70
Image Formation

Image Formation - UIUC

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Image Formation - UIUC

Image Formation

Page 2: Image Formation - UIUC

Early Clinical SPECT

GE 400T Rotating Anger Camera (ca. 1981)

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

The First Anger Camera

Page 3: Image Formation - UIUC

Modern Clinical Systems

GE Millenium VG Philips Cardio 60 Siemens e.camVariable Angle

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 4: Image Formation - UIUC

Basic SPECT – Projection Data

2D planarprojection

Sinogram

Axial level of sinogram

Angle of above projection

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 5: Image Formation - UIUC

Collimation Systems

• The collimation system is the heart of the SPECT instrument –it’s the front‐end and has the biggest impact on SNR

• Its function is to form an image by determining the direction along which gamma‐rays propagate

• Ideally, a lens similar to that used for visible photon wavelengths would be used for high efficiency – not feasible at gamma‐ray wavelengths

• Absorbing collimation typically used

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 6: Image Formation - UIUC

dLhhR

32

2

cos16dh

L d

DetectorPinhole (dia. h)

Source

RD

Intrinsic Resolution

Efficiency

Combined Resolution

22

Total DRLdRR

θ

Pinhole Collimation

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 7: Image Formation - UIUC

Parallel Hole Collimation

Photon absorbed by collimator channel

Photon reaches detector

Detector

Collimator

Source

h

L

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 8: Image Formation - UIUC

How to Improve the Tradeoff between Spatial Resolution and Sensitivity?

Better resolution

• smaller hole diameter,

• better detector intrinsicresolution,

• smaller source to objectdistance.

Better sensitivity Largerhole diameter

Page 9: Image Formation - UIUC

How to Improve the Tradeoff between Spatial Resolution and Sensitivity?

What if we increase the open fractionto allow more photons to pass through…

but split the total opening area intosmaller pinholes ?

Page 10: Image Formation - UIUC

How to Improve the Tradeoff between Spatial Resolution and Sensitivity?

The idea of multiplexing –

• Each detected photon no longercorresponds to a unique emissionlocation in the 2‐D source plane.

• Information content per detectedphoton is decreased.

• No of detected photons isincreased.

Page 11: Image Formation - UIUC

The Concept of Coded Aperture Imaging

A  G =

Ô =R  G , in fact

For a projection A from a point source, if there are decoding partterns G that gives:

Ô = R  G = ( O × A )  G = O * (A  G) = O * PSF

Then for any projection R from an arbitary source function, the orginal source functionO may be recovered by 

Page 12: Image Formation - UIUC

Examples of Coded Apertures

Fresnel Zone‐Plate Multiple Pinhole Aperture

Uniformly Redundant Array Aperture, Accorsi et al, 2002

Page 13: Image Formation - UIUC

Astronomical Application of Coded Aperture Imaging 

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

• Gamma ray source are normally point‐like with very low or virtually nobackground.

• Sources are normally well separated between each other.

• Very low flux reaching the detector – sensitivity is very important formaking quantitative conclusions.

• A wider FOV is normally required to survey a larger portion of the sky

Page 14: Image Formation - UIUC

Typical Coded Aperture Imaging System

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

• Apertures that consists of transparent and opaque elements

• Open fraction as high as 50% (10‐4 ~10‐3 with pinhole or parallel holecollimators.)

• Position sensitive detector used to detect the “shadow” imagesprojecting through the mask.

Page 15: Image Formation - UIUC

Coded Aperture Imaging

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Coded aperture is the standard imagingtechnique in astrophysics application involvinghard x‐rays and gamma rays.

http://astrophysics.gsfc.nasa.gov/cai/coded_inss.html And many more …

The way to reconstruct the image:

1. ML based method (optimum)

2. Cross‐correlation – Computationallyefficient, does not model detaileddetector response, less optimum imagequality (Please see literatures on NERS435class website for details)

Coded aperture is, from some sense, an multiple pinhole aperture with more openings ...

