IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

Embed Size (px)

Citation preview

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    1/33

    InternationalJournalofNanomedicineDovepressopenaccesstoscientificandmedicalresearchOpenAccessFullTextArticleORIGINALRESEARCh

    Improveddrugloadingandantibacterialactivityofminocycline-loadedPLGAnanoparticles(button)(button)preparedbysolid/oil/waterionpairingmethod

    TaherehSadatJafarzadehKashi1SolmazEskandarion1,2MehdiEsfandyari-Manesh3,4SeyyedMahmoudAminMarashi5NasrinSamadi6SeyyedMostafaFatemi1,7FatemehAtyabi2,3SaeedEshraghi8RassoulDinarvand2,3

    1DentalMaterialsDepartment,FacultyofDentistry,2Departmentof

    Pharmaceutics,3NanotechnologyResearchCenter,FacultyofPharmacy,TehranUniversityofMedicalSciences,Tehran,4DepartmentofChemistry,AmirkabirUniversityofTechnology,Tehran,5DepartmentofMicrobiologyandImmunology,FacultyofMedicine,BabolUniversityofMedicalSciences,Babol,6DrugandFoodControlDepartment,FacultyofPharmacy,7ResearchCenterofScienceandTechnologyinMedicine,8Department

    ofMicrobiology,TehranUniversityofMedicalSciences,Tehran,Iran

    Background:Lowdrugentrapmentefficiencyofhydrophilicdrugsintopoly(lactic-co-glycolicacid)(PLGA)nanoparticlesisamajordrawback.TheobjectiveofthisworkwastoinvestigatedifferentmethodsofproducingPLGAnanoparticlescontainingminocycline,adrugsuitableforperiodontalinfections.Methods:Differentmethods,suchassingleanddoublesolventevaporationemulsion,ionpairing,andnanoprecipitationwereusedtopreparebothPLGAandPEGylatedPLGA

    nanoparticles.Theresultingnanoparticleswereanalyzedfortheirmorphology,particlesizeandsizedistribution,drugloadingandentrapmentefficiency,thermalproperties,andantibacterialactivity.Results:Thenanoparticlespreparedinthisstudywerespherical,withanaverageparticlesizeof85424nm.Theentrapmentefficiencyofthenanoparticlespreparedusingdifferentmethods

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    2/33

    wasasfollows:solid/oil/waterionpairing(29.9%).oil/oil(5.5%).water/oil/water(4.7%).modifiedoil/water(4.1%).nanoprecipitation(0.8%).Additionofdextransulfateasanionpairingagent,actingasanionicspacerbetweenPEGylatedPLGAandminocycline,decreasedthewatersolubilityofminocycline,henceincreasingthedrugentrapmentefficiency.EntrapmentefficiencywasalsoincreasedwhenlowmolecularweightPLGAandhighmolecularweightdextransulfatewasused.DrugreleasestudiesperformedinphosphatebufferatpH7.4indicatedslowreleaseofminocyclinefrom3daystoseveralweeks.Onantibacterialanalysis,theminimuminhibitoryconcentrationandminimumbactericidalconcentrationofnanoparticleswasatleasttwotimeslowerthanthatofthefreedrug.Conclusion:Novelminocycline-PEGylatedPLGAnanoparticlespreparedbytheionpairingmethodhadthebestdrugloadingandentrapmentefficiencycomparedwithotherpreparednanoparticles.Theyalsoshowedhigherinvitroantibacterialactivitythanthe

    freedrug.Keywords:nanoparticle,PEGylation,PLGA,ionpairing,minocycline,antibacterial

    Correspondence:RassoulDinarvandFacultyofPharmacy,TehranUniversityofMedicalSciences,TehranPOBox14155-6451,[email protected]

    Introduction

    Manybiodegradablepolymerssuchaschitosan,gelatin,poly(lactic-co-glycolicacid)(PLGA),polymethylmethacrylate,polycaprolactone,andpoly(lacticacid)areusedforthepreparationofmicroparticlesandnanoparticles.15PLGAisoneofthemostbiocompatibleandbiodegradablepolymers,andithasbeenwidelystudiedforpreparingdrug-loadednanoparticles.6,7Severalmethods,suchasphaseseparationorcoacervation,emulsificationdiffusion,spray-drying,andemulsion-solventevaporationtechniqueshavebeenusedtopreparePLGAnanoparticles.811Usingemulsionsolven

    tevaporationmethods,variousdrugmoleculeshavebeenencapsulatedintoPLGAnanoparticles.12,13Forpreparationofnanoparticles,thechoiceofaparticularmethodprimarilydependsonthehydrophilicity/hydrophobicityofthedrugmoleculeand

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7221234

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    3/33

    Dovepress

    2012Kashietal,publisherandlicenseeDoveMedicalPressLtd.ThisisanOpenAccessarticlehttp://dx.doi.org/10.2147/IJN.S27709whichpermitsunrestrictednoncommercialuse,providedtheoriginalworkisproperlycited.

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    4/33

    KashietalDovepress

    stabilityconsiderations.Thepatternofdrugreleasefromparticlesdependsonsomeoftheircharacteristics,includingsize,sizedistribution,entrapmentefficiency,anddrugloading.14Thesecharacteristicsareinfluencedbysomeofthepreparationparameters,suchaspoweranddurationofenergyapplied,organicandaqueousphasevolume,polymeranddrugconcentration,polymermolecularweight,andsolventvolume.Eachoftheseparametersinfluencesthesizeand/orthedrugloadingofthenanoparticles.

    Inthefieldoforaldiseases,polymeric-baseddrugdeliverysystems,suchasfibers,strips,ormicroparticles,havebeenusedforlocaldrugdeliveryindentistrytoprovideadequatedrugconcentrationsdirectlyatthesiteofaction.Thesesystemsareusuallyinsertedintotheperiodontalpocketorinjectedinperiodontaltissuestobothenhancethetherapeuticeffectsofdrugsandreducethesideeffectsofdrugsrelatedtotheirsystemicuse.Localdeliverysystemshavebeensuggestedasanovelconceptfortreatmentofperiodontaldiseases,especiallyincasesthatarerecurrentandchronic.Severalspecializedlocal

    deliverysystemshavebeendesignedforcontrolledreleaseofantibioticsinperiodontaltissues.15,16Thecomplexityofaccesstoperiodontaltissuesmakesallofthesesystemsonlypartiallysuccessful.17Thereareafewstudiesaboutpreparationofantibacterialnanoparticlesforperiodontaltherapy.18,19

    Nanoparticlesprovideseveraladvantages.Forexample,becauseoftheirsmallsize,theypenetrateareas(extracellularandintracellularareas)thatmaybeinaccessibletootherdeliverysystems,suchasbacterialcells,alveolarbonetrabeculae,andfromthegingivalsulcusinwardtotheunderlyingconnectivetissueandtotheperiodontalpocketareasbelowthegumline.17,19,20Nanoparticlesprotectadrugagainstinvivodegradation

    andreducesideeffects.Theyalsohavemorefavorabledrugpharmacokinetics.21Further,comparedwithmicroparticles,nanoparticleshavebetterstabilityinbiologicalfluids.

