17
IKONION JOURNAL OF MATHEMATICS Year: 2020 Volume:2 Issue: 2 ISSN: 2687-6531 MULTIPLICATIVE VOLTERRA INTEGRAL EQUATIONS AND THE RELATIONSHIP BETWEEN MULTIPLICATIVE DIFFERENTIAL EQUATIONS Nihan GรœNGร–R *1 and Hatice DURMAZ 1 1 GรผmรผลŸhane University, Faculty of Engineering and Naturel Sciences, Department of Mathematical Engineering, GรผmรผลŸhane, Turkey. E-mail: [email protected] (corresponding author) ( Received:15.09.2020, Accepted: 01.11.2020, Published Online: 05.11.2020) Abstract In this study, the multiplicative Volterra integral equation is defined by using the concept of multiplicative integral. The solution of multiplicative Volterra integral equation of the second kind is researched by using the successive approximations method with respect to the multiplicative calculus and the necessary conditions for the continuity and uniqueness of the solution are given. The main purpose of this study is to investigate the relationship of the multiplicative integral equations with the multiplicative differential equations. Keywords: Multiplicative calculus; Multiplicative differential equations; Multiplicative Volterra integral equations; Successive approximations method. 1. Introduction Grossman and Katz [10] have built non-Newtonian calculus between years 1967-1970 as an alternative to classic calculus. They have set an infinite family of calculus, including classic, geometric, harmonic, quadratic, bigeometric, biharmonic and biquadratic calculus. Also, they defined a new kind of derivative and integral by using multiplication and division operations instead of addition and subtraction operations. Later, the new calculus that establish in this way is named multiplicative calculus by Stanley [16]. Multiplicative calculus provide different point of view for applications in science and engineering. It is discussed and developed by many researchers. Stanley [16] developed multiplicative calculus, gave some basic theorems about derivatives, integrals and proved infinite products in this calculus. Aniszewska [1] used the multiplicative version of Runge-Kutta method for solving multiplicative differential equations. Bashirov, Mฤฑsฤฑrlฤฑ and ร–zyapฤฑcฤฑ [2] demonstrated some applications and usefulness of multiplicative calculus for the attention of researchers in the branch of analysis. Rฤฑza, ร–zyapฤฑcฤฑ and Mฤฑsฤฑrlฤฑ [14] studied the finite difference methods for the numerical solutions of multiplicative differential equations and Volterra integral equations. Mฤฑsฤฑrlฤฑ and Gurefe [13] developed multiplicative Adams Bashforth-Moulton methods to obtain the numerical solution of multiplicative differential equations. Bashirov, Rฤฑza [4] discussed multiplicative differentiation for complex valued functions and Bashirov, Norozpour [6] extended the multiplicative integral to complex valued functions. Bashirov [5] studied double integrals in the sense of multiplicative calculus. Bhat et al. [7] defined multiplicative Fourier transform and found the solution of multiplicative differential equations by applying multiplicative Fourier transform. Bhat et al. [8] defined multiplicative Sumudu transform and solved some multiplicative differential equations by using multiplicative Sumudu transform. For more details see in [1-10, 13, 14, 16-20].

IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

IKONION JOURNAL OF MATHEMATICS

Year: 2020 Volume:2 Issue: 2

ISSN: 2687-6531

MULTIPLICATIVE VOLTERRA INTEGRAL EQUATIONS AND

THE RELATIONSHIP BETWEEN MULTIPLICATIVE

DIFFERENTIAL EQUATIONS

Nihan GรœNGร–R *1 and Hatice DURMAZ1

1 GรผmรผลŸhane University, Faculty of Engineering and Naturel Sciences, Department of Mathematical

Engineering, GรผmรผลŸhane, Turkey.

E-mail: [email protected] (corresponding author)

( Received:15.09.2020, Accepted: 01.11.2020, Published Online: 05.11.2020)

Abstract In this study, the multiplicative Volterra integral equation is defined by using the

concept of multiplicative integral. The solution of multiplicative Volterra integral

equation of the second kind is researched by using the successive approximations

method with respect to the multiplicative calculus and the necessary conditions for the

continuity and uniqueness of the solution are given. The main purpose of this study is

to investigate the relationship of the multiplicative integral equations with the

multiplicative differential equations. Keywords: Multiplicative calculus; Multiplicative differential equations;

Multiplicative Volterra integral equations; Successive approximations method.

1. Introduction

Grossman and Katz [10] have built non-Newtonian calculus between years 1967-1970 as an

alternative to classic calculus. They have set an infinite family of calculus, including classic, geometric,

harmonic, quadratic, bigeometric, biharmonic and biquadratic calculus. Also, they defined a new kind

of derivative and integral by using multiplication and division operations instead of addition and

subtraction operations. Later, the new calculus that establish in this way is named multiplicative calculus

by Stanley [16]. Multiplicative calculus provide different point of view for applications in science and

engineering. It is discussed and developed by many researchers. Stanley [16] developed multiplicative

calculus, gave some basic theorems about derivatives, integrals and proved infinite products in this

calculus. Aniszewska [1] used the multiplicative version of Runge-Kutta method for solving

multiplicative differential equations. Bashirov, Mฤฑsฤฑrlฤฑ and ร–zyapฤฑcฤฑ [2] demonstrated some applications

and usefulness of multiplicative calculus for the attention of researchers in the branch of analysis. Rฤฑza,

ร–zyapฤฑcฤฑ and Mฤฑsฤฑrlฤฑ [14] studied the finite difference methods for the numerical solutions of

multiplicative differential equations and Volterra integral equations. Mฤฑsฤฑrlฤฑ and Gurefe [13] developed

multiplicative Adams Bashforth-Moulton methods to obtain the numerical solution of multiplicative

differential equations. Bashirov, Rฤฑza [4] discussed multiplicative differentiation for complex valued

functions and Bashirov, Norozpour [6] extended the multiplicative integral to complex valued functions.

Bashirov [5] studied double integrals in the sense of multiplicative calculus. Bhat et al. [7] defined

multiplicative Fourier transform and found the solution of multiplicative differential equations by

applying multiplicative Fourier transform. Bhat et al. [8] defined multiplicative Sumudu transform and

solved some multiplicative differential equations by using multiplicative Sumudu transform. For more

details see in [1-10, 13, 14, 16-20].

Page 2: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

10

Ikonion Journal of Mathematics 2020, 2 (2)

Integral equations have used for the solution of many problems in applied mathematics,

mathematical physics and engineering since the 18th century. The integral equations have begun to enter

the problems of engineering and other fields because of the relationship with differential equations and

so their importance has increased in recent years. The reader may refer for relevant terminology on the

integral equations to [11, 12, 15, 21, 22].

Now, we will give some necessary definitions and theorems in multiplicative calculus as follows:

Definition 1. Let ๐‘“ be a function whose domain is โ„ the set of real numbers and whose range is a

subset of โ„. The multiplicative derivative of the ๐‘“ at ๐‘ฅ is defined as the limit

๐‘‘โˆ—๐‘“(๐‘ฅ)

๐‘‘๐‘ฅ= ๐‘“โˆ—(๐‘ฅ) = lim

โ„Žโ†’0(๐‘“(๐‘ฅ+โ„Ž)

๐‘“(๐‘ฅ))

1

โ„Ž.

The limit is also called โˆ—-derivative of ๐‘“ at ๐‘ฅ, briefly.

If ๐‘“ is a positive function on an open set ๐ด โŠ† โ„ and its classical derivative ๐‘“โ€ฒ(๐‘ฅ) exists, then its

multiplicative derivative also exists and

๐‘“โˆ—(๐‘ฅ) = ๐‘’[๐‘“โ€ฒ(๐‘ฅ)

๐‘“(๐‘ฅ)]= ๐‘’(๐‘™๐‘›โˆ˜๐‘“)

โ€ฒ(๐‘ฅ)

where ๐‘™๐‘› โˆ˜ ๐‘“(๐‘ฅ) = ๐‘™๐‘›๐‘“(๐‘ฅ). Moreover, if ๐‘“ is multiplicative differentiable and ๐‘“โˆ—(๐‘ฅ) โ‰  0, then its

classical derivative exists and

๐‘“โ€ฒ(๐‘ฅ) = ๐‘“(๐‘ฅ) โ‹… ๐‘™๐‘›๐‘“โˆ—(๐‘ฅ) [16].

The multiplicative derivative of ๐‘“โˆ— is called the second multiplicative derivative and it is denoted

by ๐‘“โˆ—โˆ—. Likewise, the ๐‘›-th multiplicative derivative can be defined of ๐‘“ and denoted by ๐‘“โˆ—(๐‘›) for ๐‘› =

0,1,2, ... . If ๐‘›-th derivative ๐‘“(๐‘›)(๐‘ฅ) exists, then its ๐‘›-th multiplicative derivative ๐‘“โˆ—(๐‘›)(๐‘ฅ) also exists

and

๐‘“โˆ—(๐‘›)(๐‘ฅ) = ๐‘’(๐‘™๐‘›โˆ˜๐‘“)(๐‘›)(๐‘ฅ), ๐‘› = 0,1,2,โ€ฆ [2].

Definition 2. The multiplicative absolute value of ๐‘ฅ โˆˆ โ„ denoted with the symbol |๐‘ฅ|โˆ— and defined

by

|๐‘ฅ|โˆ— = ๐‘ฅ, ๐‘ฅ โ‰ฅ 1 1

๐‘ฅ, ๐‘ฅ < 1.

Theorem 1. Let ๐‘“ and ๐‘” be multiplicative differentiable functions. Then the functions ๐‘. ๐‘“, ๐‘“. ๐‘”, ๐‘“ +

๐‘”,๐‘“๐‘”โ„ , ๐‘“๐‘” are multiplicative differentiable where ๐‘ is an arbitrary constant and their multiplicative

derivative can be shown as

(1) (๐‘๐‘“)โˆ—(๐‘ฅ) = ๐‘“โˆ—(๐‘ฅ)

(2) (๐‘“๐‘”)โˆ—(๐‘ฅ) = ๐‘“โˆ—(๐‘ฅ)๐‘”โˆ—(๐‘ฅ)

(3) (๐‘“ + ๐‘”)โˆ—(๐‘ฅ) = ๐‘“โˆ—(๐‘ฅ)๐‘“(๐‘ฅ)

๐‘“(๐‘ฅ)+๐‘”(๐‘ฅ)๐‘”โˆ—(๐‘ฅ)๐‘”(๐‘ฅ)

๐‘“(๐‘ฅ)+๐‘”(๐‘ฅ)

(4) (๐‘“

๐‘”)โˆ—(๐‘ฅ) =

๐‘“โˆ—(๐‘ฅ)

๐‘”โˆ—(๐‘ฅ)

(5) (๐‘“๐‘”)โˆ—(๐‘ฅ) = ๐‘“โˆ—(๐‘ฅ)๐‘”(๐‘ฅ)๐‘“(๐‘ฅ)๐‘”โ€ฒ(๐‘ฅ)

(6) [๐‘“โˆ—(๐‘ฅ)]๐‘› = [๐‘“๐‘›(๐‘ฅ)]โˆ— for ๐‘› โˆˆ โ„ [16].