Page 16: Image Formation - UIUC

An Typical Emission Tomography System Described in Matrix Form

NMNMMM

N

N

N

M f

fff

pppp

pppppppppppp

g

ggg

M

L

MOMMM

L

L

L

M3

2

1

321

3333231

2232221

1131211

3

2

1

fn: No. of gamma raysgenerated in a givensource pixel

pmn: the probability of a gammaray generated at source pixel mbeing detected by detector pixeln.

No. of counts observed on agiven detector pixel

The response function of the imaging system for an impulsesignal at a given source location – The Impulse ResponseFunction hi

Page 17: Image Formation - UIUC

Image Formation with Coded Apertures

Once the overlapping projection data is acquired, the underlying image ofthe source object can be recovered using the many reconstructiontechniques, such as the ML based iterative approach

M

mmmm

m

M

mmmmm

gggl

g

ggggl

1

1

logmaxarg)( maxargˆ

get we, offunction not is since

!loglogmaxarg )(maxargˆ

ffML

ffML

gf,f

f

gf,f

So the ML reconstruction for Poisson distributed data is

Page 18: Image Formation - UIUC

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Courtesy of Neal Clinthorne, U. Michigan.

Page 19: Image Formation - UIUC

Energy Transfer in Compton Scattering

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019                                                   X‐ray and Gamma Ray Interactions

and the photon transfers part of its energy to the electron (assumed to be at rest), which is known as a recoil electron. Its energy is simply

,))cos(1(1 2

0

cmhv

hvvh

))cos(1(1 20

cmhv

hvhvvhhvErecoil

If we assuming the electron is free and at rest, the scattered gamma ray has an energy

Initial photon energy, v: photon frequency, 

h= 6.757704 meterkilogram/second,  (Planck’s constant)

Scattering anglemass of electron

Reading: Page 51, Radiation Detection and Measurements, Third Edition, G. F. Knoll, John Wiley & Sons, 1999.

The one‐to‐one relationship between scattering angle and energy loss!!

Page 20: Image Formation - UIUC

Derivation of the Relation Between Scattering Angle and Energy Loss  

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019                                                   X‐ray and Gamma Ray Interactions

The relation between energy the scattering angle and energytransfer can be derived based on the conservation of energy andmomentum:

evhehv pppp vvvv

evhehv EEEE

Are those terms truly zero?

Page 21: Image Formation - UIUC

Compton Scattering with Non‐stationary Electrons –Doppler Broadening

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019                                                   X‐ray and Gamma Ray Interactions

The Doppler broadening is stronger in Cu than in C because Cu electrons have greaterbonding energies.

With Dopplerbroadening

Without Doppler broadening

Without Doppler broadening

With Doppler broadening

Comparison of the photon spectra scattered by C and Cu samples. Ehv=40keV,=90 degrees

Page 22: Image Formation - UIUC

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Courtesy of Neal Clinthorne, U. Michigan.

Page 23: Image Formation - UIUC

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Courtesy of Neal Clinthorne, U. Michigan.

Page 24: Image Formation - UIUC

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Courtesy of Neal Clinthorne, U. Michigan.

The Comptel Observatory 

• Compton telescopes are two‐level instruments. 

• Typically sensitive to photons between 300 eV and 30 MeV.

• Top level = photon Compton scatters in liquid scintillator. 

• Bottom level = Scattered photon travels down and is absorbed by crystal scintillator. 

• PMTs triggered on both levels.

Page 25: Image Formation - UIUC

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

The Compton Gamma Ray Observatory was the second of NASA's Great Observatories.Compton, at 17 tons, was the heaviest astrophysical payload ever flown at the time of itslaunch on April 5, 1991 aboard the space shuttle Atlantis. Compton was safely deorbitedand re‐entered the Earth's atmosphere on June 4, 2000.

The Comptel Observatory 

Page 26: Image Formation - UIUC

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

http://heasarc.gsfc.nasa.gov/docs/cgro/comptel/allsky.html

Page 27: Image Formation - UIUC

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Grazing Incidence Telescope Uses fact that x‐rays and gamma rays at very short wavelengths behave like ordinarylight rays if they strike surfaces at a shallow enough angle.