    Accordingly,nanoparticlescanprovideapotentialperiodontalcarriersystemforthedeliveryofantibioticstoperiodontaltissues.Thesesystemsreducethedosageandfrequencyofantibioticusageandfurtherprovideanadequatesupplyofantibioticsoveranextendedperiodoftime.Differentpropertiesofnanoparticles,suchasparticlesize,entrapmentefficiency,minimuminhibitoryconcentration(MIC),minimumbactericidalconcentrations(MBC),anddrugreleaseinfluencetheclinicaloutcomeofdrugtherapy

    viathefollowingmechanisms:

    SmallerparticlesizefacilitatesthepenetrationofnanoparticlesandenhancestheirantibacterialpropertiesHigherentrapmentefficiencyofnanoparticlesincreasesthedrugcontentatthesiteofactionLowerMICandMBCachievedwithnanoparticles

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    5/33

    indicatesthatbetterantibacterialactivityisachievedwithasmalleramountofdrugInperiodontaltreatment,ahigherconcentrationofantibioticatinitialtimesandthereafteraconstantreleaseofantibioticwithlowerconcentrationisrequired,whichisachievedwithnanoparticles.Minocyclinehasabroaderspectrumofactivitythanothermembersofthetetracyclinegroupofantibiotics.Itisalong-actingandbacteriostaticantibiotic.Generallyithasserumlevelshigherthanthoseofsimpletetracyclinesbecauseofitslonghalf-life.Minocyclineisusedprimarilytotreatacneandothersimilarskindiseases,butinaccordancewiththebroaderspectrumofactivityofminocycline,italsoactsagainstperiodontalpathogens.Minocycline-loadedmicrocapsuleshavebeeninvestigatedinperiodontaltreatments.2224Ithasbeeneffectivelyusedfortreatmentofperiodontitisandrelatedinfectionsinperiodontaldiseases.2527Themajoradvantageofminocyclineisitsanticollagenasepropertiesandabilitytoreducesofttissuedestructionandboneresorptionwhichisveryimportantinthetreatmentofperiodontaldisease.19Inaddition,minocyclineisagoodcandidateforlocalantibioticdelivery.28,29Inthisstudy,minocyclinewaschosentobeincorporatedintoPLGAnanoparticles.Dueto

    thehighhydrophilicityofminocyclineanditsrapidpartitioningtotheaqueousphase,preparationofminocyclinePLGAnanoparticlesremainsarealchallenge.

    Developmentofnewmethodsforthedeliveryofhydrophilicdrugsisemergingasanimportantresearchfieldinpharmaceutics.30,31Incontrastwithlipophilicdrugs,therearesomeproblemswithencapsulationofhydrophilicagents.32,33Thecommonlyutilizedmethodsforpreparinghydrophilicdrugsinnanoparticlessufferfromlowdrugloadingbecauseduringpreparationthedrugrapidlydiffusestotheexternalaqueousphase.34However,anotherproblemwithhydrophilicdrugsisthatthedrugparticlesusually

    encapsulatedintheformofsmallclustersonthesurfaceorwithinthepolymermatrixjustbelowthesurfaceoftheparticles,resultinginahighinitialburstrelease.35

    Inthisstudy,weusedseveralpreparationstrategiestoimprovetheencapsulationefficiencyandloadingofminocyclineasahydrophilicdrug.Water/oil/waterandsolid/oil/wateremulsificationwereusedforthehydrochloridesaltformofminocycline.Theoil/oil,oil/wateremulsification,andnanoprecipitationmethodswereusedforthenon-saltformofminocycline.Wemadesomemodificationstothepreparationmethods,suchasaddinglecithinasanamphiphiliccompoundtothewaterphaseand/ororganic

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    6/33

    DovepressMinocyclinePLGAnanoparticles

    phase,orusingPEGylatedPLGA.36PEGcanbeusedasapromisingmaterialinbiomedicalapplications,becauseofitsgoodhydrophilicity,lowtoxicity,excellentbiocompatibility,andbiodegradability.37Boththesolid/oil/waterandionpairingtechniqueswerecombinedinonemethodtoencapsulatehydrophilicdrugs.WehypothesizedthatuseofPEGylatedPLGA(withdifferentmolecularweights)asanamphiphiliccopolymeranddextransulfate(withdifferentmolecularweights)asanionpairingagentcouldresultinabetterencapsulationyieldofcationicmoleculesinnanoparticles.Dextransulfatewasusedtoreducedrugsolubilitybycoacervatingmoleculesthatdiffuseslowlytotheexternalphaseandallowencapsulationofthecoacervateonthepolymericprecipitate.Dextransulfateisapolyanionicderivativeofdextran(apolymerofanhydroglucose)andhasbeenutilizedinvariouspharmaceuticalformulations.38,39Finally,nanoparticleswerecharacterizedandcomparedfortheirsize,morphology,andespeciallydrugloading,drugentrapmentefficiency,andinvitrodrugreleaseprofile.Inaddition,theantibacterialeffectofnanoparticlesagainststandardAggregatibacteractinomycetemcomitans,themost

    importantpathogeninperiodontalinfections,wasinvestigatedinvitro.40

    Materialsandmethods

    Materials

    PLGA(Resomer502Hand504H,withalactictoglycolicacidratioof50:50)waspurchasedfromBoehringerIngelheim(Ingelheim,Germany).Polyvinylalcohol(molecularweight30,00070,000),dextransulfatesodiumsalt(molecularweight6000and500,000Da),bifunctionalNH2-PEG-NH2(molecularweightof3350Da),sorbitanmonooleate

    (Span80),N-hydroxysuccinimide,anddicyclohexylcarbodiimidewerepurchasedfromSigma-Aldrich(StLouis,MO).Lecithinandhighpressureliquidchromatography(HPLC)gradedimethylformamideandtetrahydrofuranwereobtainedfromMerck(Darmstadt,Germany).MinocyclinewaspurchasedfromKoutingChemicalCo,Ltd,(Songjang,China).Deionizedwaterwasusedthroughouttheexperiment.Brainheartinfusionagar(Merck)wasusedformicrobiologicaltests.Allotheragentsandsolventswereanalyticalorreagentgradeandusedasreceived.

    NanoparticlepreparationO/Wemulsiontechnique

    OilinwateremulsificationwasperformedaccordingtothemethoddevelopedbyEsmaeilietal,withalittlemodification.41Drugandpolymersolutionwerepreparedbydissolving

    150mgminocyclineand350mgofPLGA504Hin20mLofdichloromethaneatroomtemperatureusingamagneticstirrer(Heidolph,Germany).Theorganicphasewasinjectedthroughasyringeequippedwitha20-Gangiocatheterinto75mLofanaqueouspolyvinylalcoholsolutionandhomogenized

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    7/33

    (Ultra-turrax,IKA,Germany)at24,000rpmfor5minutes.Theemulsionwasthensonicated(Misonix,USA)for2minutes(30W).Theresultingnanoemulsionwasmaintainedunderamechanicalstirrer(IKA)undergentlemixingfor4hourstoevaporateofftheorganicsolvent.Afterevaporation,nanoparticleswerecollectedbycentrifugation(Sigma3K30,Germany)at20,000rpmfor20minutesandwashedthreetimeswithdeionizedwatertoremovenonencapsulateddrugandtheremainingsolvent.Thenanoparticledispersionwasfreeze-driedat-40Cfor48hours(Christ,Alpha2-4LD,Germany)toobtainafinepowder.

    ModifiedO/Wemulsiontechnique

    Phospholipidlecithin20mgwasaddedtothewaterphase,oilphase,andoilandwaterphaseasanamphiphiliccompoundaccordingtothemethodreportedbyCheowandHadinoto.36TheO/Wprocesswascarriedoutaccordingtotheprevioussectionwith100mgofminocyclineand400mgofPLGA504H.

    O/Oemulsiontechnique

    Oilinoilemulsificationwasperformedaccordingtothemethod

    developedbyMahdavietal,withalittlemodification.42Drugandpolymersolutionwaspreparedbydissolving7.5mgofminocyclineand37.5mgPLGA504Hin3mLofacetonitrile.Thissolutionwasaddedinto40mLofviscousliquidparaffincontaining200LSpan80andcontinuouslystirred,yieldingafinelydisperseddrugsuspension.Thesuspensionwasheatedto55Candstirredfor2hourstoensurecompleteevaporationofacetonitrile.Nanoparticleswerecollectedbycentrifugationat20,000rpmfor20minutesandwashedthreetimeswithn-hexanetoremoveresidualmineraloilandSpan80.Thenanoparticledispersionwasthenfreeze-driedfor48hours.