Page 3: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

11

Ikonion Journal of Mathematics 2020, 2 (2)

Theorem 2. (Multiplicative Mean Value Theorem) If the function ๐‘“ is continuous on [๐‘Ž, ๐‘] and is

*-differentiable on (๐‘Ž, ๐‘), then there exits ๐‘Ž < ๐‘ < ๐‘ such that

๐‘“โˆ—(๐‘) = (๐‘“(๐‘)

๐‘“(๐‘Ž))

1

๐‘โˆ’๐‘Ž [3].

Definition 3. Let ๐‘“ be a function with two variables, then its multiplicative partial derivatives are

defined as

๐œ•โˆ—๐‘“(๐‘ฅ,๐‘ฆ)

๐œ•๐‘ฅ= ๐‘“๐‘ฅ

โˆ—(๐‘ฅ, ๐‘ฆ) = ๐‘’๐œ•

๐œ•๐‘ฅ๐‘™๐‘›(๐‘“(๐‘ฅ,๐‘ฆ))

and ๐œ•โˆ—๐‘“(๐‘ฅ,๐‘ฆ)

๐œ•๐‘ฆ= ๐‘“๐‘ฆ

โˆ—(๐‘ฅ, ๐‘ฆ) = ๐‘’๐œ•

๐œ•๐‘ฆ๐‘™๐‘›(๐‘“(๐‘ฅ,๐‘ฆ))

[5].

Theorem 3. (Multiplicative Chain Rule) Suppose that ๐‘“ be a function of two variables ๐‘ฆ and ๐‘ง with

continuous multiplicative partial derivatives. If ๐‘ฆ and ๐‘ง are differentiable functions on (๐‘Ž, ๐‘) such that

๐‘“(๐‘ฆ(๐‘ฅ), ๐‘ง(๐‘ฅ)) is defined for every ๐‘ฅ โˆˆ (๐‘Ž, ๐‘), then

๐‘‘โˆ—๐‘“(๐‘ฆ(๐‘ฅ), ๐‘ง(๐‘ฅ))

๐‘‘๐‘ฅ= ๐‘“๐‘ฆ

โˆ—(๐‘ฆ(๐‘ฅ), ๐‘ง(๐‘ฅ))๐‘ฆโ€ฒ(๐‘ฅ)

๐‘“๐‘งโˆ—(๐‘ฆ(๐‘ฅ), ๐‘ง(๐‘ฅ))

๐‘งโ€ฒ(๐‘ฅ) [2].

Definition 4. Let ๐‘“ be a positive function and continuous on the interval [๐‘Ž, ๐‘], then it is

multiplicative integrable or briefly โˆ—-integrable on [๐‘Ž, ๐‘] and

โˆ— โˆซ ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ๐‘

๐‘Ž

= ๐‘’โˆซ ln(๐‘“(๐‘ฅ))๐‘‘๐‘ฅ๐‘

๐‘Ž [16].

Theorem 4. If ๐‘“ and ๐‘” are integrable functions on [๐‘Ž, ๐‘] in the sense of multiplicative, then

(1) โˆ— โˆซ (๐‘“(๐‘ฅ)๐‘˜)๐‘‘๐‘ฅ๐‘

๐‘Ž= (โˆ— โˆซ (๐‘“(๐‘ฅ))

๐‘‘๐‘ฅ๐‘

๐‘Ž)๐‘˜

(2) โˆ— โˆซ (๐‘“(๐‘ฅ)๐‘”(๐‘ฅ))๐‘‘๐‘ฅ๐‘

๐‘Ž=โˆ— โˆซ (๐‘“(๐‘ฅ))

๐‘‘๐‘ฅ๐‘

๐‘Žโˆ— โˆซ (๐‘”(๐‘ฅ))

๐‘‘๐‘ฅ๐‘

๐‘Ž

(3) โˆ— โˆซ (๐‘“(๐‘ฅ)

๐‘”(๐‘ฅ))๐‘‘๐‘ฅ๐‘

๐‘Ž=โˆ—โˆซ (๐‘“(๐‘ฅ))

๐‘‘๐‘ฅ๐‘

๐‘Ž

โˆ—โˆซ (๐‘”(๐‘ฅ))๐‘‘๐‘ฅ๐‘

๐‘Ž

(4) โˆ— โˆซ (๐‘“(๐‘ฅ))๐‘‘๐‘ฅ๐‘

๐‘Ž=โˆ— โˆซ (๐‘“(๐‘ฅ))

๐‘‘๐‘ฅ๐‘

๐‘Žโˆ— โˆซ (๐‘“(๐‘ฅ))

๐‘‘๐‘ฅ๐‘

๐‘

where ๐‘˜ โˆˆ โ„ and ๐‘Ž โ‰ค ๐‘ โ‰ค ๐‘ [2,3].

Theorem 5. (Fundamental Theorem of Multiplicative Calculus) If the function ๐‘“ has multiplicative

derivative on [๐‘Ž, ๐‘] and ๐‘“โˆ— is multiplicative integrable on [๐‘Ž, ๐‘] , then

โˆ— โˆซ๐‘“โˆ—(๐‘ฅ)๐‘‘๐‘ฅ๐‘

๐‘Ž

=๐‘“(๐‘)

๐‘“(๐‘Ž) [2,3].

Definition 5. The equation of the form

๐‘ฆโˆ—(๐‘ฅ) = ๐‘“(๐‘ฅ, ๐‘ฆ(๐‘ฅ))

including the multiplicative derivative of ๐‘ฆ is called first order multiplicative differential equation. It is

equivalent to the ordinary differential equation ๐‘ฆโ€ฒ(๐‘ฅ) = ๐‘ฆ(๐‘ฅ) ln ๐‘“(๐‘ฅ, ๐‘ฆ(๐‘ฅ)). Similarly, ๐‘›-th order

multiplicative differential equation is defined by ๐น (๐‘ฅ, ๐‘ฆ, ๐‘ฆโˆ—, โ€ฆ , ๐‘ฆโˆ—(๐‘›โˆ’1), ๐‘ฆโˆ—(๐‘›)(๐‘ฅ)) = 1, (๐‘ฅ, ๐‘ฆ) โˆˆ โ„ ร—

โ„+ [2,3]. The equation of the form

Page 4: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

12

Ikonion Journal of Mathematics 2020, 2 (2)

(๐‘ฆโˆ—(๐‘›))๐‘Ž๐‘›(๐‘ฅ)

(๐‘ฆโˆ—(๐‘›โˆ’1))๐‘Ž๐‘›โˆ’1(๐‘ฅ)

โ€ฆ(๐‘ฆโˆ—โˆ—)๐‘Ž2(๐‘ฅ)(๐‘ฆโˆ—)๐‘Ž1(๐‘ฅ)๐‘ฆ๐‘Ž0(๐‘ฅ) = ๐‘“(๐‘ฅ)

that ๐‘“ is a positive function, is called multiplicative linear differential equation. If the exponentials ๐‘Ž๐‘›(๐‘ฅ)

are constants, then the equation called as multiplicative linear differential equation with constant

exponentials; if not it is called as multiplicative linear differential equation with variable exponentials

[17].

2. Multiplicative Volterra Integral Equations

An equation in which an unknown function appears under one or more signs of multiplicative

integration is called a multiplicative integral equation (MIE), if the multiplicative integral exists. The

equation

๐‘ข(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ— โˆซ[๐‘ข(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

where ๐‘“(๐‘ฅ) and ๐พ(๐‘ฅ, ๐‘ก) are known functions, ๐‘ข(๐‘ฅ) is unknown function, is called linear multiplicative

Volterra integral equation (LMVIE) of the second kind. The function ๐พ(๐‘ฅ, ๐‘ก) is the kernel of

multiplicative Volterra integral equation. If ๐‘“(๐‘ฅ) = 1, then the equation takes the form

๐‘ข(๐‘ฅ) = โˆ— โˆซ[๐‘ข(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

and it is called LMVIE of the first kind.

Example 1. Show that the function ๐‘ข(๐‘ฅ) = ๐‘’2๐‘ฅ is a solution of the MVIE ๐‘ข(๐‘ฅ) = ๐‘’๐‘ฅ โˆ— โˆซ [(๐‘ข(๐‘ก))1

๐‘ฅ]๐‘‘๐‘ก

๐‘ฅ

0.

Solution. Substituting the function ๐‘’2๐‘ฅ in place of ๐‘ข(๐‘ฅ) into the right side of the equation, we obtain

๐‘’๐‘ฅ โˆ— โˆซ [(๐‘ข(๐‘ก))1

๐‘ฅ]๐‘‘๐‘ก

๐‘ฅ

0= ๐‘’๐‘ฅ โˆ— โˆซ [(๐‘’2๐‘ก)

1

๐‘ฅ]๐‘‘๐‘ก

๐‘ฅ

0 = ๐‘’๐‘ฅ ๐‘’โˆซ ln ๐‘’

2๐‘ก๐‘ฅ ๐‘‘๐‘ก

๐‘ฅ

0 = ๐‘’๐‘ฅ ๐‘’โˆซ2๐‘ก

๐‘ฅ๐‘‘๐‘ก

๐‘ฅ

0 = ๐‘’๐‘ฅ ๐‘’2

๐‘ฅโˆ™๐‘ก2

2|0

๐‘ฅ

= ๐‘’2๐‘ฅ = ๐‘ข(๐‘ฅ)

So, this means that the function ๐‘ข(๐‘ฅ) = ๐‘’2๐‘ฅ is a solution of the MVIE.