Only work if angle of reflection is very low (typically 10 arc‐minutes to 2 degrees). 

Page 28: Image Formation - UIUC

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

The Chandra X‐ray Observatory 

Chandra Woltertelescope

Page 29: Image Formation - UIUC

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

The ROSAT X‐ray Observatory ROSAT (1990‐1999) the ROentgen SATellite, was an X‐ray observatory designed tomake an all‐sky survey in soft x‐rays (0.1 keV‐2 keV). Its sensitivity to X‐rays wasover 1000 times greater than Uhuru. The X‐ray mirror assembly was a grazingincidence four‐fold nested Wolter I telescope with an 84 cm diameter aperture.

Page 30: Image Formation - UIUC

Electronic Collimation

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Why electronic collimation?

Each detector element is allowed to see greater source volume  high sensitivity

Information content per detected photon is decreasing  the benefit depends on the particular source.

Page 31: Image Formation - UIUC

Single Photon Emission Computed Tomography

SPECTEach projection view is 2‐Dimensional → true 3‐Dimensional imaging technique (cf. X‐ray CT)Spatial resolution of 10~15mm with 1 rotating cameraClinical applications :

Detection of tumorAssessing myocardial infarctionBlood perfusion in the brain

Typical imaging time : ~30min with 1 cameraRecent advances: new detector systems, improving the trade‐off between spatial resolution & detection efficiency, new radio‐labeled pharmaceuticals

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 32: Image Formation - UIUC

Detection Systems

Page 33: Image Formation - UIUC

Modern Clinical Systems

GE Millenium VG Philips Cardio 60 Siemens e.camVariable Angle

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 34: Image Formation - UIUC

Detection Systems

Requirements:• Good energy resolution for Compton scattering rejection• High detection efficiency for radionuclides of interest• Sufficient spatial resolution so that it does not limit overall 

system resolution• Low dead‐time at count rates of interest

Page 35: Image Formation - UIUC

Conventional Anger Camera

Page 36: Image Formation - UIUC

Conventional Anger Camera

• PMTs coupled to large, continuous NaI(Tl) crystal

• Spatial resolution 3–4 mm FWHM• Energy resolution 8–10% FWHM• Mature technology (DoB ~1957)• Large‐area, >40cm x 40cm typical• Simple and cost‐effective

SPRINT II camera module

Page 37: Image Formation - UIUC

Scintillation Crystal Used in Gamma Cameras

• Crystal (typically NaI) scintillates with blue light in a linear fashion related to gamma ray energy.Grown crystalHydroscopic (H2O sensitive)

• Thickness used depends upon energy measured. Thickness goes up as energy increases

• 13% of gamma energy ‐> light

• New detector technology uses solid state crystals – Cadmium Zinc Telluride (CZT)

Page 38: Image Formation - UIUC

Scintillation Crystal Properties

Detection efficiency

No. of visible photons perinteraction

Efficiency for converting the light signal to electronic 

signal

Page 39: Image Formation - UIUC

Scintillation Light 

• Scintillation light are generated isotropically.• It is difficult to control light propagation inside a continuous bulk

scintillator• Light spreading leads to loss in both spatial resolution and energy

resolution.• Normally, the best we can do is to provide a better boundary condition

for a better light collection efficiency.

Page 40: Image Formation - UIUC

Scintillation Photons Emitting from the Crystal

An optional observation:

ni is the number of photons atthe ith spatial location. Supposewe know the distribution of thelight pool, so we can derive howthe no. of photons changing withspatial location x.

Page 41: Image Formation - UIUC

Continuous and Discrete Crystals

Continuous:• Photons reaching detector surface after a few reflection or refraction – better

light collection efficiency.• Light spread is wide (a) poor resolution (b) suffers from detector non‐

uniformity.Discrete:• Multiple reflection before collection.• Light collection is degraded depending on interaction depth.• Internal (total) reflection is the best way to key the photon inside.

Page 42: Image Formation - UIUC

The Light Transport in Discrete Crystals

• Air gap is maintained around the side walls of each elements.• Crystals with larger refraction index provide better light collection.

