: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 18

Describe Stripes

● 1D case cm( t)=cos(2 πmM

t)

M-periodic

even

f (x)=f (−x )

m=7

m∈ℤ

Page 19: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 19

Describe Stripes

● 1D case sm( t)=sin(2πmM

t) m∈ℤ

M-periodic

m=2

Page 20: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 20

Describe Stripes

● 1D case sm( t)=sin(2πmM

t)

M-periodic

odd

f (x)=−f (−x)

m=7

m∈ℤ

Page 21: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 21

Describe Stripes

● 1D case sm( t)=sin(2πmM

t)

M-periodic

m=7

m∈ℤ

odd

f (x)=−f (−x)

Page 22: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 22

Describe Stripes

● 1D case sm( t)=sin(2πmM

t)

M-periodic

m=2

m∈ℤ

odd

f (x)=−f (−x)

t∈(−M2

,M2 )

Page 23: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 23

Describe Stripes

● 1D case sm( t)=sin(2πmM

t)

M-periodic

m=2

m∈ℤ

odd

f (x)=−f (−x)

t∈[0,M )

Page 24: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 24

Discrete Fourier Transform

● Every finite sequence of complex numbers can be written as a sum of cosines and sines.

f n∈ℂ ∀ n∈{0, M−1}

f n=1M

∑m=0

M−1

am cos (2πmM

n)+bm sin(2 πmM

n)

am , bm∈ℂ ∀m∈{0, M−1}

Page 25: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 25

Discrete Fourier Transform

● Every finite sequence of complex numbers can be written as a sum of cosines and sines.

f n∈ℂ ∀ n∈{0, M−1}

f n=1M

∑m=0

M−1

Fm(cos (2 πmM

n)+ isin (2πmM

n))

Page 26: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 26

Discrete Fourier Transform

● Every finite sequence of complex numbers can be written as a sum of cosines and sines.

f n∈ℂ ∀ n∈{0, M−1}

f n=1M

∑m=0

M−1

Fm(cos (2 πmM

n)+ isin (2πmM

n))Fm=∑

n=0

M−1

f n(cos(2πnM

m)−i sin(2 πnM

m))

Page 27: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 27

Discrete Fourier Transform

● Every finite sequence of complex number can be written as a sum of cosines and sines.

f n∈ℂ ∀ n∈{0, M−1}

f n=1M

∑m=0

M−1

Fmexp(2 π imM

n)

Fm=∑n=0

M−1

f n exp(−2π inM

m)

Euler's Formula

Page 28: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 28

Discrete Fourier Transform

f n n∈{0, ... ,15 }

Page 29: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 29

Discrete Fourier Transform

f n n∈{0, ... ,15 }

After optics

Bucket brigade

Page 30: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 30

Discrete Fourier Transform

f n n∈{0, ... ,15 }

cm( t)=cos(2 πmM

t)

Fm=∑n=0

M−1

f n exp(−2π inM

m)

Page 31: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 31

Discrete Fourier Transform

● Spatial Domain ● Frequency Domain

f n∈ℂ n∈{0, ... ,15 } Fm∈ℂ m∈{0,... ,15}

F=U fFm=∑n=0

M−1

f n exp(−2π inM

m)

Page 32: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 32

High Frequencies

m = 1 m = 15

Page 33: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 33

High Frequencies

m = 1 m = -1

Page 34: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 34

Discrete Fourier Transform

● Spatial Domain ● Frequency Domain

f n∈ℂ n∈{0, ... ,15 } Fm∈ℂ m∈{0,... ,15}

F=U f

Page 35: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 35

Computing the DFT

● Naive implementation: complexity O( N² )

● Fast Fourier Transform– M = 2

Fm=∑n=0

M−1

f n exp(−2π inM

m)