    W/O/Wemulsiontechnique

    AdoubleemulsionprocesswasperformedaccordingtothemethoddevelopedbyDillenetal,withalittlemodification.43Anaqueoussolutionofminocyclinewaspreparedbydissolving25mgdrugin3mLofdeionizedwater(innerwaterphase).Thesolutionwassonicatedfor30secondsat20Wandthenfor45secondsat35W.Theinnerwaterphasewasinjectedduringsonicationforoneminuteat20Winanorganicphasewhichconsistedof250mgofPLGA504H

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    8/33

    KashietalDovepress

    dissolvedin10mLofdichloromethane.TheresultingW/Oemulsionwasdispersedin12.5mLofthefirstouterwaterphase,a0.5%w/vpolyvinylalcoholsolution,andthensonicatedfor30secondsat15WtoobtainamultipleW/O/Wemulsion.Theresultingemulsionwasaddedtothesecondouterphase,consistingof60mLof0.2%w/vpolyvinylalcoholinordertominimizecoalescenceoftheemulsion.Theorganicsolventwasallowedtoevaporateduring4hoursatroomtemperatureundergentlemixing.Finally,thenanoparticleswerecollectedbycentrifugationandfreeze-driedafterthreetimeswashingwithdeionizedwater.

    S/O/Wemulsiontechniquebyionpairingmethod

    ThesynthesisschemeforPEGylatedPLGAisshowninFigure1.PEGylatedPLGAwaspreparedaccordingtothemethoddevelopedbyEsmaeilietalwithalittlemodification.8Briefly,2gPLGAdissolvedindichloromethanewasactivatedbydicyclohexylcarbodiimide(207mgforPLGA502Hand115mgfor504H)andN-hydroxysuccinimide(414mgforPLGA502Hand230mgfor504H)atroomtemperature

    underanitrogenatmospherefor24hours.Theresultingmixturewasfilteredandprecipitatedbyadditionofice-colddiethylether.TheactivatedPLGAwasdriedundervacuumandthenreactedwithbis-aminePEG(200mgforPLGA504Hand600mgfor502H)in16mLofdichloromethane.Stoichiometricmolarratiosof1/1.5and1/1.1wereusedforPLGA504H/bis-aminePEGandPLGA502H/bis-aminePEG,respectively.Thereactionwasperformedfor6hoursundernitrogenatmosphereatroomtemperature.Theresultingmixturewasprecipitatedbydroppingitintoice-colddiethylether.TheprecipitatedPEGylatedPLGAwasfiltered,dialyzed,anddried.H-NMRspectraforPEGylatedPLGA

    O

    wereobtainedusingtheBrukerAvence500MHz,inCDCL3.(Figure2).TheconjugationpercentageofterminalcarboxylicacidofPLGAwithbis-aminePEGwas100%(H-chemicalshiftCH,CH2,andCH3ofPLGAandCH2ofPEGare5.2,4.8,1.6,and3.7cm-1,respectively).

    ThemethodusedforpreparationofPEGylatedPLGAnanoparticleswasacombinationofS/O/Wandtheionpairingtechnique.WepreparedfournanoparticleformulationsusingtwokindsofPLGA(502Hand504H)anddextransulfatewithtwomolecularweights(6000and

    500,000).A0.7mLaqueoussolutionofminocyclineHClwasinjectedinto10mLofacetonesolutioncontaining200mgPEGylatedPLGAduringsonication(40W)for60seconds.A0.3mLaqueoussolutioncontaining24mgdextransulfatewasaddedandsonicatedfor30seconds.Theresultingsolidinoilphasewasaddedto60mLofcontinuousphasecontaining0.5%polyvinylalcoholassurfactantunderhomogenation(24,000rpmfor5minutes).Theresultingnanoemulsionwasmaintainedundergentlemixingfor3hours.Consequently,thenanoparticleswere

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    9/33

    collectedbycentrifugationandthenfreeze-driedafterthreetimeswashingwithdeionizedwater.

    Nanoprecipitationtechnique

    NanoprecipitationprocesswasperformedaccordingtothemethoddevelopedbyBilatietal,withalittlemodification.44PLGA504H50mgandminocycline20mgweredissolvedin2mLofdimethylsulfoxidetoformthediffusingphase.Thisphasewastheninjectedto10mLofethanolasanon-solventundergentlemixing.Theresultingnanoparticleswerethencentrifugedthreetimesforcyclesof20minutesat20,000rpmandwashedwithdeionizedwater.

    HO

    OOx-1y-1PEG-bis(amine)PLGADCCNHSOO

    OOOOnNHOCH3OHnNH2H2NxyO

    O+NH2

    CH3OCH3OH

    PEGylatedPLGA

    Figure1SynthesisofPEGylated-PLGAcopolymer.Abbreviations:PEG,poly(ethylene)glycol;PLGA,poly(lactic-co-glycolicacid).

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    10/33

    DovepressMinocyclinePLGAnanoparticles

    Particlesizeandmorphologycharacterization

    Particlesizeandsizedistributionofthenanoparticleswereinvestigatedbylaserlightscattering(MalvernZetasizerZS,Malvern,Worcestershire,UK),aftersuspending5mgofthenanoparticlesin20mLofdeionizedwater.Threedeterminationswerecarriedoutforeachformulation.Morphologicalcharacterizationwasconductedusingscanningelectronmicroscopy(30XLFEG,Philips,Eindhoven,TheNetherlands).Scanningelectronmicroscopywasemployedtodeterminetheshapeandsurfacemorphologyofthenanoparticles,andtheparticleswerecoatedwithgoldusingasputtergoldcoater(BAL-TEC,Switzerland)undervacuumbeforehand.

    Differentialscanningcalorimetry

    Differentialscanningcalorimetry(DSC)ofminocycline,andemptyandminocycline-loadednanoparticleswereperformedonaMettlerDSC823(MettlerToledo,

    Switzerland)equippedwithaJulaboThermocryostateModelFT100Y(JulabolabortechnikGmbH,Germany).AMettlerStarsoftwaresystem,version9.0wasusedfordataacquisition.DSCmeasurementswereperformedataheatingrateof10C/minuteinthe20C350Ctemperaturerange.Thedrynanoparticleswereweighed,putintoanaluminumpan,andsealedcarefully.Duringmeasurement,thesamplecellwaspurgedwithnitrogengas.Calibrationoftheinstrumentwasperformed.

    Determinationofdrugloading

    andentrapmentefficiency

    TheamountofminocyclineentrappedinthenanoparticleswasdeterminedbyHPLCanalysis.Theminocycline-loadednanoparticles(20mg)weredissolvedin5mLacetonitrileand10mLofmethanolwasthenaddedtoprecipitatethepolymer.Thisprocedurewasperformedusing10mLofdeionizedwaterand10mLofdimethylformamidefortheminocycline-loadednanoparticles.Thesampleswerepassedthrougha0.22mMilliporemembraneandtheamountofdrugwasdeterminedbyHPLCanalysis.Thedrugencapsulationefficiencywasdeterminedfromthemassratiooftheencapsulateddrugtotheamountofdruginitiallyadded.The

    amountofdrugloadingandencapsulationefficiencywerecalculatedusingthefollowingequations:42

    Drugloading(%)=(minocyclineweightinsample/totalweightofsample)100%

    Encapsulationefficiency=(actual/theoreticalminocycline

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    11/33

    loading)100%

    Invitrominocyclinereleasefromnanoparticles

    Drugreleasefromthenanoparticleswasstudiedusingadialysistechnique.A20mgsampleofnanoparticleswasresuspendedin5mLofphosphatebuffersolutionatpH7.4andplacedinadialysisbag(Spectra/Por,molecularweightcutoff2000Da)sealedatbothendswithclips(Spectra,Torrance,CA).Thedialysisbagwassoakedin40Lofphosphatebuffersolution(pH7.4)andmaintainedat37C0.5Cand1005rpmshakinginashaker(HeidolphUnimax1010,Germany).Atpredeterminedtimeintervals,individualsamplesweretakenandthewholeofthemediumwasreplacedwith40mLoffreshphosphatebuffersolution.TheamountofminocyclinereleasedintoeachmediumwasquantifiedbyHPLCandcomparedwithastandardcalibrationcurvegeneratedusingknownconcentrationsofminocycline.