Page 43: Image Formation - UIUC

The Photomultiplier Tube

Page 44: Image Formation - UIUC

The Photomultiplier TubeOther electron multiplication structures

Typical power supply unit

• PMTs has gone through manygenerations.

• They are simple, robust and in many casesreasonably cost‐effective.

The down side:• Relatively low quantum efficiency only1 in 5 incident photons are converted tophotonelectron.

Page 45: Image Formation - UIUC

Position Sensitive Photomultiploer Tubes

The cross‐wire readout circuitry

Page 46: Image Formation - UIUC

PSPMT + Pixellated Scintillator

Advantages• Small size useful for niche

applications• Pixellated scintillator high

spatial resolution

Disadvantages• Quantum efficiency (~25%)• Pixelated scintillator has poorer

energy resolution (>10%) thancontinuous

• Small size is inadequate for manyapplications (human SPECT)

• Expensive!

Page 47: Image Formation - UIUC

35,000/MeV

Scintillation Crystal Properties

Consider• 100keV produces 3500

photons• 40% light collection• 20% quantum efficiency

(photoelectron/photon)

Total signal generated onthe PMT:280 photoelectrons

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 48: Image Formation - UIUC

Modern Readout Electronics for Scintillation Cameras

Two flavors: charge sharing scheme and fully discrete readout methods

Page 49: Image Formation - UIUC

Further Broadening in Energy Spectrum

The number of photoelectrons a Poisson variable

X‐ray and Gamma Ray Interactions

Energy resolution due to Poissonfluctuation on the number ofphotoelectrons

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 50: Image Formation - UIUC

Camera Energy Spectrum at 140 keV

Typical Anger camera has from 8–10% FWHM energy resolution at 140 keV

15–20% Energy window

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 51: Image Formation - UIUC

Detector Technology for Improving Spatial Resolution – Discrete Detector Elements

• Pixellated CsI(Tl) scintillator separated byreflector

• Arrays of PIN photodiodes and readoutelectronics

Eight modules in array

Drawing courtesy Jerome Gormley, Digirad, Inc

Reflectivecoating

Crystal

DiodeElectronics

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 52: Image Formation - UIUC

Comparing HPGe and Room Temperature Semiconductor Materials

Detector Material

ZEG(eV)

Epair(eV/ehp)

Density(g/cm3)

Resitivity @ 300K(cm)

e/h(cm2/V)

KnoopHardness

Ge 32 0.66 2.9 5.33 50 >1/>1

Si 14 1.12 3.6 2.33 ~104 >1/~1 1150

CdTe 48/52 1.4 4.4 6.2 109 10‐3/ 10‐4 45

CdZnTe 48/30/52 1.6 4.7 ~6.2 1011 10‐2/ 10‐4

HgI2 80/53 2.1 4.2 6.4 1013 10‐2/ 10‐4 <10

GaAs 31/33 1.4 4.3 5.32 108 10‐5/ 10‐6

Diamond 6 5 13 3.51 >1013 10‐5/ 10‐5 10000

TlBr 81/35 2.7 5.9 7.56 1011 10‐5/ 10‐6

InP 49/15 1.4 4.2 4.78 107 10‐5/ 10‐5

In semiconductor: total signal generated: ~22,700 much smaller statisticalfluctuation compared with that for scintillator!!Further helped by the Fano factor (Please see the definition on page 115 andtypical value for semiconductor on page 357, both on G. F. Knoll’s text)

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 53: Image Formation - UIUC

The HEXITEC Detector

Figures and text from Matt Wilson and Paul Seller, Rutherford Appleton Lab, UK, STFC.

The HEXITEC detector • Modular, 2 cm x 2 cm, 3-side butterable.

• 80x80 channels on 250µm pitch.

• 9000 f/s with 4 80x20 Quadrants ReadoutSimultaneously

• Low noise measurement of charge deposited toget good energy resolution.

• Readout energy on each pixel and, off-chip,build up spectrum per pixel over many frames.