2.1. The Successive Approximation Method For Solving Multiplicative Volterra Integral

Equations

Theorem 6. Consider LMVIE of the second kind as

๐‘ข(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ— โˆซ [๐‘ข(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก๐‘ฅ

0. (1)

If ๐‘“(๐‘ฅ) is positive and continuous on [0, ๐‘Ž] and ๐พ(๐‘ฅ, ๐‘ก) is continuous on the rectangle 0 โ‰ค ๐‘ก โ‰ค ๐‘ฅ and

0 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž, then there exists an unique continuous solution of (1) as

๐‘ข(๐‘ฅ) = โˆ ๐œ‘๐‘›(๐‘ฅ)โˆž๐‘›=0 = ๐‘’โˆ‘ ๐‘™๐‘›๐œ‘๐‘›(๐‘ฅ)

โˆž๐‘›=0

such that the series โˆ‘ ๐‘™๐‘›๐œ‘๐‘›(๐‘ฅ)โˆž๐‘›=0 is absolute and uniform convergent where

๐œ‘0(๐‘ฅ) = ๐‘“(๐‘ฅ) , ๐œ‘๐‘›(๐‘ฅ) =โˆ— โˆซ [ ๐œ‘๐‘›โˆ’1(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก๐‘ฅ

0, ๐‘› = 1,2, โ€ฆ .

Proof: Take the initial approximation as

๐‘ข0(๐‘ฅ) = ๐‘“(๐‘ฅ) = ๐œ‘0(๐‘ฅ) . (2)

Page 5: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

13

Ikonion Journal of Mathematics 2020, 2 (2)

If we write ๐‘ข0(๐‘ฅ) instead of ๐‘ข(๐‘ฅ) in equation (1), then we get the new function showed with ๐‘ข1(๐‘ฅ) as

๐‘ข1(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ— โˆซ[๐‘ข0(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก.

๐‘ฅ

0

(3)

Since the multiplicative integral which is in equation (3) depends on variable ๐‘ฅ, we can show it with

๐œ‘1(๐‘ฅ) =โˆ— โˆซ[๐‘ข0(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

=โˆ—โˆซ[๐œ‘0(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

and write the equation (3) as follow

๐‘ข1(๐‘ฅ) = ๐‘“(๐‘ฅ)๐œ‘1(๐‘ฅ) = ๐œ‘0(๐‘ฅ)๐œ‘1(๐‘ฅ) (4)

by using (2). Therefore the third approximation is obtained as

๐‘ข2(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ— โˆซ[๐‘ข1(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก.

๐‘ฅ

0

By the equation (4), we find

๐‘ข2(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ— โˆซ[๐œ‘0(๐‘ก). ๐œ‘1(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

= ๐‘“(๐‘ฅ) โˆ— โˆซ([๐œ‘0(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)[๐œ‘1(๐‘ก)]

๐พ(๐‘ฅ,๐‘ก))๐‘‘๐‘ก

๐‘ฅ

0

= ๐‘“(๐‘ฅ) โˆ— โˆซ[๐œ‘0(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

โˆ— โˆซ[๐œ‘1(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

.

If we set ๐œ‘2(๐‘ฅ) =โˆ— โˆซ [๐œ‘1(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก๐‘ฅ

0, then ๐‘ข2(๐‘ฅ) = ๐œ‘0(๐‘ฅ) ๐œ‘1(๐‘ฅ) ๐œ‘2(๐‘ฅ). In a similar way, we get

๐‘ข๐‘›(๐‘ฅ) = ๐œ‘0(๐‘ฅ) ๐œ‘1(๐‘ฅ) ๐œ‘2(๐‘ฅ) โ€ฆ ๐œ‘๐‘›(๐‘ฅ) (5)

where

๐œ‘0(๐‘ฅ) = ๐‘“(๐‘ฅ) , ๐œ‘๐‘›(๐‘ฅ) =โˆ— โˆซ [ ๐œ‘๐‘›โˆ’1(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก๐‘ฅ

0, ๐‘› = 1,2, โ€ฆ .

Continuing this process, we get the series

๐‘ข(๐‘ฅ) = ๐œ‘0(๐‘ฅ) ๐œ‘1(๐‘ฅ) ๐œ‘2(๐‘ฅ) โ€ฆ ๐œ‘๐‘›(๐‘ฅ). โ€ฆ =โˆ๐œ‘๐‘›(๐‘ฅ)

โˆž

๐‘›=0

= ๐‘’โˆ‘ ๐‘™๐‘›๐œ‘๐‘›(๐‘ฅ)โˆž๐‘›=0 . (6)

From (5) and (6), it is clear that lim๐‘›โ†’โˆž

๐‘ข๐‘› (๐‘ฅ) = ๐‘ข(๐‘ฅ).

Assume that ๐น = ๐‘š๐‘Ž๐‘ฅ๐‘ฅโˆˆ[0,๐‘Ž]

๐‘“(๐‘ฅ) and ๐พ = ๐‘š๐‘Ž๐‘ฅ0โ‰ค๐‘กโ‰ค๐‘ฅโ‰ค๐‘Ž

|๐พ(๐‘ฅ, ๐‘ก)|. Then we find

๐œ‘0(๐‘ฅ) = ๐‘“(๐‘ฅ) โ‰ค ๐น

๐œ‘1(๐‘ฅ) =โˆ— โˆซ[๐œ‘0(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

= ๐‘’โˆซ ๐พ(๐‘ฅ,๐‘ก)๐‘™๐‘›๐œ‘0(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0 โ‰ค ๐‘’โˆซ |๐พ(๐‘ฅ,๐‘ก)| |๐‘™๐‘›๐œ‘0(๐‘ก)|๐‘‘๐‘ก๐‘ฅ

0 = ๐‘’โˆซ |๐พ(๐‘ฅ,๐‘ก)| ๐‘™๐‘›|๐œ‘0(๐‘ก)|โˆ—๐‘‘๐‘ก๐‘ฅ

0

โ‰ค ๐‘’๐พ.๐‘™๐‘›๐น.๐‘ฅ

๐œ‘2(๐‘ฅ) =โˆ— โˆซ[๐œ‘1(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

= ๐‘’โˆซ ๐พ(๐‘ฅ,๐‘ก)๐‘™๐‘›๐œ‘1(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0 โ‰ค ๐‘’๐พ.๐‘™๐‘›๐น โˆซ |๐พ(๐‘ฅ,๐‘ก)|.๐‘ก๐‘‘๐‘ก๐‘ฅ

0 โ‰ค ๐‘’๐พ2.๐‘™๐‘›๐น โˆซ ๐‘ก๐‘‘๐‘ก

๐‘ฅ

0 = ๐‘’๐‘™๐‘›๐น.๐พ2.๐‘ฅ2

2!

โ‹ฎ

๐œ‘๐‘›(๐‘ฅ) โ‰ค ๐‘’๐‘™๐‘›๐น.

๐พ๐‘›๐‘ฅ๐‘›

๐‘›! .

Page 6: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

14

Ikonion Journal of Mathematics 2020, 2 (2)

Also, we can see that |๐‘™๐‘›๐œ‘๐‘›(๐‘ฅ)| = ๐‘™๐‘›|๐œ‘๐‘›(๐‘ฅ)|โˆ— โ‰ค ๐‘™๐‘›๐น ๐พ๐‘›๐‘Ž๐‘›

๐‘›! for = 1,2,โ€ฆ . Because of |๐‘™๐‘›๐œ‘๐‘›(๐‘ฅ)| โ‰ค

๐‘™๐‘›๐น ๐พ๐‘›๐‘Ž๐‘›

๐‘›! , the series โˆ‘ ๐‘™๐‘›๐œ‘๐‘›(๐‘ฅ)

โˆž๐‘›=0 is absolute and uniform convergence from the Weierstrass ๐‘€-test.

Since each terms of this series are continuous, the function which this series convergences uniformly is

continuous. Hence ๐‘ข(๐‘ฅ) is continuous function. Now, we will show ๐‘ข(๐‘ฅ) is a solution of the equation

(1). Since ๐œ‘๐‘›(๐‘ฅ) =โˆ— โˆซ ๐œ‘๐‘›โˆ’1(๐‘ก)๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก๐‘ฅ

0 and ๐œ‘0(๐‘ฅ) = ๐‘“(๐‘ฅ), we find

๐œ‘0(๐‘ฅ)โˆ๐œ‘๐‘›(๐‘ฅ)

๐‘

๐‘›=1

= ๐‘“(๐‘ฅ)โˆ(โˆ—โˆซ๐œ‘๐‘›โˆ’1(๐‘ก)๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

)

๐‘

๐‘›=1

โˆ๐œ‘๐‘›(๐‘ฅ)

๐‘

๐‘›=0

= ๐‘“(๐‘ฅ) โˆ— โˆซ(โˆ๐œ‘๐‘›โˆ’1(๐‘ก)

๐‘โˆ’1

๐‘›=1

)

๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

โˆ๐œ‘๐‘›(๐‘ฅ)

๐‘

๐‘›=0

= ๐‘“(๐‘ฅ) โˆ— โˆซ(โˆ๐œ‘๐‘›(๐‘ก)

๐‘

๐‘›=0

)

๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

(7)

From (6) and (7), we obtain

๐‘ข(๐‘ฅ) = lim๐‘โ†’โˆž

โˆ๐œ‘๐‘›(๐‘ฅ)

๐‘

๐‘›=0

= lim๐‘โ†’โˆž

๐‘“(๐‘ฅ) ๐‘’โˆซ ๐พ(๐‘ฅ,๐‘ก)โˆ‘ ๐‘™๐‘›๐œ‘๐‘›(๐‘ก)๐‘๐‘›=0 ๐‘‘๐‘ก

๐‘ฅ

0 = ๐‘“(๐‘ฅ) ๐‘’โˆซ ๐พ(๐‘ฅ,๐‘ก) lim

๐‘โ†’โˆž(โˆ‘ ๐‘™๐‘›๐œ‘๐‘›(๐‘ก)๐‘๐‘›=0 )๐‘‘๐‘ก

๐‘ฅ

0

= ๐‘“(๐‘ฅ) ๐‘’โˆซ ๐พ(๐‘ฅ,๐‘ก)๐‘™๐‘›๐‘’โˆ‘ ๐‘™๐‘›๐œ‘๐‘›(๐‘ก)โˆž๐‘›=0 ๐‘‘๐‘ก

๐‘ฅ

0 = ๐‘“(๐‘ฅ) ๐‘’โˆซ ๐พ(๐‘ฅ,๐‘ก)๐‘™๐‘›๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0 = ๐‘“(๐‘ฅ) โˆ— โˆซ๐‘ข(๐‘ก)๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

.

by using the uniform convergence of the series โˆ‘ ๐‘™๐‘›๐œ‘๐‘›(๐‘ฅ)โˆž๐‘›=0 . This indicates that ๐‘ข(๐‘ฅ) is the solution

of the equation (1). Now, we will show the uniqueness of the solution. Assume that ๐‘ข(๐‘ฅ) and ๐‘ฃ(๐‘ฅ) are

different solutions of the equation (1). Since

๐‘ข(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ— โˆซ[๐‘ข(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

๐‘ฃ(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ— โˆซ[๐‘ฃ(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

we find

๐‘ข(๐‘ฅ)

๐‘ฃ(๐‘ฅ)= โˆ— โˆซ [

๐‘ข(๐‘ก)

๐‘ฃ(๐‘ก)]

๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

=

๐‘ฅ

0

๐‘’โˆซ ๐พ(๐‘ฅ,๐‘ก)(๐‘™๐‘›๐‘ข(๐‘ก)โˆ’๐‘™๐‘›๐‘ฃ(๐‘ก))๐‘‘๐‘ก๐‘ฅ

0 .