    Theconcentrationofminocyclinewasanalyzedusinga

    modifiedUSPHPLCmethod.HPLCanalysiswasperformedatroomtemperatureusingaKnauerapparatusmodelK-1001,WellChrom(Berlin,Germany),equippedwithamodelPDAK-2700ultravioletdetector(Knauer,Germany).TheanalyticalcolumnwasNucleodurC18(250.46cminternaldiameter,poresize5m;Macherey-Nagel,Dren,Germany).Themobilephaseconsistedof0.1Mammoniumoxalate,0.005Medetatedisodium,dimethylformamide,andtetrahydrofuran

    (600:180:240:160v/v)andadjustedwithammoniumhydroxidetoapHof7.2.Theflowratewasfixedat1.5mLperminuteandultravioletdetectionwasperformedat280nm.Theretention

    timeofminocyclinewasabout7.460.2minutes.Theconcentrationofminocyclinewascalculatedforeachsampleusingacalibrationcurveofknownamountsofdrug(withalinearregressioncoefficientofR=0.999).Antibacterialpropertiesofminocycline-loadednanoparticles

    TheantibacterialactivityofthenanoparticleswascomparedwiththatoffreeminocyclinebythewelldiffusionmethodusingAggregatibacteractinomycetocomitans(43718,AmericanTissueCultureCollection,Vanassus,VA).

    Thesurfaceofthebrainheartinfusionagarplatessupplementedbyhemin,vitaminK,bovineserumalbumin,andsheepbloodwereseededbythebacterialsuspensionatacelldensityequivalentto0.5McFarland(1.5108CFU/mL).Theantibacterialagentwassterilizedbyfiltrationusing

    0.22mMilliporemembranes.Wellswith8mmdiameterswerepreparedbypunchingasterilecorkborerontotheagarplatesandremovingtheagartoformawell.Aliquots

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    12/33

    of80Lofeachtestcompoundsolution(3.5g/mLsubmityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    13/33

    KashietalDovepress

    5.75421.0000-CHofPLGA-CH2ofPLGA-CH2ofPEG-CH3ofPLGA2.50624.91929.04477.63155.24615.19904.87584.86053.50453.43813.40453.36833.33263.29702.75542.63462.59042.53942.50622.50332.49992.49642.49282.36092.0840147371.46524.90915.26011050[ppm]

    Figure2h-NuclearmagneticresonancespectrumofsynthesizedPEGylatedPLGAinCDCL3.

    Abbreviations:PEG,poly(ethylene)glycol;PLGA,poly(lactic-co-glycolicacid).

    minocyclinepowderindeionizedwater)weredeliveredintothewells.After48hoursofincubationat37C,theinhibitionzonesaroundthewellsweremeasuredinmillimetersusingacaliper.

    TheMICandMBCofthetestcompoundsweredeterminedusingthebrothmacrodilutionmethod.Astockconcentration

    offreedrugwaspreparedindeionizedwaterthatwasfurtherdilutedinbrainheartinfusionbrothtoreachaconcentrationrangeof0.125to32g/mL.Basedontheactualdrugloadingofthenanoparticles,theamountofnanoparticlesinbrainheartinfusionbrothwasusedtoprovidetheequivalentconcentrationofminocyclinesimilartothatoffreedrug.Thefinalconcentrationofbacteriaintheindividualtubeswasadjustedtoabout5105CFU/mL.ControltubescontainedPEGylatedPLGAnanoparticleswithoutdrugandwithnoantibacterialagent.After48hoursofincubationat37C,thetesttubeswereexaminedforpossiblebacterialturbidity,andtheMICofeachtestcompound

    wasdeterminedasthelowestconcentrationthatcouldinhibitvisiblebacterialgrowth.AfterMICdetermination,analiquotof10Lfromalltubesinwhichnovisiblebacterialgrowthwasobservedwasseededinbrainheartinfusionagarplatesnotsupplementedwithanyfreeminocyclineorminocyclineloadednanoparticles.Theplateswerethenincubatedfor48hoursat37C.TheMBCendpointisdefinedasthelowestconcentrationofantimicrobialagentthatkills.99.9%oftheinitialbacterialpopulationwherenovisiblegrowthofthebacteriawasobservedontheplates.16,41

    Statisticalanalysis

    Resultswereexpressedasthemeanstandarddeviation.One-wayanalysesofvariancewereperformedforevaluationoftheresults.Pvalueslessthan0.05wereconsideredtobestatisticallysignificant.

    Results

    Thebasiccharacteristicsoftheminocycline-loadednanoparticlespreparedusingvariousmethodsinthisstudyare

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    14/33

    presentedinTables1and2.

    Particlesizeandmorphology

    AllofthenanoparticlespreparedfromPLGAandPEGPLGAundervariousconditionshadanacceptablesize(lessthan500nm)andweresuitableforourfinalclinicalpurposesexceptforthenanoparticlespreparedusingtheoilinoilemulsionmethod(OO5).Themeanparticlesizes(z-average)ofallthesamplesareshowninTable1.Therangeofnanoparticlesizewas857070nm.ItcanbeseenthatthesizeofthenanoparticleswasthesmallestandlargestwhentheywerepreparedusingnanoprecipitationandtheO/Oemulsionmethod,respectively.AtypicalscanningelectronmicrophotographofnanoparticlesisshowninFigure3.Theminocycline-PLGAnanoparticleswerewelldefinedandspherical,andhadasmoothsurfacewithoutpores.Nanoparticlespreparedbythenanoprecipitationmethodhadthenarrowestsizedistributionrangewithapolydispersityindexof0.08(Figure4A).Nanoparticlespreparedbythe

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    15/33

    DovepressMinocyclinePLGAnanoparticles

    Table1PreparationofPLGA-basednanoparticleswithdifferentmethodsandtheirparticlesize

    SamplePreparationmethodMeandiameter(nm)OW1Oil/water19314OW2ModifiedLecithininwater22523OW3oil/waterLecithininoil21516OW4Lecithinintwophases24221OO5Oil/oil7070208WOW6Water/oil/water42417SOW7Solid/oil/waterPLGA(MW48,000)+20919byionpairingDS(MW6000)SOW8PLGA(MW48,000)+22615DS(MW500,000)SOW9PLGA(MW12,000)+13912DS(MW6000)

    SOW10PLGA(MW12,000)+18619DS(MW500,000)NPC11Nanoprecipitation857

    Abbreviations:DS,dextransulfate;PLGA,poly(lactic-co-glycolicacid);MW,molecularweight.

    S/O/Wionpairingmethodshowedasomewhatgoodsizedistributionwithapolydispersityindexof0.2(Figure4B).

    Drugloadingandentrapmentefficiency

    Table2displaysthedrugloadingandentrapmentefficiencyforallthesamplespreparedusingvariousmethods.Drugloadingrangedfrom2.6to19.2g/mg.Theleastdrugloading(0.26%)andentrapmentefficiency(0.81%)wasfoundinnanoparticlespreparedbythenanoprecipitationmethod.SignificantlyincreaseddrugloadingandentrapmentefficiencywasobtainedbytheS/O/Wionpairingmethod(1.92%and29.95%).Inclusionofdextransulfateintothepreparations(SOW710)significantlyloweredthepercentageoffreeminocyclinecomparedwiththosewithoutdextransulfate

    Table2Drugloadingandentrapmentefficiency

    SampleDrugloading(%)SDEntrapmentefficiency(%)SDOW10.410.023.850.16OW20.910.034.140.03OW30.310.011.480.28OW40.480.022.150.13OO50.980.045.480.30WOW60.440.014.690.21SOW70.460.0157.691.32SOW80.780.03513.092.40

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    16/33

    SOW91.320.1222.234.70SOW101.920.1929.952.47NP110.260.060.810.18

    Abbreviation:SD,standarddeviation.

    500nm

    ACCVSpotMagnDetWD

    17.0kV2.030,000xSE9.5SI200nm

    ACCVSpotMagnDetWD

    17.0kV2.060,000xSE9.6SIFigure3AtypicalscanningelectronmicrophotographofnanoparticlespreparedbyS/O/Wionpairingmethod,SOW10(upperandlowerimageispresentedat30,000and60,000magnification,respectively).

    (WOW6)andimproveddrugloadingcomparedwithotherformulations.NanoparticlespreparedbytheS/O/Wionpairing

    method,withthehighestentrapmentefficiency,wereusedforotheranalyses.