• CdTe, 1-2mm, CZT, 2-5 mm thickness

Pixel readout circuitry

2 cm

Page 54: Image Formation - UIUC

Hybrid Pixel-Waveform CZT and CdTe DetectorsPixel readout circuitry to provide• Pixel address• Coarse timing info for synchronizing thecathode and anode readout operation

• Coarse energy information (if needed)

Q-

Q+γ

CZT/CdTeDetector

Waveform sampling circuitry to provide• Precise timing• Accurate depth of interaction (DOI)information

• Energy informationBenefits (presented at IEEE RTSD 2011 and Meng, NIM 2005,

2006, Groll et al., IEEE TNS 2016): Highly simplified pixel-circuitry, pixel address and

triggering only. Improved timing and DOI resolution (for single

interaction). Independent of anode configurations – allow the use of

further reduced pixel sizes and therefore furtherimproved spatial resolution.

A

B

C: Signal induced by electron movement

E Detector 1

μs

D: S

ign

al in

du

ced

by

bot

h

elec

. an

d h

ole

mov

emen

t

The Shockley–Ramo theorem states: The charge Q and current ion an electrode induced by a moving point charge q are given by:

Z. He et al, NIM A380 (1996) 228, NIM A388 (1997) 180.

where v is the instantaneous velocity of charge q. φ0(x). and E0(x)are called the weighting potential and the weighting field,respectively.

Page 55: Image Formation - UIUC

Small‐Pixel Semiconductor Detectors

Medipix II hybrid pixel sensorM. Campbell, V. Rosso, IEEE NSS‐MIC 2004 Conference Record.

• Energy resolution affected by incompletecharge collection.

• Timing information is limited by the slowcharge drafting in semiconductor.

• Count rate capability MAY be limited by thecomplexity of the readout system.

• DOI resolution is either unavailable, orrelatively poor.

• A single detector capable for both PET andSPECT is not available.

Not quite …

Is this the solution for future ultrahigh resolution nuclear imaging systems? 

Page 56: Image Formation - UIUC

The UIUC ERPC Detector: Different Variations Detector hybrids1.1 cm  2.2 cm Wire‐bonding to the readout PCB

FPGA for controlling the readout sequence

Copper substrate for supporting the hybrids

2006 – 2017On the same detector: • Spatial resolution in 3D: 350 μm x 2 mm (depth)  100 μm x 100 μm• Energy resolution: 3‐4 keV (30‐200)  1 keV (5‐200 keV).• Dynamic range: 30‐600 keV 5‐200 keV and 60 keV‐2MeV.• Improved effective sensitivity from precisely determined interaction patterns.

Page 57: Image Formation - UIUC

On-going Development of a Large-Area Deformable 3-D

HEXITEC Detector Platform

Page 58: Image Formation - UIUC

SIEMENS CZT “CASSETTE” (12 cm x 20 cm)

Works‐in‐progress prototype, not available as a product.

Courtesy Doug Wagenaar, Siemens Medical Solutions

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 59: Image Formation - UIUC

dN/dE

PHOTON ENERGY (keV)0 50 100 150 200

CZT

NaI

99mTc SPECTRUM140 keV

99mTc intrinsic (non‐collimated) spectra obtained with CdZnTe (CZT) and NaI(Tl) detector systems.  Note the low energy “tailing” of the CZT, and the 110 keV escape peak in the CZT spectrum.  

Courtesy Doug Wagenaar, Siemens Medical Solutions

Scintillation Crystal Properties

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

We are not quite there yet interms of the achieved energyresolution. But the benefit inoverall image quality isalready significant!