If we set ๐‘ข(๐‘ฅ)

๐‘ฃ(๐‘ฅ)= ๐œ™(๐‘ฅ), we can write ๐œ™(๐‘ฅ) = โˆ— โˆซ [๐œ™(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)

๐‘‘๐‘ก=

๐‘ฅ

0๐‘’โˆซ ๐พ(๐‘ฅ,๐‘ก)๐‘™๐‘›๐œ™(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0 . Because of

๐‘™๐‘›๐œ™(๐‘ฅ) = โˆซ ๐พ(๐‘ฅ, ๐‘ก)๐‘™๐‘›๐œ™(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0, we find

|๐‘™๐‘›๐œ™(๐‘ฅ)| = |โˆซ ๐พ(๐‘ฅ, ๐‘ก)๐‘™๐‘›๐œ™(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

| โ‰ค โˆซ |๐พ(๐‘ฅ, ๐‘ก)||๐‘™๐‘›๐œ™(๐‘ก)|๐‘‘๐‘ก๐‘ฅ

0

โ‰ค ๐พโˆซ |๐‘™๐‘›๐œ™(๐‘ก)|๐‘‘๐‘ก๐‘ฅ

0

.

It is taken as โ„Ž(๐‘ฅ) = โˆซ |๐‘™๐‘›๐œ™(๐‘ก)|๐‘‘๐‘ก๐‘ฅ

0, then we write

|๐‘™๐‘›๐œ™(๐‘ฅ)| โ‰ค ๐พโ„Ž(๐‘ฅ)

|๐‘™๐‘›๐œ™(๐‘ฅ)| โˆ’ ๐พโ„Ž(๐‘ฅ) โ‰ค 0.

By multiplication with ๐‘’โˆ’๐พ๐‘ฅ both sides of the inequality, then

Page 7: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

15

Ikonion Journal of Mathematics 2020, 2 (2)

๐‘’โˆ’๐พ๐‘ฅ|๐‘™๐‘›๐œ™(๐‘ฅ)| โˆ’ ๐‘’โˆ’๐พ๐‘ฅ๐พโ„Ž(๐‘ฅ) โ‰ค 0

๐‘‘

๐‘‘๐‘ฅ(๐‘’โˆ’๐พ๐‘ฅโ„Ž(๐‘ฅ)) โ‰ค 0

and by integration both sides of this inequality from 0 to ๐‘ฅ we find

๐‘’โˆ’๐พ๐‘ฅโ„Ž(๐‘ฅ) โˆ’ ๐‘’โˆ’๐พ0โ„Ž(0) โ‰ค 0

๐‘’โˆ’๐พ๐‘ฅโ„Ž(๐‘ฅ) โ‰ค 0.

Since โ„Ž(๐‘ฅ) โ‰ค 0 and โ„Ž(๐‘ฅ) โ‰ฅ 0, we find โ„Ž(๐‘ฅ) = 0. Therefore |๐‘™๐‘›๐œ™(๐‘ฅ)| = 0 for every ๐‘ฅ โˆˆ [0, ๐‘Ž], i.e.,

๐œ™(๐‘ฅ) = 1 for every ๐‘ฅ โˆˆ [0, ๐‘Ž]. Thus ๐œ™(๐‘ฅ) =๐‘ข(๐‘ฅ)

๐‘ฃ(๐‘ฅ)= 1 and we obtain ๐‘ข(๐‘ฅ) = ๐‘ฃ(๐‘ฅ). This completes the

proof.

Remark 1. If the following iterations of method of successive approximations are set by

๐‘ข0(๐‘ฅ) = ๐‘“(๐‘ฅ)

๐‘ข๐‘›(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ— โˆซ[๐‘ข๐‘›โˆ’1(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก, ๐‘› = 1,2,3,โ€ฆ

๐‘ฅ

0

for the multiplicative integral equation

๐‘ข(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ— โˆซ [๐‘ข(๐‘ก)]๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

where ๐‘“(๐‘ฅ) is positive and continuous on [0, ๐‘Ž] and ๐พ(๐‘ฅ, ๐‘ก) is continuous for 0 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž, 0 โ‰ค ๐‘ก โ‰ค ๐‘ฅ,

then the sequence of successive approximations ๐‘ข๐‘›(๐‘ฅ) converges to the solution ๐‘ข(๐‘ฅ).

Example 2. Solve the multiplicative Volterra integral equation

๐‘ข(๐‘ฅ) = ๐‘’๐‘ฅ โˆ— โˆซ [(๐‘ข(๐‘ก))(๐‘กโˆ’๐‘ฅ)

]๐‘‘๐‘ก

๐‘ฅ

0

with using the successive approximations method.

Solution. Let taken ๐‘ข0(๐‘ฅ) = ๐‘’๐‘ฅ, then the first approximation is obtained as

๐‘ข1(๐‘ฅ) = ๐‘’๐‘ฅ โˆ— โˆซ [(๐‘’๐‘ก)(๐‘กโˆ’๐‘ฅ)]

๐‘‘๐‘ก๐‘ฅ

0= ๐‘’๐‘ฅ๐‘’โˆซ ๐‘™๐‘›(๐‘’๐‘ก.(๐‘กโˆ’๐‘ฅ))๐‘‘๐‘ก

๐‘ฅ

0 = ๐‘’๐‘ฅ๐‘’โˆซ ๐‘ก.(๐‘กโˆ’๐‘ฅ)๐‘‘๐‘ก๐‘ฅ

0 = ๐‘’(๐‘ฅโˆ’

๐‘ฅ3

3!)

and by using this approximation it can be obtained as

๐‘ข2(๐‘ฅ) = ๐‘’๐‘ฅ โˆ— โˆซ [(๐‘’

(๐‘กโˆ’๐‘ก3

3!))

(๐‘กโˆ’๐‘ฅ)

]

๐‘‘๐‘ก

๐‘ฅ

0= ๐‘’

(๐‘ฅโˆ’๐‘ฅ3

3!+๐‘ฅ5

5!).

By proceeding similarly, the ๐‘›๐‘กโ„Ž approximation is

๐‘ข๐‘›(๐‘ฅ) = ๐‘’(๐‘ฅโˆ’

๐‘ฅ3

3!+๐‘ฅ5

5!โˆ’โ‹ฏ+(โˆ’1)๐‘›

๐‘ฅ2๐‘›+1

(2๐‘›+1)!).

Since the expression ๐‘ฅ โˆ’๐‘ฅ3

3!+๐‘ฅ5

5!โˆ’โ‹ฏ+ (โˆ’1)๐‘›

๐‘ฅ2๐‘›+1

(2๐‘›+1)!+โ‹ฏ is the Maclaurin series of ๐‘ ๐‘–๐‘›๐‘ฅ,

lim๐‘›โ†’โˆž

๐‘ข๐‘›(๐‘ฅ) = ๐‘’๐‘ ๐‘–๐‘›๐‘ฅ. Therefore the solution of the equation ๐‘ข(๐‘ฅ) = ๐‘’๐‘ ๐‘–๐‘›๐‘ฅ.

Page 8: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

16

Ikonion Journal of Mathematics 2020, 2 (2)

3. The Relationship Between Multiplicative Differential Equations

We will investigate the relationship of the multiplicative Volterra integral equations with the

multiplicative differential equations.

3.1. The Conversion of the Multiplicative Volterra Integral Equations to Multiplicative

Differential Equations

In this section, we demonstrate the method of converting a multiplicative Volterra integral

equation into a multiplicative differential equation. For this, we need the Leibniz Formula in the sense

of multiplicative calculus.

Firstly, we will give necessary lemma with using proof of multiplicative Leibniz formula.

Lemma 1. Let ฮฉ be an open set in โ„2. Suppose that ๐‘“:ฮฉ โ†’ โ„ be a function such that the

multiplicative partial derivatives ๐‘“๐‘ฅ๐‘ฆโˆ—โˆ—(๐‘ฅ, ๐‘ฆ) , ๐‘“๐‘ฆ๐‘ฅ

โˆ—โˆ—(๐‘ฅ, ๐‘ฆ) exists in ฮฉ and are continuous, then we have

๐œ•โˆ—

๐œ•๐‘ฅ(๐œ•โˆ—

๐œ•๐‘ฆ๐‘“(๐‘ฅ, ๐‘ฆ)) =

๐œ•โˆ—

๐œ•๐‘ฆ(๐œ•โˆ—

๐œ•๐‘ฅ๐‘“(๐‘ฅ, ๐‘ฆ)).

Proof. Fix ๐‘ฅ and ๐‘ฆ. ๐น(โ„Ž, ๐‘˜) is taken as

๐น(โ„Ž, ๐‘˜) = (๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ + ๐‘˜) ๐‘“(๐‘ฅ, ๐‘ฆ)

๐‘“(๐‘ฅ, ๐‘ฆ + ๐‘˜) ๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ))

1โ„Ž๐‘˜

By using the multiplicative mean value theorem, we find

๐น(โ„Ž, ๐‘˜) = (๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ + ๐‘˜) ๐‘“(๐‘ฅ, ๐‘ฆ)

๐‘“(๐‘ฅ, ๐‘ฆ + ๐‘˜) ๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ))

1โ„Ž๐‘˜

=

(

(

๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ + ๐‘˜)๐‘“(๐‘ฅ, ๐‘ฆ + ๐‘˜)

๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ)๐‘“(๐‘ฅ, ๐‘ฆ)

)

1๐‘˜

)

1โ„Ž

= (๐œ•โˆ—

๐œ•๐‘ฆ(๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ+๐œ†1๐‘˜)

๐‘“(๐‘ฅ, ๐‘ฆ+๐œ†1๐‘˜)))

1โ„Ž

=๐œ•โˆ—

๐œ•๐‘ฆ((๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ+๐œ†1๐‘˜)

๐‘“(๐‘ฅ, ๐‘ฆ+๐œ†1๐‘˜))

1โ„Ž

) =๐œ•โˆ—

๐œ•๐‘ฆ(๐œ•โˆ—

๐œ•๐‘ฅ๐‘“(๐‘ฅ+๐œ†2โ„Ž, ๐‘ฆ+๐œ†1๐‘˜))

and

๐น(โ„Ž, ๐‘˜) = (๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ + ๐‘˜) ๐‘“(๐‘ฅ, ๐‘ฆ)