    DSCanalysis

    DSCthermogramsofminocyclineandtheemptyandminocycline-loadednanoparticleswereobtainedtodefinethephysicalstateofthedruginthenanoparticlesandthermalpropertiesofthepolymernanoparticles.Figure5showstheDSCthermogramsforminocycline,PLGA-PEGnanoparticles,andminocycline-PLGA-PEGnanoparticles(SOW10),respectively.Pureminocyclineshowedanexothermicpeakat200C.Therewasnopeakobservedatthistemperatureforthe

    nanoparticles.DSCstudiesdidnotdetectanyfreeminocyclineinthenanoparticlesamples.Thisconfirmedthemoleculardispersionofminocycline.Afterpreparationthenanoparticles,minocyclinecouldbeinanamorphousphaseofamoleculardispersionorinasolidsolutionstateinthepolymermatrix.

    Invitrodrugrelease

    TheinvitroreleasebehaviorofallnanoparticlesisascumulativepercentagesinFigure6.Releaseover5days

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    17/33

    KashietalDovepress

    A

    16

    1412

    Intensity(%)

    1086420

    B

    201816

    110100Size(d.nm)100010,000110100100010,000

    Intensity(%)

    14

    121086420

    Size(d.nm)

    Figure4Particlesizedistributionsofnanoparticlespreparedby(A)S/O/Wionpairingmethod(SOW10)and(B)nanoprecipitationmethod(NP11).

    wasmeasured.Releaseprofilesfornanoparticlesinphosphatebuffersolution(pH7.4)wereaffectedbythepreparationmethodsandformulationsused.Theinitialburstreleasewasdetectedforallformulationsduringthefirst7hours(morethan20%)exceptforsamples1,2,5,and6.TheSOW9formulationshowedasignificantlyhigherburstrelease(72%in7hours)comparedwiththeotherformulations.Therateofdrugreleasegraduallydecreasedafterabout12daysandremainedconstantevenafter5days(exceptforsample9).

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    18/33

    AsshowninFigure6,drugreleasefromthenanoparticlespreparedbyO/Owasslowerthanfromtheothernanoparticles(approximately10%in5days).

    Antibacterialpropertiesofminocyclinenanoparticles

    Theminocycline-loadednanoparticles,freeminocycline,andemptynanoparticlesweretestedagainstAggregatibacteractinomycetemcomitansinvitrotocomparetheirantibacterialactivity.Inthecaseofminocycline-loadedPLGA-PEGnanoparticles,theSOW10samplehadthehighestentrapmentefficiency.Awelldiffusionassayshowedthattheinhibitionzoneofminocycline-loadednanoparticles(9.2mm)wasgreater

    thanthatoffreeminocycline(3.5mm)andemptyPLGAnanoparticles,whichdidnotshowanyinhibitoryeffect.TheMICsofthesamplesareshowninTable3.TheMICofminocycline-loadednanoparticles(4g/mL)wastwo-foldlessthanforfreeminocycline(8g/mL).TheMBCofminocyclineloadednanoparticles(8g/mL)wasalsotwo-foldlessthanthatforfreeminocycline(16g/mL).Therefore,itcanbeseenthattheantibacterialactivityofminocycline-loadednanoparticleswasgreaterthanforthefreedrug.Emptynanoparticles

    dilutedwithbrainheartinfusionbrothasacontroldidnotshowanyantibacterialeffectagainstthebacteriatested.HenceitcanbeconcludedthattherewasnoantibacterialinteractionbetweenPLGAandthetestedbacteria.

    Discussion

    Thechoiceofasuitablenanoparticlepreparationmethodisdependentonthephysicochemicalpropertiesofthedrugtobeencapsulated.Differentmethodshavebeensuccessfullyusedfortheentrapmentoflipophilicdrugsintonanoparticles.33,45Themainprobleminthepreparationofminocycline-loadednanoparticleswasthelackofdrug

    loadingandentrapmentefficiencybecauseminocyclineisa

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    19/33

    DovepressMinocyclinePLGAnanoparticles

    051015mW20MinocyclinePLGANPsMinocycline-PLGANPs20406080100120140160180200220240260280300320340

    Temperature(C)

    Figure5DSCthermogramsofminocycline,PLGA-PEG,andminocycline-PLGA-PEGnanoparticles.Abbreviations:DSC,differentialscanningcalorimetry;PEG,poly(ethylene)glycol;PLGA,poly(lactic-co-glycolicacid).

    AB

    Releaseofminocycline(%)

    10080604020000

    OW1OW2OW3OW4OO5WOW6100806040200Releaseofminocycline(%)..

    ..................

    ..

    ..

    ..

    ..

    ................

    ......

    ....

    ....

    ..

    ..

    ..

    ..

    ..

    ..0204060801001201400

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    20/33

    20406080100120140

    Time(hours)Time(hours)

    C

    Releaseofminocycline(%)

    100

    80

    60

    40

    20

    0

    SOW7SOW8SOW9SOW10020406080100120140..................

    ....

    ..

    ..

    ..

    ..

    ..

    ..Time(hours)

    Figure6Invitrocumulativereleaseofminocyclinefromnanoparticles(A)OW1,OO5,andWOW6;(B)modifiedO/W(OW2,OW3,andOW4),and(C)S/O/Wionpairingmethod(SOW710),inphosphatebuffersolution(ph7.4,37C).

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    21/33

    KashietalDovepress

    Table3MICandMBCoffreedrugandminocycline-loadednanoparticlesagainstAggregatibacteractinomycetemcomitansbymacrodilutionmethod

    Freedrug(g/mL)Minocycline-loadednanoparticles(g/mL)MIC84MBC168

    Abbreviations:MIC,minimuminhibitoryconcentration;MBC,minimumbacterialconcentration.

    hydrophiliccompoundandthereisaconcernaboutincreasingthedrugloadingofhydrophilicagents.35However,inpractice,preparationofnanoparticleswiththedesiredproperties(adequateentrapmentefficiencyanddrugloading,suitablereleaseprofile,andparticlesizedistribution)canbedifficultduetothelargenumberoffactorsinfluencingtheoutcomeofnanoparticlepreparation.Inthisstudy,severalexperimentswerecarriedouttodeterminethebestmethodandtheformulawiththehighestantibioticloadingofPLGAnanoparticles.

    Nanoparticlespreparedbysolventdiffusionmethods(OW1andWOW6)showedlowentrapmentefficiencyanddrugloadingbecauseminocyclinerapidlydiffusedfromthehydrophobicmatrixintotheexternalaqueousphaseduringpreparation.46Comparedwiththesolventdiffusionmethod,betterentrapmentefficiencyanddrugloadingwereobtainedbytheO/Oemulsionevaporationmethod(OO5).Thiswascontributedtobytheliquidparaffinusedasacontinuationphasewiththismethod.42Thelimitedsolubilityofminocyclineandnildiffusionoffirstoilintoliquidparaffinwereadvantageoustorestrictminocyclineleakageincomparisonwithotheraqueoussolventdiffusionmethods.Polymeric

    particlesobtainedbythismethodhadthelargestparticlesize.AnincreaseofparticlesizewiththeO/Omethodmighthavebeenduetothehighviscosityofthecontinuousphasewhichhindersthehomogenousdispersionofpolymersolutionintothecontinuousphase.Particlesizeiskeytothebiologicalfateofnanoparticlecarriers.Decreasingsizeimprovesthepermeationandpenetrationofnanoparticlecarriers.Therefore,nanoparticlesshouldhaveanappropriatesizetopenetratethebacterialcellwall.Inclusionoflecithinintotheaqueousphase(OW2)usingtheO/Wmethodledtoimprovementinentrapmentefficiencyanddrugloadingcomparedwiththestandardmethod(OW1).Inthisregard,addinglecithinhasbeenshowntoresultinsurfaceadsorptionofamphiphilic

    lecithinontonanoparticlesthroughhydrophobicinteractions.36Minocyclineinteractswiththehydrophobicphospholipidtailsoflecithinsimilartolecithin-PLGAinteractions.Incorporatinglecithinontothenanoparticlesurfacecanenhanceentrapmentefficiencybytrappingminocyclinein

    thephospholipidlayer.However,inclusionoflecithinintheoilphase(OW3)andbothphases(oilandwater)(OW4)hadthereverseeffectonentrapmentefficiencyanddrugloading.Lecithinadsorptionontothenanoparticlesurfacecauseda

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    22/33

    minorincreaseinparticlesize(about10%20%).

