43
IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1 , Mark Gyure 2 , Bo Li 4 , Stan Osher 1 , Christian Ratsch 1,2 , David Shao 1 and Dimitri Vvedensky 3 1 UCLA, 2 HRL Laboratories 3 Imperial College, 4 U Maryland www.math.ucla.edu/~material

IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

Embed Size (px)

Citation preview

Page 1: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models

Russel Caflisch1, Mark Gyure2 , Bo Li4, Stan Osher 1, Christian Ratsch1,2,

David Shao1 and Dimitri Vvedensky3

1UCLA, 2HRL Laboratories 3Imperial College, 4U Maryland

www.math.ucla.edu/~material

Page 2: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Outline

• Epitaxial Growth– molecular beam epitaxy (MBE)

– Step edges and islands

• Mathematical models for epitaxial growth– atomistic: Solid-on-Solid using kinetic Monte Carlo

– continuum: Villain equation

– island dynamics: BCF theory

• Kinetic model for step edge– edge diffusion and line tension (Gibbs-Thomson) boundary conditions

– Numerical simulations

– Coarse graining for epitaxial surface

• Conclusions

Page 3: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Solid-on-Solid Model

• Interacting particle system – Stack of particles above each lattice point

• Particles hop to neighboring points– random hopping times

– hopping rate D= D0exp(-E/T),

– E = energy barrier, depends on nearest neighbors

• Deposition of new particles– random position

– arrival frequency from deposition rate

• Simulation using kinetic Monte Carlo method– Gilmer & Weeks (1979), Smilauer & Vvedensky, …

Page 4: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Page 5: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Kinetic Monte Carlo

• Random hopping from site A→ B

• hopping rate D0exp(-E/T),

– E = Eb = energy barrier between sites

– not δE = energy difference between sites

A

B

δEEb

Page 6: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

SOS Simulation for coverage=.2

Gyure and Ross, HRLGyure & Ross

Page 7: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

SOS Simulation for coverage=10.2

Page 8: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

SOS Simulation for coverage=30.2

Page 9: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Validation of SOS Model:Comparison of Experiment and KMC Simulation

(Vvedensky & Smilauer)

Island size density Step Edge Density (RHEED)

Page 10: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Difficulties with SOS/KMC

• Difficult to analyze• Computationally slow

– adatom hopping rate must be resolved

– difficult to include additional physics, e.g. strain

• Rates are empirical– idealized geometry of cubic SOS

– cf. “high resolution” KMC

Page 11: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

High Resolution KMC Simulations

High resolution KMC (left); STM images (right)Gyure, Barvosa-Carter (HRL), Grosse (UCLA,HRL)

•InAs

•zinc-blende lattice, dimers

•rates from ab initio computations

•computationally intensive

•many processes

•describes dynamical info (cf. STM)

•similar work

•Vvedensky (Imperial)

•Kratzer (FHI)

Page 12: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Island Dynamics• Burton, Cabrera, Frank (1951)

• Epitaxial surface– adatom density ρ

– continuum in lateral direction, atomistic in growth direction

• Adatom diffusion equation, equilibrium BC, step edge velocity

ρt=DΔ ρ +F

ρ = ρeq

v =D [∂ ρ/ ∂n]

• Line tension (Gibbs-Thomson) in BC and velocityD ∂ ρ/ ∂n = c(ρ – ρeq ) + c κ

v =D [∂ ρ/ ∂n] + c κss

– similar to surface diffusion, since κss ~ xssss

Page 13: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

Papanicolaou Fest 1/25/03

Island Dynamics/Level Set Equations

• Variables– N=number density of islands k = island boundaries of height k represented by “level set function”

k (t) = { x : (x,t)=k}– adatom density (x,y,t)

• Adatom diffusion equation

ρt - D∆ ρ = F - dN/dt• Island nucleation rate

dN/dt = ∫ D σ1 ρ 2 dx

σ1 = capture number for nucleation• Level set equation (motion of )

φ t + v |grad φ| = 0 v = normal velocity of boundary

F

D

v

Page 14: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

The Levelset Method

Level Set Function Surface Morphology

t

=0

=0

=0

=0=1

Page 15: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

Level Contours after 40 layers

In the multilayer regime, the level set method produces resultsthat are qualitatively similar to KMC methods.