๐‘“(๐‘ฅ, ๐‘ฆ + ๐‘˜) ๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ))

1โ„Ž๐‘˜

=

(

(

๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ + ๐‘˜)๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ)

๐‘“(๐‘ฅ, ๐‘ฆ + ๐‘˜)๐‘“(๐‘ฅ, ๐‘ฆ)

)

1โ„Ž

)

1๐‘˜

= (๐œ•โˆ—

๐œ•๐‘ฅ(๐‘“(๐‘ฅ+๐œ†3โ„Ž, ๐‘ฆ + ๐‘˜)

๐‘“(๐‘ฅ+๐œ†3โ„Ž, ๐‘ฆ)))

1๐‘˜

=๐œ•โˆ—

๐œ•๐‘ฅ((๐‘“(๐‘ฅ+๐œ†3โ„Ž, ๐‘ฆ + ๐‘˜)

๐‘“(๐‘ฅ+๐œ†3โ„Ž, ๐‘ฆ))

1๐‘˜

) =๐œ•โˆ—

๐œ•๐‘ฆ(๐œ•โˆ—

๐œ•๐‘ฆ๐‘“(๐‘ฅ+๐œ†3โ„Ž, ๐‘ฆ+๐œ†4๐‘˜))

for some 0 < ๐œ†1, ๐œ†2, ๐œ†3, ๐œ†4 < 1 which all of them depend on ๐‘ฅ, ๐‘ฆ, โ„Ž, ๐‘˜. Therefore,

๐œ•โˆ—

๐œ•๐‘ฆ(๐œ•โˆ—

๐œ•๐‘ฅ๐‘“(๐‘ฅ+๐œ†2โ„Ž, ๐‘ฆ+๐œ†1๐‘˜)) =

๐œ•โˆ—

๐œ•๐‘ฆ(๐œ•โˆ—

๐œ•๐‘ฆ๐‘“(๐‘ฅ+๐œ†3โ„Ž, ๐‘ฆ+๐œ†4๐‘˜))

for all โ„Ž and ๐‘˜. Taking the limit โ„Ž, ๐‘˜ โ†’ 0 and using the assumed continuity of both partial derivatives,

Page 9: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

17

Ikonion Journal of Mathematics 2020, 2 (2)

it gives

๐œ•โˆ—

๐œ•๐‘ฆ(๐œ•โˆ—

๐œ•๐‘ฅ๐‘“(๐‘ฅ, ๐‘ฆ)) =

๐œ•โˆ—

๐œ•๐‘ฆ(๐œ•โˆ—

๐œ•๐‘ฆ๐‘“(๐‘ฅ, ๐‘ฆ)).

Theorem 7. (Multiplicative Leibniz Formula) Let ๐ด, ๐ผ โŠ† โ„ be open set and ๐‘“ be a continuous

function on ๐ด ร— ๐ผ into โ„. If ๐‘“๐‘ฅโˆ— exists and is continuous on ๐ด ร— ๐ผ, โ„Ž(๐‘ฅ), ๐‘ฃ(๐‘ฅ) are continuously

differentiable functions of ๐ด into ๐ผ, then we have

๐‘‘โˆ—

๐‘‘๐‘ฅ(โˆ— โˆซ ๐‘“(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก

๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ)

) = โˆ— โˆซ ๐‘“๐‘ฅโˆ—(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก

๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ)

๐‘“(๐‘ฅ, ๐‘ฃ(๐‘ฅ))

๐‘ฃโ€ฒ(๐‘ฅ)

๐‘“(๐‘ฅ, โ„Ž(๐‘ฅ))โ„Žโ€ฒ(๐‘ฅ)

Proof. Let ๐‘“(๐‘ฅ, ๐‘ก) =๐œ•โˆ—

๐œ•๐‘ก๐น(๐‘ฅ, ๐‘ก) = ๐น๐‘ก

โˆ—(๐‘ฅ, ๐‘ก). Hence we can write โˆ— โˆซ ๐‘“(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ)=โˆ— โˆซ ๐น๐‘ก

โˆ—(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ).

Since โˆ— โˆซ ๐‘“(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ)=๐น(๐‘ฅ,๐‘ฃ(๐‘ฅ))

๐น(๐‘ฅ,โ„Ž(๐‘ฅ)) , we find

๐‘‘โˆ—

๐‘‘๐‘ฅ(โˆ— โˆซ ๐‘“(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก

๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ)

) =๐‘‘โˆ—

๐‘‘๐‘ฅ(๐น(๐‘ฅ, ๐‘ฃ(๐‘ฅ))

๐น(๐‘ฅ, โ„Ž(๐‘ฅ))) =

๐‘‘โˆ—

๐‘‘๐‘ฅ๐น(๐‘ฅ, ๐‘ฃ(๐‘ฅ))

๐‘‘โˆ—

๐‘‘๐‘ฅ๐น(๐‘ฅ, โ„Ž(๐‘ฅ))

by using properties of multiplicative derivative. Therefore we get

๐‘‘โˆ—

๐‘‘๐‘ฅ(โˆ— โˆซ ๐‘“(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก

๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ)

) =๐น๐‘ฅโˆ—(๐‘ฅ, ๐‘ฃ(๐‘ฅ))

1 [๐น๐‘ฃ(๐‘ฅ)

โˆ— (๐‘ฅ, ๐‘ฃ(๐‘ฅ))]๐‘ฃโ€ฒ(๐‘ฅ)

๐น๐‘ฅโˆ—(๐‘ฅ, โ„Ž(๐‘ฅ))

1 [๐นโ„Ž(๐‘ฅ)

โˆ— (๐‘ฅ, โ„Ž(๐‘ฅ))]โ„Žโ€ฒ(๐‘ฅ)

(8)

with multiplicative chain rule. By using Lemma 1, we obtain

๐‘‘โˆ—

๐‘‘๐‘ฅโˆ—(โˆ— โˆซ ๐‘“(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก

๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ)

) =โˆ— โˆซ (๐œ•โˆ—

๐œ•๐‘ก๐น๐‘ฅโˆ—(๐‘ฅ, ๐‘ก))

๐‘‘๐‘ก๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ)

๐‘“(๐‘ฅ, ๐‘ฃ(๐‘ฅ))๐‘ฃโ€ฒ(๐‘ฅ)

๐‘“(๐‘ฅ, โ„Ž(๐‘ฅ))โ„Žโ€ฒ(๐‘ฅ)

=โˆ— โˆซ (๐œ•โˆ—

๐œ•๐‘ก(๐œ•โˆ—

๐œ•๐‘ฅ๐น(๐‘ฅ, ๐‘ก)))

๐‘‘๐‘ก

๐‘“(๐‘ฅ, ๐‘ฃ(๐‘ฅ))๐‘ฃโ€ฒ(๐‘ฅ)

๐‘“(๐‘ฅ, โ„Ž(๐‘ฅ))โ„Žโ€ฒ(๐‘ฅ)

๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ)

=โˆ— โˆซ๐œ•โˆ—

๐œ•๐‘ฅ(๐œ•โˆ—

๐œ•๐‘ก๐น(๐‘ฅ, ๐‘ก))

๐‘‘๐‘ก๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ)

๐‘“(๐‘ฅ, ๐‘ฃ(๐‘ฅ))๐‘ฃโ€ฒ(๐‘ฅ)

๐‘“(๐‘ฅ, โ„Ž(๐‘ฅ))โ„Žโ€ฒ(๐‘ฅ)

=โˆ— โˆซ๐œ•โˆ—

๐œ•๐‘ฅ(๐น๐‘กโˆ—(๐‘ฅ, ๐‘ก))

๐‘‘๐‘ก

๐‘ฃ(๐‘ฅ)

โ„Ž(๐‘ฅ)

๐‘“(๐‘ฅ, ๐‘ฃ(๐‘ฅ))

๐‘ฃโ€ฒ(๐‘ฅ)

๐‘“(๐‘ฅ, โ„Ž(๐‘ฅ))โ„Žโ€ฒ(๐‘ฅ)

=โˆ— โˆซ ๐‘“๐‘ฅโˆ—(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก

โ„Ž(๐‘ฅ)

๐‘ฃ(๐‘ฅ)

๐‘“(๐‘ฅ, ๐‘ฃ(๐‘ฅ))

๐‘ฃโ€ฒ(๐‘ฅ)

๐‘“(๐‘ฅ, โ„Ž(๐‘ฅ))โ„Žโ€ฒ(๐‘ฅ)

.

from the equality (8). This completes the proof.

Page 10: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

18

Ikonion Journal of Mathematics 2020, 2 (2)

Example 3. Show that the multiplicative integral equation ๐‘ข(๐‘ฅ) = sin๐‘ฅ โˆ— โˆซ ([๐‘ข(๐‘ก)]๐‘ฅ tan ๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

can be transformed to a multiplicative differential equation.

Solution. If we consider the equation ๐‘ข(๐‘ฅ) = sin๐‘ฅ โˆ— โˆซ ([๐‘ข(๐‘ก)]๐‘ฅtan๐‘ก)๐‘‘๐‘ก๐‘ฅ

0 and differentiate it by

using multiplicative Leibniz formula, we write

๐‘ขโˆ—(๐‘ฅ) =๐‘‘โˆ—

๐‘‘๐‘ฅ(sin๐‘ฅ)

๐‘‘โˆ—

๐‘‘๐‘ฅ(โˆ— โˆซ([๐‘ข(๐‘ก)]๐‘ฅ tan๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

)

= ๐‘’๐‘๐‘œ๐‘  ๐‘ฅ๐‘ ๐‘–๐‘› ๐‘ฅ โˆ— โˆซ [

๐œ•โˆ—

๐œ•๐‘ฅ([๐‘ข(๐‘ก)]๐‘ฅ tan ๐‘ก)]

๐‘‘๐‘ก๐‘ฅ

0

(๐‘ข(๐‘ฅ)๐‘ฅ tan๐‘ฅ)๐‘ฅโ€ฒ

(๐‘ข(0)๐‘ฅ tan0)0โ€ฒ

= ๐‘’cot๐‘ฅ โˆ— โˆซ[๐‘ข(๐‘ก)tan ๐‘ก]๐‘‘๐‘ก๐‘ฅ

0

๐‘ข(๐‘ฅ)๐‘ฅ tan๐‘ฅ

To take derivative is continued until the expression gets rid of the integral sign. Hence, we obtain

๐‘ขโˆ—โˆ—(๐‘ฅ) =๐‘‘โˆ—

๐‘‘๐‘ฅ(๐‘’cot๐‘ฅ)