    Nanoparticlespreparedbythenanoprecipitationmethodwereconsiderablysmaller(807nm)thannanoparticlespreparedbytheemulsionmethod.ThesizedistributionofnanoparticlespreparedusingthismethodisshowninFigure4A,whereahighlyuniformsizedistributionisobserved(polydispersityindex0.08).Briefly,therearetwomisciblesolventswhenusingthismethod.Drugandpolymerdissolveinthefirstoneasthesolvent.Nanoprecipitationoccursbyrapiddiffusionandaprecipitateofthepolymerwhenthefirstpolymersolutionisaddedtothesecondphaseasanonsolvent.44Precipitationinvolvesimmediatedrugentrapment.Nanoparticlespreparedbythismethodshowthelowestdrugloadingandentrapmentefficiencycomparedwiththeothermethods(Table2).Becauserapiddiffusionofdrug-polymersolutionintothesecondphaseincreasedtheamountoffreedruginthesecondphase,thismethodwasunabletoretainsubstantialamountsofminocyclinetoincorporateintothepolymermatrix.

    HighentrapmentefficiencyusingtheS/O/Wionpairingmethodoccurredasfollows.Thismethodwasacombination

    ofS/O/Wemulsionandionpairingtechniques(Figure7).AnaqueoussolutionofminocyclinewasaddedtoanorganicsolutionofPEGylatedPLGA.Additionofaqueousdextransulfatesolutionproducedaminocycline-dextransulfateprecipitate(solidinoil).Dextransulfatewasusedasanionpairingagenttoreducedrugsolubilitybycoacervation.Theresultingsolidintheoilphasewasthenaddedtotheaqueouspolyvinylalcoholsolution.Theorganicsolventwasremovedbyevaporationunderstirringtoproducenanoparticles.Theelectrostaticforcesformedbetweenoppositeions,cationicminocyclineandanionicdextransulfate,andcationicPEGylatedPLGAandanionicdextransulfate.Dextransulfateasanionpairingagentplayedaroleasanionicspacerbetween

    PEGylatedPLGAandminocycline.Ifionpairingformationisfasterthanpolymerprecipitation,theionpairscouldbetrappedduringparticulateprecipitation.Intheabsenceofdextransulfate(WOW6),theinteractionsbetweentheterminalgroupofthepolymerandminocyclineweremostlydirectedbyweakvanderWaalsforces.AccordingtotheH-NMRresults,thePEGcontentinlowmolecularweightPLGA(502H,molecularweight12,000)wasapproximatelyfourtimesmorethanthehighmolecularweightPLGA(504H,molecularweight48,000).Soahighamountofion

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    23/33

    DovepressMinocyclinePLGAnanoparticles

    Solventdiffusion-evaporation

    Minocycline

    PEGylatedPLGAS/O/WemulsificationMECHANICALSTIRRER300rpmULTRADextransulphateTURRAXON24,000rpmOFFONOFFSolidificationS/OemulsionW/OemulsificationULTRASOUNDONPVAaqueoussolutionDSOFF

    ULTRASOUNDaqueoussolutionMinocyclineONOFFW/OemulsionaqueoussolutionPEGylatedPLGAoilphase

    Figure7SchemeofcombinationofS/O/Wemulsionandionpairingtechniques.

    pairswasformedinlowmolecularweightPEGylatedPLGA,andhencedrugentrapmentwasincreased(SOW9andSOW10).

    Thesignificantlyincreasedentrapmentefficiencyanddrugloadingusinghighmolecularweightdextransulfate(500,000)indicatesthattheadditionalnegativechargesofdextransulfatehavefurtherincorporatedminocycline(about2.32.9times).Thiswasduetoanionpairingmechanismwhichwasmentionedearlier.ImprovedinteractionbetweenthedrugandpolymerandthusentrapmentefficiencywasobtainedbyincreasingPEGylationandahighmolecularweightofdextransulfate.

    Thesizeofthenanoparticlespreparedbydifferentdoubleemulsionmethodswasasfollows:WOW6(424nm).SOW7(209nm).SOW9(139nm).ThereductioninparticlesizecouldbelargelyduetothedecreaseinPLGAmolecularweight(SOW9)andincreaseinamphiphilicpropertiesofthepolymerwithincreasingPEGcontent(SOW7and9).ThesepolymerswithhigherPEGcontentreduceinterfacial

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    24/33

    tensiontofacilitatenanoparticleformation,andresultina

    smallerparticlesize.47Anapproximatelynarrowsizedistributionwasalsoobserved(Figure4B)forthenanoparticlespreparedbyS/O/Wmethod(polydispersityindex0.2).

    Thereleasekineticsofminocyclinefromthenanoparticleswasideal,asusuallyaninitialburstreleaseinthefirst24hoursfollowedbyacontrolledpatternofdrugreleaseisclinicallyfavorable.25,48,49Inmostofthenanoparticlespreparedinthiswork(OO5,WOW6,SOW79,NP10),weobservedlinearminocyclinereleaseratesafterthebursteffectformorethan5days,andthisprofilecouldbeidealforperiodontaldisease.50Theinitialburstcouldbeascribedtotheminocyclinedistributedatorjustbeneaththesurfaceofthenanoparticles.Thelaterconstantreleaseismainlyduetodrugdiffusionandmatrixerosionmechanisms.Theminocyclinereleaseratefromnanoparticlesin24hourswasasfollows:

    OW1(18%).WOW6(14%).OO5(6%).FromthesustaineddrugreleaseofOO5,itcanbeassumedthat

    minocyclinewaswelldispersedinthepolymermatrix,whichallowedregularreleaseofminocyclinewithpolymerdegradation.Thelargesizeoftheparticlessubmityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    25/33

    KashietalDovepress

    (OO5.WOW6.OW1)decreasedthesolid-liquidcontactanddrugdiffusionthroughthepolymericwall.

    OW3(59%).OW4(49%).OW1(18%).OW2(14%).Theeffectoflecithinonthereleaseratewassimilartoitseffectonentrapmentefficiency.InsampleOW2entrapmentefficiencywasimprovedandthereleaseratewasreduced.Conversely,insamplesOW3andOW4entrapmentefficiencywasdecreasedandthereleaseratewasenhanced.SOW9(91%).SOW10(72%),andSOW7(38%).

    SOW8(29%).Nanoparticlespreparedusingdextransulfate(molecularweight500,000)showedaslowerreleaseratethandextransulfatealone(molecularweight6000).Thismaybeduetoahighernegativechargerelatedtodextransulfate500,000thatinducedbetterinteractionwiththecationicdrugandwhichcouldincorporatefurtheramountsofdrugontheinsideaswellasthesurfaceofthenanoparticles.SOW10(72%).SOW8(29%),andSOW9(91%).SOW7(38%).Useoflowmolecularweight

    PLGAinSOW9andSOW10increasedthediffusionofminocyclinethroughthenanoparticlewall.51NanoparticleswiththehighestPEGcontenthavemoreamphiphilicandhydrophilicproperties.Thesepropertiesenhancemoleculardiffusionintoaqueoussolution.SOW7(38%).WOW3(14%).Asmentionedearlier,nanoparticlespreparedbytheS/O/Wionpairmethodhavemoreamphiphilicandhydrophilicpropertiesandsmallerparticlesize.Thesepropertiesenhancediffusionandsurfacedesorptioninaqueoussolution.Thermalstudieswereusedtoinvestigatethephysical

    stateofminocyclineinthenanoparticles,becausethispropertycouldinfluencedrugreleasefromthenanoparticles.Drugmaybepresenteitherasamorphousorcrystallineinanamorphousorcrystallinepolymer.Figure3showstheDSCthermogramsforpureminocycline,andforemptyandminocycline-loadednanoparticles.Polymershowsaglasstransitiontemperatureat50Canddoesnothaveameltingpointtemperature,meaningthatitisanamorphouspolymer.Twopeaksinthetemperaturerangeof150C170Cmayberelatedtoresidenceofpolyvinylalcohol.Pureminocycline