Page 16: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

LS = level set implementation of island dynamics UCLA/HRL/Imperial group, Chopp, Smereka

Page 17: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Nucleation Rate:

Nucleation: Deterministic Time, Random Position

2),( tDdt

dNx

Random Seedingindependent of

Probabilistic Seedingweight by local 2

Deterministic Seedingseed at maximum 2

max

Page 18: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04C. Ratsch et al., Phys. Rev. B (2000)

Effect of Seeding Style on Scaled Island Size Distribution

Random Seeding Probabilistic Seeding Deterministic Seeding

Page 19: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Island size distributions

Experimental Data for Fe/Fe(001),Stroscio and Pierce, Phys. Rev. B 49 (1994)

Stochastic nucleation and breakup of islands

Page 20: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Kinetic Theory for Step Edge Dynamics

and Adatom Boundary Conditions

• Theory for structure and evolution of a step edge– Mean-field assumption for edge atoms and kinks

– Dynamics of corners are neglected

• Validation based on equilibrium and steady state solutions

• Asymptotics for large diffusion

Page 21: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Step Edge Components

•adatom density ρ•edge atom density φ•kink density (left, right) k•terraces (upper and lower)

Page 22: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Unsteady Edge Model from Atomistic Kinetics

• Evolution equations for φ, ρ, k ∂t ρ - DT ∆ ρ = F on terrace∂t φ - DE ∂s

2 φ = f+ + f- - f0 on edge

∂t k - ∂s (w ( kr - k ℓ))= 2 ( g - h ) on edge• Boundary conditions for ρ on edge from left (+) and right (-)

– v ρ+ + DT n·grad ρ = - f+ – v ρ+ + DT n·grad ρ = f-

• Variables– ρ = adatom density on terrace– φ = edge atom density– k = kink density

• Parameters– DT, DE, DK, DS = diffusion coefficients for terrace, edge, kink, solid

• Interaction terms– v,w = velocity of kink, step edge– F, f+ , f- , f0 = flux to surface, to edge, to kinks– g,h = creation, annihilation of kinks

Page 23: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Constitutive relations• Geometric conditions for kink density

– kr + kℓ= k– kr - k ℓ = - tan θ

• Velocity of step– v = w k cos θ

• Flux from terrace to edge, – f+ = DT ρ+ - DE φ – f- = DT ρ- - DE φ

• Flux from edge to kinks– f0 = v(φ κ + 1)

• Microscopic equations for velocity w, creation rate g and annihilation rate h for kinks – w= 2 DE φ + DT (2ρ+ + ρ-) – 5 DK

– g= 2 (DE φ + DT (2ρ+ + ρ-)) φ – 8 DK kr kℓ – h= (2DE φ + DT (3ρ+ + ρ-)) kr kℓ – 8 DS

Page 24: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

BCF Theory

• Equilibrium of step edge with terrace from kinetic theory is same as from BCF theory

• Gibbs distributionsρ = e-2E/T

φ = e-E/T

k = 2e-E/2T

• Derivation from detailed balance• BCF includes kinks of multi-heights

Page 25: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Equilibrium Solution

•Solution for F=0 (no growth)•Same as BCF theory•DT, DE, DK are diffusion coefficients (hopping rates) on Terrace, Edge, Kink in SOS model

Comparison of results from theory(-)

and KMC/SOS ()

Page 26: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Kinetic Steady State

• Deposition flux F

•Vicinal surface with terrace width L

•No detachment from kinks or step edges, on growth time scale

•detailed balance not possible

• Advance of steps is due to attachment at kinks

•equals flux to step f = L F

L

F

f

Page 27: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Kinetic Steady State

•Solution for F>0•k >> keq

•Pedge=Fedge/DE “edge Peclet #” = F L / DE Comparison of scaled results from steady state (-),