๐‘‘โˆ—

๐‘‘๐‘ฅ(โˆ— โˆซ[๐‘ข(๐‘ก)tan ๐‘ก]๐‘‘๐‘ก

๐‘ฅ

0

)๐‘‘โˆ—

๐‘‘๐‘ฅ(๐‘ข(๐‘ฅ)๐‘ฅ tan๐‘ฅ)

= ๐‘’โˆ’๐‘๐‘œ๐‘ ๐‘’๐‘2๐‘ฅ โˆ— โˆซ[1]๐‘‘๐‘ก

๐‘ฅ

0

(๐‘ข(๐‘ฅ)tan๐‘ฅ)๐‘ฅโ€ฒ

(๐‘ข(0)tan0)0โ€ฒ ๐‘’((๐‘ฅ.๐‘ก๐‘Ž๐‘›๐‘ฅ)โ€ฒ ๐‘™๐‘›๐‘ข(๐‘ฅ)+

๐‘ขโ€ฒ(๐‘ฅ)๐‘ข(๐‘ฅ)

๐‘ฅ ๐‘ก๐‘Ž๐‘›๐‘ฅ)

= ๐‘’โˆ’๐‘๐‘œ๐‘ ๐‘’๐‘2๐‘ฅ [๐‘ข(๐‘ฅ)]tan๐‘ฅ ๐‘’

(๐‘™๐‘›๐‘ข(๐‘ฅ)(๐‘ฅ ๐‘ก๐‘Ž๐‘›๐‘ฅ)โ€ฒ+๐‘ขโ€ฒ(๐‘ฅ)

๐‘ข(๐‘ฅ) ๐‘ฅ ๐‘ก๐‘Ž๐‘›๐‘ฅ)

= ๐‘’โˆ’๐‘๐‘œ๐‘ ๐‘’๐‘2๐‘ฅ [๐‘ข(๐‘ฅ)](2tan๐‘ฅ+๐‘ฅ ๐‘ ๐‘’๐‘

2๐‘ฅ) (๐‘’๐‘ขโ€ฒ(๐‘ฅ)

๐‘ข(๐‘ฅ) )

๐‘ฅ๐‘ก๐‘Ž๐‘›๐‘ฅ

= ๐‘’โˆ’๐‘๐‘œ๐‘ ๐‘’๐‘2๐‘ฅ [๐‘ข(๐‘ฅ)](2tan๐‘ฅ+๐‘ฅ ๐‘ ๐‘’๐‘

2๐‘ฅ) [๐‘ขโˆ—(๐‘ฅ)]๐‘ฅ tan๐‘ฅ .

Thus the multiplicative integral equation is equivalent to the multiplicative differential equation

๐‘ขโˆ—โˆ—(๐‘ฅ) = ๐‘’โˆ’๐‘๐‘œ๐‘ ๐‘’๐‘2๐‘ฅ ๐‘ข(๐‘ฅ)(2tan๐‘ฅ+๐‘ฅ ๐‘ ๐‘’๐‘

2๐‘ฅ). [๐‘ขโˆ—(๐‘ฅ)]๐‘ฅ tan๐‘ฅ .

3.2. The Conversion of the Multiplicative Linear Differential Equations to Multiplicative

Integral Equations

In this section, we prove that the multiplicative linear differential equation with constant or

variable exponentials is converted to MVIE. We need to following theorem for converting ๐‘›๐‘กโ„Ž order

multiplicative differential equation to MVIE.

Theorem 8. If ๐‘› is a positive integer and ๐‘Ž is a constant with ๐‘ฅ โ‰ฅ ๐‘Ž, then we have

โˆ— โˆซโ€ฆ(๐‘›)โ€ฆ

๐‘ฅ

๐‘Ž

โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘กโ€ฆ๐‘‘๐‘ก๐‘ฅ

๐‘Ž

=โˆ— โˆซ [(๐‘ข(๐‘ก))(๐‘ฅโˆ’๐‘ก)(๐‘›โˆ’1)

(๐‘›โˆ’1)! ]

๐‘‘๐‘ก๐‘ฅ

๐‘Ž

Page 11: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

19

Ikonion Journal of Mathematics 2020, 2 (2)

Proof. Let

๐›ช๐‘› =โˆ— โˆซ[๐‘ข(๐‘ก)](๐‘ฅโˆ’๐‘ก)(๐‘›โˆ’1)

๐‘‘๐‘ก๐‘ฅ

๐‘Ž

. (9)

If it is taken ๐น(๐‘ฅ, ๐‘ก) = [๐‘ข(๐‘ก)](๐‘ฅโˆ’๐‘ก)(๐‘›โˆ’1)

, we can write that

๐‘‘โˆ—๐›ช๐‘›๐‘‘๐‘ฅ

=โˆ— โˆซ๐น๐‘ฅโˆ—(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

[๐น(๐‘ฅ, ๐‘ฅ)]1

[๐น(๐‘ฅ, ๐‘Ž)]0

=โˆ— โˆซ๐น๐‘ฅโˆ—(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

by using the multiplicative Leibniz formula to equation (9). Then we find

๐‘‘โˆ—๐›ช๐‘›๐‘‘๐‘ฅ

=โˆ— โˆซ (๐‘’๐œ•๐œ•๐‘ฅ๐‘™๐‘›๐น(๐‘ฅ,๐‘ก)

)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

=โˆ— โˆซ (๐‘’(๐‘›โˆ’1)(๐‘ฅโˆ’๐‘ก)(๐‘›โˆ’2) ๐‘™๐‘›๐‘ข(๐‘ก))

๐‘‘๐‘ก๐‘ฅ

๐‘Ž

=โˆ— โˆซ (๐‘’๐‘™๐‘›([๐‘ข(๐‘ก)](๐‘›โˆ’1)(๐‘ฅโˆ’๐‘ก)

(๐‘›โˆ’2)))๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

=โˆ— โˆซ ([๐‘ข(๐‘ก)](๐‘›โˆ’1)(๐‘ฅโˆ’๐‘ก)(๐‘›โˆ’2)

)๐‘‘๐‘ก.

๐‘ฅ

๐‘Ž

Hence we get

๐‘‘โˆ—๐›ช๐‘›๐‘‘๐‘ฅ

= (โˆ— โˆซ([๐‘ข(๐‘ก)](๐‘ฅโˆ’๐‘ก)(๐‘›โˆ’2)

)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

)

(๐‘›โˆ’1)

= (๐›ช๐‘›โˆ’1)(๐‘›โˆ’1) (10)

where ๐‘› > 1 . Since ๐›ช1(๐‘ฅ) =โˆ— โˆซ ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘ฅ

๐‘Ž for ๐‘› = 1, then we can write

๐‘‘โˆ—๐›ช1๐‘‘๐‘ฅ

=๐‘‘โˆ—

๐‘‘๐‘ฅ(โˆ— โˆซ(๐‘ข(๐‘ก))

๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

) = ๐‘ข(๐‘ฅ). (11)

If it is taken multiplicative derivative of the equation (10) by using multiplicative Leibniz formula, then

๐‘‘โˆ—โˆ—๐›ช๐‘›

๐‘‘๐‘ฅ(2)=๐‘‘โˆ—

๐‘‘๐‘ฅ(โˆ— โˆซ([๐‘ข(๐‘ก)](๐‘ฅโˆ’๐‘ก)

(๐‘›โˆ’2))๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

)

(๐‘›โˆ’1)

= (๐‘‘โˆ—

๐‘‘๐‘ฅ(โˆ— โˆซ ([๐‘ข(๐‘ก)](๐‘ฅโˆ’๐‘ก)

(๐‘›โˆ’2))๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

))

(๐‘›โˆ’1)

Page 12: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

20

Ikonion Journal of Mathematics 2020, 2 (2)

= (โˆ— โˆซ [๐œ•โˆ—

๐œ•๐‘ฅ ([๐‘ข(๐‘ก)](๐‘ฅโˆ’๐‘ก)

(๐‘›โˆ’2))]๐‘‘๐‘ก [[๐‘ข(๐‘ฅ)](๐‘ฅโˆ’๐‘ฅ)

(๐‘›โˆ’2)]1

[[๐‘ข(๐‘Ž)](๐‘ฅโˆ’๐‘Ž)๐‘›โˆ’2]0

๐‘ฅ

๐‘Ž

)

(๐‘›โˆ’1)

= (โˆ— โˆซ(๐œ•โˆ—

๐œ•๐‘ฅ ([๐‘ข(๐‘ก)](๐‘ฅโˆ’๐‘ก)

(๐‘›โˆ’2)))

๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

)

(๐‘›โˆ’1)

= (โˆ— โˆซ(๐‘’

๐œ•๐œ•๐‘ฅ (๐‘™๐‘›([๐‘ข(๐‘ก)](๐‘ฅโˆ’๐‘ก)

(๐‘›โˆ’2))))

๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

)

(๐‘›โˆ’1)

= (โˆ— โˆซ [๐‘’(๐‘™๐‘›((๐‘ข(๐‘ก))

(๐‘›โˆ’2)(๐‘ฅโˆ’๐‘ก)(๐‘›โˆ’3)

))]

๐‘‘๐‘ก๐‘ฅ

๐‘Ž

)

(๐‘›โˆ’1)

= (โˆ— โˆซ [(๐‘ข(๐‘ก))(๐‘›โˆ’2)(๐‘ฅโˆ’๐‘ก)(๐‘›โˆ’3)

]๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

)

(๐‘›โˆ’1)

= (โˆ— โˆซ [(๐‘ข(๐‘ก))(๐‘ฅโˆ’๐‘ก)(๐‘›โˆ’3)

]๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

)

(๐‘›โˆ’1).(๐‘›โˆ’2)

= (๐›ช๐‘›โˆ’2)(๐‘›โˆ’1)(๐‘›โˆ’2) .

By proceeding similarly, we obtain

๐‘‘โˆ—(๐‘›โˆ’1)๐›ช๐‘›

๐‘‘๐‘ฅ(๐‘›โˆ’1)= (๐›ช1)

(๐‘›โˆ’1)!

Hence, we write

๐‘‘โˆ—(๐‘›)๐›ช๐‘›

๐‘‘๐‘ฅ(๐‘›)= (๐‘‘โˆ—๐›ช1๐‘‘๐‘ฅ)

(๐‘›โˆ’1)!

= [๐‘ข(๐‘ฅ)](๐‘›โˆ’1)!

from the equation (11). Now, we will take multiplicative integral by considering the above relations.