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    26/33

    showedanexothermicpeakat200Crelatedtothemeltingpointwithdecompositiontransition.Minocyclinemeltingwithadecompositionpeakwasdepletedinthethermogramfortheloadednanoparticles,indicatingthepresenceofamorphousminocyclineinthenanoparticles.Itmaybehypothesizedthatcrystallizationofminocyclineisinhibitedduringproductionofnanoparticles.Therefore,minocycline

    inthenanoparticlesisintheamorphousphaseofamoleculardispersion.Theantibacterialpropertiesofminocyclineloadednanoparticlesweredeterminedinvitro;theantibacterialactivityofthenanoparticleswasremarkableandmainlyattributedtothehighantibacterialeffectofthenanosizedparticles(Table3).EncapsulationofminocyclineintonanoparticlesimprovedtheantibacterialefficiencyofminocyclineagainststandardAggregatibacteractinomycetemcomitansbytwo-fold.Becausefreedrugandnanoparticleswereinvestigatedusingthesameconcentrationofminocycline,theimprovementinantibacterialeffectactivitybeduetobetterpenetrationofthenanoparticlesintobacterialcellsandbetterdeliveryofminocyclinetoitssiteofaction.7Nanoparticlesarecapableofbeingendocytosedbyphagocyticcellsandreleasingdrugintothosecells.52,53Theminocycline-loadednanoparticlescouldbe

    suitablefordeliveryofminocyclinetophagocyticcellstoachievebettertreatmentofinfectioncomparedwithtreatmentusingfreeminocycline.Thisindicatesthatthenewlydesignedantibiotic-releasingnanoparticlesmaybeappropriateforperiodontaltreatment.

    Conclusion

    Effectiveentrapmentofdrugsthatarehighlysolubleinbothaqueousandorganicsolventsisdifficulttoachieveusingstandardapproaches,suchassingleanddoubleemulsificationsolventevaporationandnanoprecipitationmethods.Inthisstudyweusedanovelmethodforthepreparationofminocycline-

    loadednanoparticlesbyapplyinganionpairingtechniqueusingsolid/oil/wateremulsification.OurresultsdemonstratethatusingPLGA-PEG-dextransulfateforionpairingsignificantlyincreasesminocyclineloading,andproducesnanoparticleswiththedesiredsize,sizedistribution,andmorphologicalproperties.BydecreasingthemolecularweightofPLGAandincreasingthemolecularweightofdextransulfate,thedesireddrugcontentcanbeobtainedbecauseofthehighPEGcontentandlowdruginsolubility,respectively.PEGylatedPLGA(molecularweight12,000)anddextransulfate(molecularweight500,000)wasthepreferredchoiceforionpairingbecauseitallowedthehighestdrugloadingandentrapmentefficiency.Aninvestigationof

    differentpreparationmethods,physicochemicalcharacterization,invitroreleasetesting,andantibacterialpropertiesofthenanoparticleswascarriedout.Releaseratesvarieddependingonthepreparationmethodandnanoparticlecharacteristics,suchasamphiphilic,polymermolecularweight,particlesize,andpolymercomposition.Invitroreleaseindicatedthataftertheinitialburstrelease,controlledrelease

    submityourmanuscript|www.dovepress.com

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    27/33

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    28/33

    DovepressMinocyclinePLGAnanoparticles

    ofminocyclinecontinuedformorethan5days;thisreleaseprofilecouldbetheidealforperiodontaldisease.Nanoparticlespreparedbynanoprecipitationhadagoodsizeandmorphology;however,thisisnotanefficientmethodforencapsulationofhighlywater-solubledrugssuchasminocycline(reverseofnanoparticlespreparedbyoil/oilmethod).TheinvitroantibacterialresultsshowedthattheminocyclineloadednanoparticlesareremarkablymoreeffectivethanthefreedrugagainstAggregatibacteractinomycetemcomitans.

    Acknowledgments

    ThisstudywasfundedandsupportedbytheTehranUniversityofMedicalSciences(Grant10221).TheauthorsaregratefultotheNanotechnologyResearchCenterofTehranUniversityofMedicalSciences,Tehran,Iran,fortheirfinancialsupportofthiswork.TheyalsothankMrsFKhosraviforhertechnicalassistanceintheexperiments.

    Disclosure

    Theauthorsreportnoconflictsofinterestinthiswork.

    References

    1.KimBK,HwangSJ,ParkJB,ParkHJ.Characteristicsoffelodipinelocatedpoly(epsilon-caprolactone)microspheres.JMicroencapsul.2005;22(2):193203.2.Owusu-AbabioG,RogersJA.Formulationandreleasekineticsofcephalexinmonohydratefrombiodegradablepolymericmicrospheres.JMicroencapsul.1996;13(2):195205.3.AsteteCE,SabliovCM.SynthesisandcharacterizationofPLGAnanoparticles.JBiomaterSciPolymEd.2006;17(3):247289.

    4.DinarvandR,AlimoradMM,AmanlouM,AkbariH.Preparation,characterizationandinvitrodrugreleasepropertiesofpolytrimethylenecarbonate/polyadipicanhydrideblendmicrospheres.JApplPolymSci.2006;101(4):23772383.5.ShokriN,AkbariJavarH,FouladdelSH,etal.Preparationandevaluationofpoly(caprolactonefumarate)nanoparticlescontainingdoxorubicinHC1.Daru.2011;19(1):1222.6.YousefpourP,AtyabiF,Vasheghani-FarahaniE,MousaviMovahediAA,DinarvandR.Targeteddeliveryofdoxorubicin-utilizingchitosannanoparticlessurface-functionalizedwithanti-Her2trastuzumab.IntJNanomedicine.2011;6:19771990.7.DinarvandR,SepehriN,ManoochehriH,RouhaniH,AtyabiF.Polylactide-co-glycolidenanoparticlesforcontrolleddeliveryofanticancer

    agents.IntJNanomedicine.2011;6:877895.8.EsmaeiliF,GhahremaniMH,EsmaeiliB,KhoshayandMR,AtyabiF,DinarvandR.PLGAnanoparticlesofdifferentsurfaceproperties:Preparationandevaluationoftheirbodydistribution.IntJPharm.2008;349(12):249255.9.EsmaeiliF,AtyabiF,DinarvandR.Preparationandcharacterizationofestradiol-loadedPLGAnanoparticlesusinghomogenization-solventdiffusionmethod.Daru.2008;16(4):196202.10.MuL,FengSS.Fabrication,characterizationandinvitroreleaseofpaclitaxel(Taxol)loadedpoly(lactic-co-glycolicacid)microspheres