F0=∑n=0

M−1

f n

F0=f 0+ f 1 F1=f 0+ f 1(cos (−π)+ isin (−π))= f 0−f 1

Page 36: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 36

Computing the DFT

● Define

● Fast Fourier Transform– M = 4

w=exp(−2π i1M

) Fm=∑n=0

M−1

f nwmn

w0=1,w2

=−1,w3=ww2

=−w ,w4=1

F0=f 0+ f 1+ f 2+ f 3

F1=f 0+w f 1+w2 f 2+w3 f 3=f 0+w f 1−f 2−w f 3

Page 37: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 37

Computing the DFT

● Define

● Fast Fourier Transform– M = 4

w=exp(−2π i1M

) Fm=∑n=0

M−1

f nwmn

w0=1,w2

=−1,w3=ww2

=−w ,w4=1

F0=f 0+ f 1+ f 2+ f 3=( f 0+ f 2)+( f 1+ f 3)

F1=f 0+w f 1−f 2−w f 3=(f 0−f 2)+w ( f 1− f 3)

F2= f 0+w2 f 1+w4 f 2−w6 f 3=(f 0+f 2)−( f 1+ f 3)

F2= f 0+w3 f 1+w6 f 2−w9 f 3=( f 0− f 2)−w( f 1− f 3)

Page 38: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 38

Computing the DFT

● Define

● Fast Fourier Transform– Complexity O( M log M )

w=exp(−2π i1M

) Fm=∑n=0

M−1

f nwmn

w0=1,w2

=−1,w3=ww2

=−w ,w4=1

Page 39: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 39

Discrete Fourier Transform

● 1D Discrete Fourier Transform

● 2D Discrete Fourier Transform

f m,n∈ℂ m∈{0,... , M−1}, n∈{0, ..., N−1}

Fm=∑n=0

M−1

f n exp(−2π inM

m)

f n∈ℂ n∈{0, ... ,15 }

Fk ,l=∑m=0

M −1

∑n=0

N−1

f m,n exp (−2π i( kM

m+lN

n))

Page 40: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 40

2D Discrete Fourier Transform

k = 5, l = 0 k = 0, l = 5 k = 15, l = 17

Page 41: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 41

Discrete Fourier Transform

● Example: What orientation does this text have?

Page 42: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 42

Discrete Fourier Transform

● Example: What orientation does this text have?

Page 43: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 43

Discrete Fourier Transform

● Example: What orientation does this text have?

Page 44: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 44

Discrete Fourier Transform

● Example: What orientation does this text have?

Page 45: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 45

2D DFT

● Compute 1D DFT for each dimension

Fk ,l=∑m=0

M −1

∑n=0

N−1

f m,n exp (−2π i( kM

m+lN

n))

=∑m=0

M −1

(∑n=0

N−1

f m ,n exp (−2π ilN

n))exp (−2π ikM

m)

gm, l

Page 46: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 46

Insights from (Discrete) Fourier Transform

● Sample-Densityf(t)

Page 47: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 47

Insights from (Discrete) Fourier Transform

● Sample-Densityf(t)

Page 48: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 48

Insights from (Discrete) Fourier Transform

cm( t)=cos(2 πmM

t)

g(t )=∑m=0

M−1

Fmexp(−2 π imM

t)

Page 49: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 49

Sampling Theorem

● Connects continuous function to sample points● Works with continuous Fourier Transform

● Dirac distribution to express sampling

F (μ)=∫−∞

f (t )exp(−2 πiμ t)dt

1=∫−∞

δ(t)dt

f (0)=∫−∞

f (t)δ( t)dt f n=f (nΔT )=∫−∞

f (t)δ (t−n ΔT )dt

Page 50: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 50

Tools Sampling Theorem

● 1D Fourier Transform

f (x) cos(2x)

f(x)

x

f̂( ) ( 1)( 1)2

f̂ ( )