From the equation (11), ๐›ช1(๐‘ฅ) =โˆ— โˆซ ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘ฅ

๐‘Ž . Also, we have

๐›ช2(๐‘ฅ) =โˆ— โˆซ ๐›ช1(๐‘ฅ2)๐‘‘๐‘ฅ2

๐‘ฅ

๐‘Ž

=โˆ— โˆซโˆ— โˆซ ๐‘ข(๐‘ฅ1)๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2

๐‘ฅ2

๐‘Ž

๐‘ฅ

๐‘Ž

where ๐‘ฅ1 and ๐‘ฅ2 are parameters. By proceeding similarly, we obtain

๐›ช๐‘›(๐‘ฅ) = (โˆ— โˆซโˆ— โˆซ โ€ฆโˆ— โˆซ โˆ— โˆซ ๐‘ข(๐‘ฅ1)๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2โ€ฆ๐‘‘๐‘ฅ๐‘›

๐‘ฅ2

๐‘Ž

๐‘ฅ3

๐‘Ž

๐‘ฅ๐‘›

๐‘Ž

๐‘ฅ

๐‘Ž

)

(๐‘›โˆ’1)!

where ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘› are parameters. If we write the equation (9) instead of the statement ๐›ช๐‘›, then it is

find

Page 13: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

21

Ikonion Journal of Mathematics 2020, 2 (2)

โˆ— โˆซ [(๐‘ข(๐‘ก))(๐‘ฅโˆ’๐‘ก)๐‘›โˆ’1

]๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

= (โˆ— โˆซโˆ— โˆซ โ€ฆโˆ— โˆซ โˆ— โˆซ ๐‘ข(๐‘ฅ1)๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2โ€ฆ๐‘‘๐‘ฅ๐‘›

๐‘ฅ2

๐‘Ž

๐‘ฅ3

๐‘Ž

๐‘ฅ๐‘›

๐‘Ž

๐‘ฅ

๐‘Ž

)

(๐‘›โˆ’1)!

Hence we can write

(โˆ— โˆซ [(๐‘ข(๐‘ก))(๐‘ฅโˆ’๐‘ก)๐‘›โˆ’1

]๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

)

1(๐‘›โˆ’1)!

=โˆ— โˆซโˆ— โˆซ โ€ฆโˆ— โˆซ โˆ— โˆซ ๐‘ข(๐‘ฅ1)๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2โ€ฆ๐‘‘๐‘ฅ๐‘›

๐‘ฅ2

๐‘Ž

๐‘ฅ3

๐‘Ž

๐‘ฅ๐‘›

๐‘Ž

๐‘ฅ

๐‘Ž

If it is taken = ๐‘ฅ1 = ๐‘ฅ2 = โ‹ฏ = ๐‘ฅ๐‘› , therefore we obtain

โˆ— โˆซโ€ฆ(๐‘›)โ€ฆ

๐‘ฅ

๐‘Ž

โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘กโ€ฆ๐‘‘๐‘ก๐‘ฅ

๐‘Ž

=โˆ— โˆซ [(๐‘ข(๐‘ก))(๐‘ฅโˆ’๐‘ก)๐‘›โˆ’1

(๐‘›โˆ’1)! ]

๐‘‘๐‘ก

.

๐‘ฅ

๐‘Ž

This completes the proof.

Let the ๐‘›๐‘กโ„Ž- order multiplicative linear differential equation

๐‘‘โˆ—(๐‘›)๐‘ฆ

๐‘‘๐‘ฅ(๐‘›) (๐‘‘โˆ—(๐‘›โˆ’1)๐‘ฆ

๐‘‘๐‘ฅ(๐‘›โˆ’1))

๐‘Ž1(๐‘ฅ)

(๐‘‘โˆ—(๐‘›โˆ’2)๐‘ฆ

๐‘‘๐‘ฅ(๐‘›โˆ’2))

๐‘Ž2(๐‘ฅ)

โ€ฆ(๐‘‘โˆ—๐‘ฆ

๐‘‘๐‘ฅ)๐‘Ž๐‘›โˆ’1(๐‘ฅ)

(๐‘ฆ)๐‘Ž๐‘›(๐‘ฅ) = ๐‘“(๐‘ฅ) (12)

that given the initial conditions

๐‘ฆ(0) = ๐‘0 , ๐‘ฆโˆ—(0) = ๐‘1 , ๐‘ฆ

โˆ—(๐‘›โˆ’1)(0) = ๐‘๐‘›โˆ’1 (13)

It can be transformed the multiplicative Volterra integral equation. Hence the solution of (12)-(13)

may be reduced to a solution of some multiplicative Volterra integral equation.

Take ๐‘‘โˆ—(๐‘›)๐‘ฆ

๐‘‘๐‘ฅ(๐‘›)= ๐‘ข(๐‘ฅ). By integrating both sides of the equality

๐‘‘โˆ—

๐‘‘๐‘ฅ(๐‘‘โˆ—(๐‘›โˆ’1)๐‘ฆ

๐‘‘๐‘ฅ(๐‘›โˆ’1)) = ๐‘ข(๐‘ฅ), we write

โˆ— โˆซ๐‘‘โˆ— (๐‘‘โˆ—(๐‘›โˆ’1)๐‘ฆ

๐‘‘๐‘ฅ(๐‘›โˆ’1))

๐‘ฅ

0

= โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

๐‘ฆโˆ—(๐‘›โˆ’1)(๐‘ฅ)

๐‘ฆโˆ—(๐‘›โˆ’1)(0) = โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

๐‘ฆโˆ—(๐‘›โˆ’1)(๐‘ฅ) = ๐‘๐‘›โˆ’1 โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

By proceeding similarly, we find

โˆ— โˆซ๐‘‘โˆ— (๐‘‘โˆ—(๐‘›โˆ’2)๐‘ฆ

๐‘‘๐‘ฅ(๐‘›โˆ’2))

๐‘ฅ

0

=โˆ—โˆซ(๐‘๐‘›โˆ’1 โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

)

๐‘‘๐‘ก๐‘ฅ

0

๐‘ฆโˆ—(๐‘›โˆ’2)(๐‘ฅ)

๐‘ฆโˆ—(๐‘›โˆ’2)(0)=โˆ— โˆซ ๐‘๐‘›โˆ’1

๐‘‘๐‘ก โˆ— โˆซโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

๐‘ฅ

0

๐‘ฆโˆ—(๐‘›โˆ’2)(๐‘ฅ)

๐‘๐‘›โˆ’2= ๐‘’โˆซ ๐‘™๐‘› ๐‘๐‘›โˆ’1๐‘‘๐‘ก

๐‘ฅ

0 โˆ— โˆซโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

Page 14: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

22

Ikonion Journal of Mathematics 2020, 2 (2)

๐‘ฆโˆ—(๐‘›โˆ’2)(๐‘ฅ)

๐‘๐‘›โˆ’2= (๐‘๐‘›โˆ’1)

๐‘ฅ โˆ— โˆซโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

๐‘ฆโˆ—(๐‘›โˆ’2)(๐‘ฅ) = ๐‘๐‘›โˆ’2 (๐‘๐‘›โˆ’1)๐‘ฅ โˆ— โˆซโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘‘๐‘ก

๐‘ฅ

0

๐‘ฅ

0

โˆ— โˆซ๐‘‘โˆ— (๐‘‘โˆ—(๐‘›โˆ’3)๐‘ฆ

๐‘‘๐‘ฅ(๐‘›โˆ’3))

๐‘ฅ

0

=โˆ—โˆซ[(๐‘๐‘›โˆ’1)๐‘ฅ. ๐‘๐‘›โˆ’2]

๐‘‘๐‘ก

๐‘ฅ

0

โˆ— โˆซโˆ— โˆซโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘‘๐‘ก๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

๐‘ฅ

0

๐‘ฆโˆ—(๐‘›โˆ’3)(๐‘ฅ) = ๐‘๐‘›โˆ’3 (๐‘๐‘›โˆ’2)๐‘ฅ (๐‘๐‘›โˆ’1)

๐‘ฅ2 โˆ— โˆซโˆ— โˆซโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘‘๐‘ก๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

๐‘ฅ

0

โ‹ฎ

๐‘ฆโˆ— = ๐‘1 (๐‘2)๐‘ฅ (๐‘3)

๐‘ฅ2 โ€ฆ(๐‘๐‘›โˆ’2)๐‘ฅ(๐‘›โˆ’3) (๐‘๐‘›โˆ’1)

๐‘ฅ(๐‘›โˆ’2) โˆ— โˆซ. . . (๐‘› โˆ’ 1). . .โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘กโ€ฆ๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

Hence, we get

๐‘ฆ = ๐‘0 (๐‘1)๐‘ฅ (๐‘2)

๐‘ฅ2 โ€ฆ(๐‘๐‘›โˆ’1)๐‘ฅ(๐‘›โˆ’1) โˆ— โˆซโ€ฆ(๐‘›)โ€ฆ โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘กโ€ฆ๐‘‘๐‘ก

๐‘ฅ

0

๐‘ฅ

0

If we take into account the above expressions, the multiplicative linear differential equation (12) is

written as follows

๐‘ข(๐‘ฅ) [(๐‘๐‘›โˆ’1)๐‘Ž1(๐‘ฅ)(โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

)

๐‘Ž1(๐‘ฅ)

] [(๐‘๐‘›โˆ’2)๐‘Ž2(๐‘ฅ) (๐‘๐‘›โˆ’1)

๐‘ฅ ๐‘Ž2(๐‘ฅ)(โˆ— โˆซโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

)

๐‘Ž2(๐‘ฅ)

]โ‹ฏ

[(๐‘0)๐‘Ž๐‘›(๐‘ฅ) (๐‘1)

๐‘ฅ๐‘Ž๐‘›(๐‘ฅ) (๐‘2)๐‘ฅ2๐‘Ž๐‘›(๐‘ฅ). โ€ฆ . (๐‘๐‘›โˆ’1)

๐‘ฅ๐‘›โˆ’1๐‘Ž๐‘›(๐‘ฅ) (โˆ— โˆซโ€ฆ(๐‘›)โ€ฆโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘กโ€ฆ๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

)

๐‘Ž๐‘›(๐‘ฅ)

] = ๐‘“(๐‘ฅ)

๐‘ข(๐‘ฅ) (๐‘0)๐‘Ž๐‘›(๐‘ฅ) (๐‘1)

๐‘ฅ ๐‘Ž๐‘›(๐‘ฅ)+๐‘Ž๐‘›โˆ’1(๐‘ฅ)โ€ฆ(๐‘๐‘›โˆ’1)๐‘ฅ๐‘›โˆ’1๐‘Ž๐‘›(๐‘ฅ)+โ‹ฏ+๐‘Ž1(๐‘ฅ)(โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

)