Page 60: Image Formation - UIUC

0 20 40 60 80 100 120 140 160 180 2000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

8

Energy (keV)

Cou

nts

CSD calibrated total spectra

FWHMCo57= 0.75 keV

FWHMAm241 = 0.61 keV

Charge‐Sharing Correction that Incorporates the Correlations between the Responses of Adjacent Pixels

0 10 20 30 40 50 60 700

2

4

6

8

10

12

14

16

18x 10

6

Energy (keV)

Cou

nts

Charge Sharing/Loss Discrimination Correction

36 keV Cd Kα Escape Peak

32 keV Te Kα Escape Peak

23.2 keV Cd Kα Emission Peak

26.1 keV Cd Kβ Emission Peak

51/50 keV Zn Escape peak

33 keV Cd Kβ Escape Peak

28.5 keV Te Escape Peak

H1

H2

18 keV241 Am Emission Peak

59.5 keV241 Am Emission Peak

70 80 90 100 110 120 130 140 150 1600

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

6

Energy (keV)

Cou

nts

Charge Sharing/Loss Discrimination Correction

57Co emission

113.2 keV Zn Escape peak

Escape Peak from 57 Co 136 keV Emission Peak

96.4 keV Cd Kβ Escape Peak

95 keV Te Kα Escape Peak

99.4 keV Cd Kα Escape Peak

91 keV Te Kβ Escape Peak

H1

H2

H3

Compton Edge

Can we reach the Fano‐factor‐limted energy resolution of 0.5keV @140 keV?

Page 61: Image Formation - UIUC

4 radioisotopes

20 40 60 80 100 120 140 160 180Energy [keV]

0

50

100

150

200

250

300

350

400Tc99m

I123 In111

Tl201 167 keV

Tl201 kβ1‐3

Tl201 kα1

Tl201 kα2

Cd/In kα1

I/Tekα1 Tl201 

kβ2‐4Tl201 135 keV

I/Tekα2

Cd/In kα2

Tl201 52 keV

20 40 60 80 100 120 140 160 180Energy [keV]

0

5

10

15

20

Tc99mI123

In111

Tl201 167 keV

Tl201 kβ1‐3

Tl201 kα1

Tl201 kα2

I/Tekα1

Tl201 kβ2‐4

Cd/In kα1

0.1 mL each/0.25 mCi(Tc99m,Tl201,I123,In111)4 vials of 250 uL, parallel to set surface1 hr at 800 fpsNo Scattering media

Energy resolution obtained with all 6400 pixels on a 2 cm x 2 cm CdTe detector

Energy resolution obtained on a single pixel

Page 62: Image Formation - UIUC

Controlled Charge Collection

In semiconductor, electron and holes are driven by electric field.Spatial spreading of the charge carriers can be better controlled, so that a betterspatial resolution can be achieved.

Collection of visible photons inscintillator

Collection of charge carriers insemiconductor

Apply electric field to drivethe charge carriers

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 63: Image Formation - UIUC

A Typical Measured Energy SpectrumPeak Position: 6.00 V/662 keV

Chn #3

Chn #2

Peak Position: ~5.36 V/592 keV

Peak Position: ~5.26 V/581 keV

~70keV

~81keV

Cou

nts

Pulse Amplitude (V)

E.R.: 0.9% ~5.96 keV

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Measured energy spectrum from HgI2semiconductor, 1mm thick, 1x1mm2 pixels

Typical energy spectrum from a 3 inch NaI(Tl)scintillation counter

Page 64: Image Formation - UIUC

Comparing Co‐60 Spectra Measured with NaI(Tl) and HPGe Detectors

One of the major advantages of semiconductor detector is the improved energy resolution ..

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 65: Image Formation - UIUC

NaI versus CZT Comparison

CZTNaI

SIEMENS CZT CASSETTECourtesy Doug Wagenaar, Siemens Medical Solutions

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 66: Image Formation - UIUC

Brain Images

Mosaic CZTNaI

Improved Image Quality

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 67: Image Formation - UIUC

• Sensitive to:Tracer (Drug) Concentration

• Contrast:Tracer vs. No Tracer

• Advantages:+ Visualizes Metabolism+ Acceptable Imaging Time

• Disadvantages:– Ionizing Radiation– Low Resolution

SPECT Basics

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 68: Image Formation - UIUC

Basic SPECT – Projection Data

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

Page 69: Image Formation - UIUC

Early Clinical SPECT

GE 400T Rotating Anger Camera (ca. 1981)

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019

The First Anger Camera

Page 70: Image Formation - UIUC

Modern Clinical Systems

GE Millenium VG Philips Cardio 60 Siemens e.camVariable Angle

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019