f̂ (ξ)=F (ξ)=∫−∞

f (t)cos (−2π ξ t)+i f ( t)sin(−2 πξ t)dt

Page 51: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 51

Tools Sampling Theorem

● 1D Fourier Transformf̂ (ξ)=F (ξ)=∫

−∞

f (t)cos (−2π ξ t)+i f ( t)sin(−2 πξ t)dt

f (x) sin(2x)

f(x)

x

f̂ ( ) i ( 1)( 1)2

f̂ ( )i

Page 52: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 52

Tools Sampling Theorem

● 1D Fourier Transformf̂ (ξ)=F (ξ)=∫

−∞

f (t)cos (−2π ξ t)+i f ( t)sin(−2 πξ t)dt

f (x) cos(x2)

f(x)

x

f̂ ( )( 1

4)( 1

4)

2

f̂ ( )

Page 53: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 53

1D Fourier Transform Pairs

Gaussian:

Sinc:

f (x) eax2

f (x) sinc(ax) sin(x)x

f̂ ( ) 1arect

a

a 4

a 20f̂ ( )

ae

( )2

a

Page 54: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 54

Ideas Sampling Theorem

● Continuous Fourier transform of sampled function sums shifted copies

Page 55: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 55

Ideas Sampling Theorem

● Continuous Fourier transform of sampled function sums shifted copies

Page 56: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 56

Ideas Sampling Theorem

● Continuous Fourier transform of sampled function sums shifted copies

Page 57: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 57

Ideas Sampling Theorem

● Overlapping copies prevent exact reconstruction

Page 58: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 58

Sampling Theorem

● For a bandlimited function, we need to sample at least twice as often as the bandlimit to allow for exact reconstruction

|μ|>μmax→F (μ)=0

μmax<1

2ΔT

ΔT <1

2μmax

Page 59: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 59

Sampling Theorem

Input Image:Sufficiently resolved by optics

Nyquist Sampling:At least 2 samples per cycle

Aliasing:Too little samples for correct reconstruction!

Page 60: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 60

Downscaling

Original Size: 1344x1024 pixel

Downscale (factor 10)

Page 61: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 61

Quiz

● I want to save pixels in an image. What should I do to preserve the most possible of information?

1)Throw away every 2nd pixel

2)Fourier Transform, remove frequencies, backtransform, throw away every 2nd pixel

3)Fourier Transform, remove frequencies, throw away every 2nd pixel, backtransform

4)Average pixels in neighborhood, throw away every 2nd pixel

5)Crop the image

6)I don't know

Page 62: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 62

Downscaling

Downscale

Downsample

Page 63: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 63

Page 64: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 64

Downscaling

Input Image:Sufficiently resolved by optics

Nyquist Sampling:At least 2 samples per cycle

Aliasing:Too little samples for correct reconstruction!

Page 65: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 65

Downscaling

Input Image:Sufficiently resolved by optics

Nyquist Sampling:At least 2 samples per cycle

Aliasing:Too little samples for correct reconstruction!

Page 66: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 66

Input Image:Only large structures

Super-Sampling:More samples than necessary

Nyquist Sampling:

At least 2 samples per cycle

Downscaling

Page 67: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 67

Removing Frequencies

• Remove high frequencies: low-pass-filter

Page 68: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 68

Removing Frequencies

• Remove high frequencies: low-pass-filter

Page 69: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 69

Anti-Aliasing

Remove fine structures via blurring

Blur Down-

sample

Page 70: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 70

Convolution Theorem

● Idea: ( Weighted ) average in the spatial domain is equivalent to low-pass-filtering

Page 71: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 79

Summary

● Discrete Fourier Transform provides alternative basis for images.

● Sampling theorem specifies size of details that can be reconstructed exactly

Page 72: Image Representation - Heidelberg University · 18 April 2016 Representation 2 Last Time: Image Formation Incoming Light ( ray optics ) Lenses – Point Spread Functions Defocus Airy

18 April 2016 Representation 80

Next Week

● Exercise– On paper

– In implementation