๐‘Ž1(๐‘ฅ)

(โˆ— โˆซโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

)

๐‘Ž2(๐‘ฅ)

โ€ฆ

(โˆ— โˆซโ€ฆ(๐‘›)โ€ฆโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘กโ€ฆ๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

)

๐‘Ž๐‘›(๐‘ฅ)

= ๐‘“(๐‘ฅ) (14)

If we set

๐‘Ž1(๐‘ฅ) + ๐‘Ž2(๐‘ฅ) ๐‘ฅ + โ‹ฏ+ ๐‘Ž๐‘›(๐‘ฅ) ๐‘ฅ๐‘›โˆ’1 = ๐‘“๐‘›โˆ’1(๐‘ฅ)

๐‘Ž2(๐‘ฅ) + ๐‘Ž3(๐‘ฅ) ๐‘ฅ +โ‹ฏ+ ๐‘Ž๐‘›(๐‘ฅ) ๐‘ฅ๐‘›โˆ’2 = ๐‘“๐‘›โˆ’2(๐‘ฅ)

โ‹ฎ

๐‘Ž๐‘›โˆ’1(๐‘ฅ) + ๐‘Ž๐‘›(๐‘ฅ) ๐‘ฅ = ๐‘“1(๐‘ฅ)

๐‘Ž๐‘›(๐‘ฅ) = ๐‘“0(๐‘ฅ)

Page 15: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

23

Ikonion Journal of Mathematics 2020, 2 (2)

and

๐น(๐‘ฅ) =๐‘“(๐‘ฅ)

(๐‘0)๐‘“0(๐‘ฅ) (๐‘1)

๐‘“1(๐‘ฅ)โ€ฆ(๐‘๐‘›โˆ’1)๐‘“๐‘›โˆ’1(๐‘ฅ)

then we can edit the equation (14) in the form as follows

๐‘ข(๐‘ฅ) (โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

)

๐‘Ž1(๐‘ฅ)

(โˆ— โˆซโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

)

๐‘Ž2(๐‘ฅ)

โ€ฆ(โˆ— โˆซโ€ฆ(๐‘›)โ€ฆโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘กโ€ฆ๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

)

๐‘Ž๐‘›(๐‘ฅ)

= ๐น(๐‘ฅ) .

By using Theorem 8, we get

๐‘ข(๐‘ฅ) (โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

)

๐‘Ž1(๐‘ฅ)

(โˆ— โˆซ[๐‘ข(๐‘ก)๐‘ฅโˆ’๐‘ก]๐‘‘๐‘ก๐‘ฅ

0

)

๐‘Ž2(๐‘ฅ)

โ€ฆ(โˆ— โˆซ๐‘ข(๐‘ก)(๐‘ฅโˆ’๐‘ก)๐‘›โˆ’1

(๐‘›โˆ’1)!๐‘‘๐‘ก

๐‘ฅ

0

)

๐‘Ž๐‘›(๐‘ฅ)

= ๐น(๐‘ฅ).

Then we find the equation

๐‘ข(๐‘ฅ) โˆ— โˆซ(๐‘ข(๐‘ก)[๐‘Ž1(๐‘ฅ)+(๐‘ฅโˆ’๐‘ก)๐‘Ž2(๐‘ฅ)+โ‹ฏ+๐‘Ž๐‘›(๐‘ฅ)

(๐‘ฅโˆ’๐‘ก)๐‘›โˆ’1

(๐‘›โˆ’1)!])

๐‘‘๐‘ก๐‘ฅ

0

= ๐น(๐‘ฅ).

If we put ๐พ(๐‘ฅ, ๐‘ก) = ๐‘Ž1(๐‘ฅ) + (๐‘ฅ โˆ’ ๐‘ก)๐‘Ž2(๐‘ฅ) + โ‹ฏ+ ๐‘Ž๐‘›(๐‘ฅ)(๐‘ฅโˆ’๐‘ก)๐‘›โˆ’1

(๐‘›โˆ’1)! as the kernel function, then the

equation (12) is turned into

๐‘ข(๐‘ฅ) โˆ— โˆซ๐‘ข(๐‘ก)๐พ(๐‘ฅ,๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

= ๐น(๐‘ฅ)

which is a MVIE of the second kind.

Example 4. Form a multiplicative Volterra integral equation corresponding to the multiplicative

differential equation ๐‘‘โˆ—2๐‘ฆ(๐‘ฅ)

๐‘‘๐‘ฅ(2)= ๐‘ฆ(๐‘ฅ)๐‘๐‘œ๐‘ ๐‘ฅ with the initial conditions ๐‘ฆ(0) = 1, ๐‘ฆโˆ—(0) = 1.

Solution. Let ๐‘‘โˆ—2๐‘ฆ(๐‘ฅ)

๐‘‘๐‘ฅ(2)= ๐‘ข(๐‘ฅ). Then we write

โˆ— โˆซ๐‘‘โˆ—๐‘ฆโˆ—๐‘ฅ

0

=โˆ—โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

๐‘ฆโˆ—(๐‘ฅ)

๐‘ฆโˆ—(0)=โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

๐‘ฆโˆ—(๐‘ฅ) =โˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

.

Therefore we find

โˆ— โˆซ๐‘ฆโˆ—(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

=โˆ—โˆซโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘ฅ

0

๐‘ฅ

0

Page 16: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

24

Ikonion Journal of Mathematics 2020, 2 (2)

๐‘ฆ(๐‘ฅ)

๐‘ฆ(0)=โˆ— โˆซโˆ— โˆซ๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

๐‘ฅ

0

๐‘ฆ(๐‘ฅ) =โˆ— โˆซ[๐‘ข(๐‘ก)(๐‘ฅโˆ’๐‘ก)]๐‘‘๐‘ก

๐‘ฅ

0

If we replace the equation ๐‘ฆ(๐‘ฅ) =โˆ— โˆซ [๐‘ข(๐‘ก)(๐‘ฅโˆ’๐‘ก)]๐‘‘๐‘ก๐‘ฅ

0 into the given multiplicative differential equation,

we obtain ๐‘ข(๐‘ฅ) =โˆ— โˆซ [๐‘ข(๐‘ก)๐‘๐‘œ๐‘  ๐‘ฅ (๐‘ฅโˆ’๐‘ก)]๐‘‘๐‘ก๐‘ฅ

0.

4. Conclusion

In this paper, the multiplicative Voltterra integral equation is defined by using the concept of

multiplicative integral. The solution of multiplicative Volterra integral equation is obtained with the

successive approximations method. The multiplicative Leibniz formula is proved and the multiplicative

Volterra integral equation is converted to a multiplicative differential equation by aid of multiplicative

Leibniz formula. The multiplicative linear differential equation with constant or variable exponentials

is converted to a multiplicative Volterra integral equation is proved.

References

[1] Aniszewska D., (2007) Multiplicative Runge-Kutta Methods, Nonlinear Dyn, 50, 265-272.

[2] Bashirov A.E., Mฤฑsฤฑrlฤฑ E., ร–zyapฤฑcฤฑ A., (2008) Multiplicative Calculus and Its Applications, J.

Math. Anal. Appl., 337, 36-48.

[3] Bashirov A.E., Mฤฑsฤฑrlฤฑ E., TandoฤŸdu Y., ร–zyapฤฑcฤฑ A., (2011). On Modeling With Multiplicative

Differential Equations, Appl. Math. J. Chinese Univ., 26(4), 425-438.

[4] Bashirov A., Rฤฑza M., (2011) On Complex Multiplicative Differentition, TWMS J. App. Eng.

Math., 1(1), 75-85.

[5] Bashirov A., (2013). On Line and Double Multiplicative Integrals, TWMS J. App. Eng.

Math.,3(1), 103-107.

[6] Bashirov A.E., Norozpour S., (2017) On Complex Multiplicative Integration, TWMS J. App.

Eng. Math.,7(1), 82-93.

[7] Bhat A.H., Majid J., Shah T.R., Wani I.A., Jain R., (2019) Multiplicative Fourier Transform and

Its Applications to Multiplicative Differential Equations, Journal Of Computer and Mathematical

Sciences, 10(2), 375-383.

[8] Bhat A.H., Majid J., Wani I.A., Jain R., (2019) Multiplicative Sumudu Transform and Its

Applications, JETIR, 6(1), 579-589.

[9] Campbell D., (1999) Multiplicative Calculus And Student Projects, Primus, IX (4).

[10] Grossman M., Katz R., (1972) Non-Newtonian Calculus. Lee Press, Pigeon Cove

Massachussets.

[11] Krasnov M., Kฤฑselev K., Makarenko G., (1971) Problems and Exercises in Integral Equations.

Mฤฑr Publishers, Moscow.

Page 17: IKONION JOURNAL OF MATHEMATICS - dergipark.org.tr

25

Ikonion Journal of Mathematics 2020, 2 (2)

[12] Mฤฑsฤฑrlฤฑ E., Gurefe Y., (2011) Multiplicative Adams Bashforth-Moulton Methods, Numer Algor,

57, 425-439.

[13] Lovitt W. V., (1950) Linear Integral Equations, Dover Publications Inc., New York.

[14] Rฤฑza M., ร–zyapฤฑcฤฑ A., Mฤฑsฤฑrlฤฑ E., (2009) Multiplicative Finite Difference Methods, Quarterly of

Applied Mathematics, LXVII (4), 745-754.

[15] Smithies F., (1958) Integral Equations, Cambridge University Press, London.

[16] Stanley D., (1999) A Multiplicative Calculus, Primus, IX (4), 310-326.

[17] Yalcin N., Celik E., Gokdogan A., (2016) Multiplicative Laplace Transform and Its

Applications, Optik, 9984-9995.

[18] Yalรงฤฑn N., ร‡elik E., (2018) The Solution of Multiplicative Non-Homogeneous Linear

Differential Equations, Journal of Applied Mathematics and Computation (JAMC), 2(1), 27-36.

[19] Yalรงฤฑn N., ร‡elik E., (2018) Solution of Multiplicative Homogeneous Linear Differential

Equations with Constant Exponentials, New Trends in Mathematical Sciences, 6(2), 58-67.

[20] Yalรงฤฑn, N. (2020) The Solutions of Multiplicative Hermite Differential Equation and

Multiplicative Hermite Polynomials, Rendiconti del Circolo Matematico di Palermo Series 2,

https://doi.org/10.1007/s12215-019-00474-5.

[21] Wazwaz A. M., (2011) Linear and Nonlinear Integral Equations Methods and Applications,

Springer Verlag Berlin Heidelberg.

[22] Zarnan J.A., (2016) Numerical Solution of Volterra Integral Equations of Second Kind,