BCF(- - -), and KMC/SOS (∆) for L=25,50,100,with F=1, DT=1012

Page 28: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Asymptotics for Large D/F

• Assume slowly varying kinetic steady state along island boundaries

– expansion for small “Peclet number” f / DE = ε3

– f is flux to edge from terrace

• Distinguished scaling limit – k = O(ε)

– φ = O(ε2)

– κ = O(ε2) = curvature of island boundary = X y y

– Y= O(ε-1/2) = wavelength of disurbances

• Results at leading order– v = (f+ + f- ) + DE φyy

– k = c3 v / φ

– c1 φ2 - c2 φ-1 v = (φ X y ) y

• Linearized formula for φ– φ = c3 (f+ + f- )2/3 – c4

curvature

edge diffusion

Page 29: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Macroscopic Boundary Conditions• Island dynamics model

– ρt – DT ∆ ρ = F adatom diffusion between step edges

– X t = v velocity of step edges

• Microscopic BCs for ρ DT n·grad ρ = DT ρ - DE φ ≡ f

• From asymptotics– φ*= reference density = (DE / DT) c1((f+ + f- )/ DE)2/3

– γ = line tension = c4 DE

• BCs for ρ on edge from left (+) and right (-), step edge velocity

± DT n·grad ρ = DT (ρ - φ * ) + γ κ v = (f+ + f- ) + c (f+ + f- ) ss + γ κss

detachment

Page 30: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Numerical Solutions for KineticStep Edge Equations

• David Shao (UCLA)• Single island• First order discretization• Asymmetric linear system

Page 31: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Circular Island → Square:Initial and Final Shape

Page 32: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Circular Island → Square

Angle=angle relative to nearest crystallographic direction

Page 33: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Circular Island → Square:Kink Density

initial final

Page 34: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Circular Island → Square:Normal Velocity

initial final

Page 35: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Circular Island → Square:Adatom and Edge Atom Densities

Adatom density held constant in this computation for simplicity

Page 36: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Star-Shaped Island

Island boundary

Page 37: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Star-Shaped Island

Kink density

Page 38: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Star-Shaped Island

Edge atom density

Page 39: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Coarse-Grained Description of an Epitaxial Surface

• Extend the previous description to surface

• Surface features– Adatom density ρ(x,t)

– Step edge density s(x,t,θ, κ) for steps with normal angle θ, curvature κ

• Diffusion of adatoms2

0 ( , , , )t xD F s x t d d

Page 40: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Dynamics of Steps• Characteristic form of equations

20

0

1( ) (( ( ) ) )

2

( ) ( ) ( , )

t x x

n n

s D n s w s n w s

s n n s d d

•PDE for s

0

0

2

( ) ( ) ( , )

( ) ( )

( ( ) )

1

2

t n n

t

t x

t

s s n n s d d

x wn D n

n w

w

Cancellation of 2 edges

Motion due to attachment

Rotation due to differential attachment

Decrease in curvature due to expansion

Page 41: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Dynamics of Steps

• Cancellation of 2 edges

• Motion due to attachment

• Rotation due to differential attachment

• Decrease in curvature due to expansion

Page 42: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Motion of Steps

• Creation of islands at nucleation sites (a=atomic size)

• Geometric constraint on steps

( ( ) ) 0xn s

0

( ) 0

s

n x

1 20( ) ...ts a D

- Characteristic form (τ along step edge)

- PDE

Page 43: IMA, 11/19/04 Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1,

IMA, 11/19/04

Conclusions

• Level set method– Coarse-graining of KMC– Stochastic nucleation

• Kinetic model for step edge– kinetic steady state ≠ BCF equilibrium– validated by comparison to SOS/KMC – Numerical simulation do not show problems with edges

• Atomistic derivation of Gibbs-Thomson– includes effects of edge diffusion, curvature, detachment

– previous derivations from thermodynamic driving force

• Coarse-grained description of epitaxial surface – Neglects correlations between step edges