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    29/33

    preparedbyspraydryingtechniquewithlipid/cholesterolemulsifiers.JControlRelease.2001;76(3):239254.11.JangJY,KwonBS,LeeHE,KimDH,etal.PreparationofbiodegradablePLGAnanospheresemployingafastsolventevaporationmethod.JIndEngChem.2007;13(6):10431046.12.JaiswalJ,GuptaSK,KreuterJ.Preparationofbiodegradablecyclosporinenanoparticlesbyhigh-pressureemulsification-solventevaporationprocess.JControlRelease.2004;96(1):169178.13.DesgouillesS,VauthierC,BazileD,etal.Thedesignofnanoparticlesobtainedbysolventevaporation:Acomprehensivestudy.Langmuir.2003;19(22):95049510.14.GaborF.Ketoprofen-poly(D,L-lactic-co-glycolicacid)microspheres:influenceofmanufacturingparametersandtypeofpolymeronthereleasecharacteristics.JMicroencapsul.1999;16(1):112.15.EspositoE,CortesiR,CervellatiF,MenegattiE,NastruzziC.Biodegradablemicroparticlesforsustaineddeliveryoftetracyclinetotheperiodontalpocket:formulatoryanddrugreleasestudies.JMicroencapsul.1997;14(2):175187.16.Schwach-AbdellaouiK,Vivien-CastioniN,GurnyR.Localdeliveryofantibacterialagentsforthetreatmentofperiodontaldiseases.EurJPharmBiopharm.2000;50(1):8399.17.JainN,JainGK,JavedSH,etal.Recentapproachesforthetreatment

    ofperiodontitis.DrugDiscovToday.2008;13(2122):932943.18.PragatiS,AshokS,KuldeepS.Review:Recentadvancesinperiodontaldrugdeliverysystems.IntJDrugDel.2001;3(1):114.19.Pinon-SegundoE,Ganem-QuintanarA,Alonso-PerezV,Quintanar-GuerreroD.Preparationandcharacterizationoftriclosannanoparticlesforperiodontaltreatment.IntJPharm.2005;294(12):217232.20.ChwalibogA,SawoszE,HotowyA,etal.Visualizationofinteractionbetweeninorganicnanoparticlesandbacteriaorfungi.IntJNanomedicine.2010;5:10851094.21.RezaeiMokarramA,KebriaeeZadehA,KeshavarzM,AhmadiA,MohtatB.Preparationandin-vitroevaluationofindomethacinnanoparticles.Daru.2010;18(3):185192.22.OkudaK,WolffL,OliverR,etal.Minocyclineslow-releaseformulation

    effectonsubgingivalbacteria.JPeriodontol.1992;63(2):7379.23.ParkYJ,LeeJY,YeomHR,etal.Injectablepolysaccharidemicrocapsulesforprolongedreleaseofminocyclineforthetreatmentofperiodontitis.BiotechnolLett.2005;27(22):17611766.24.VandekerckhoveBN,QuirynenM,vanSteenbergheD.Theuseoflocallydeliveredminocyclineinthetreatmentofchronicperiodontitis:Areviewoftheliterature.JClinPeriodontol.1998;25(11Pt2):964968.25.RadvarM,PourtaghiN,KinaneDF.Comparisonof3periodontallocalantibiotictherapiesinpersistentperiodontalpockets.JPeriodontol.1996;67(9):860865.26.SlotsJ.Research,ScienceandTherapyCommittee.Systemicantibioticsinperiodontics.JPeriodontol.2004;75(11):15531565.

    27.Heitz-MayfieldLJ.Systemicantibioticsinperiodontaltherapy.AustDentJ.2009;54Suppl1:96101.28.JonesAA,KornmanKS,NewboldDA,ManwellMA.Clinicalandmicrobiologicaleffectsofcontrolled-releaselocallydeliveredminocyclineinperiodontitis.JPeriodontol.1994;65(11):10581066.29.TimmermanMF,vanderWeijdenGA,vanSteenbergenTJ,MantelMS,deGraaffJ,vanderVeldenU.Evaluationofthelong-termefficacyandsafetyoflocally-appliedminocyclineinadultperiodontitispatients.JClinPeriodontol.1996;23(8):707716.30.FattalE,BochotA.Stateoftheartandperspectivesforthedeliveryof

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    30/33

    antisenseoligonucleotidesandsiRNAbypolymericnanocarriers.IntJPharm.2008;364(2):237248.31.IshiharaT,MizushimaT.Techniquesforefficiententrapmentofpharmaceuticalsinbiodegradablesolidmicro/nanoparticles.ExpertOpinDrugDeliv.2010;7(5):565575.32.ChornyM,FishbeinI,DanenbergHD,GolombG.Lipophilicdrugloadednanospherespreparedbynanoprecipitation:effectofformulationvariablesonsize,drugrecoveryandreleasekinetics.JControlRelease.2002;83(3):389400.33.WischkeC,SchwendemanSP.PrinciplesofencapsulatinghydrophobicdrugsinPLA/PLGAmicroparticles.IntJPharm.2008;364(2):298327.34.GovenderT,StolnikS,GarnettMC,IllumL,DavisSS.PLGAnanoparticlespreparedbynanoprecipitation:drugloadingandreleasestudiesofawatersolubledrug.JControlRelease.1999;57(2):171185.submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    31/33

    KashietalDovepress

    35.ThoteAJ,GuptaRB.Formationofnanoparticlesofahydrophilicdrugusingsupercriticalcarbondioxideandmicroencapsulationforsustainedrelease.Nanomedicine.2005;1(1):8590.36.CheowWS,HadinotoK.Enhancingencapsulationefficiencyofhighlywater-solubleantibioticinpoly(lactic-co-glycolicacid)nanoparticles:Modificationsofstandardnanoparticlepreparationmethods.ColloidsSurfAPhysicochemEngAspects.2010;370(13):7986.37.LuC,ZhongW.Synthesisofpropargyl-terminatedheterobifunctionalpoly(ethyleneglycol).Polymers.2010;2(4):407417.38.DalwadiG,SunderlandB.AnionpairingapproachtoincreasetheloadingofhydrophilicandlipophilicdrugsintoPEGylatedPLGAnanoparticles.EurJPharmBiopharm.2009;71(2):231242.39.TanML,FriedhuberAM,DunstanDE,ChoongPF,DassCR.Theperformanceofdoxorubicinencapsulatedinchitosan-dextransulphatemicroparticlesinanosteosarcomamodel.Biomaterials.2010;31(3):541551.40.FineDH,MarkowitzK,FurgangD,etal.Aggregatibacteractinomycetemcomitansanditsrelationshiptoinitiationoflocalizedaggressiveperiodontitis:longitudinalcohortstudyofinitiallyhealthyadolescents.

    JClinMicrobiol.2007;45(12):38593869.41.EsmaeiliF,Hosseini-NasrM,Rad-MalekshahiM,SamadiN,AtyabiF,DinarvandR.Preparationandantibacterialactivityevaluationofrifampicin-loadedpolylactide-co-glycolidenanoparticles.Nanomedicine.2007;3(2):161167.42.MahdaviH,MirzadehH,HamishehkarH,etal.Theeffectofprocessparametersonthesizeandmorphologyofpoly(D,L-lactide-coglycolide)micro/nanoparticlespreparedbyanoilinoilemulsion/solventevaporationtechnique.JApplPolymSci.2010;116(1):528534.43.DillenK,VandervoortJ,VandenMooterG,VerheydenL,LudwigaA.Factorialdesign,physicochemicalcharacterisationandactivityofciprofloxacin-PLGAnanoparticles.IntJPharm.2004;275(12):

    171187.44.BilatiU,AllemannE,DoelkerE.Developmentofananoprecipitationmethodintendedfortheentrapmentofhydrophilicdrugsintonanoparticles.EurJPharmSci.2005;24(1):6775.InternationalJournalofNanomedicine

    Publishyourworkinthisjournal

    TheInternationalJournalofNanomedicineisaninternational,peer-reviewedjournalfocusingontheapplicationofnanotechnologyindiagnostics,therapeutics,anddrugdeliverysystemsthroughoutthebiomedicalfield.ThisjournalisindexedonPubMedCentral,MedLine,CAS,SciSearch,CurrentContents/ClinicalMedicine,Journal

    45.BarichelloJM,MorishitaM,TakayamaK,NagaiT.EncapsulationofhydrophilicandlipophilicdrugsinPLGAnanoparticlesbythenanoprecipitationmethod.DrugDevIndPharm.1999;25(4):471476.46.YuanH,JiangSP,DuYZ,MiaoJ,ZhangXG,HuFQ.Strategicapproachesforimprovingentrapmentofhydrophilicpeptidedrugsbylipidnanoparticles.ColloidsSurfBBiointerfaces.2009;70(2):248253.47.RileyT,StolnikS,HealdR,etal.Physicochemicalevaluationofnanoparticlesassembledfrompoly(lacticacid)-Poly(ethyleneglycol)

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    32/33

    (PLA-PEG)blockcopolymersasdrugdeliveryvehicles.Langmuir.2001;17(11):31683174.48.LindheJ,HaffajeeAD,SocranskySS.Progressionofperiodontaldiseaseinadultsubjectsintheabsenceofperiodontaltherapy.JClinPeriodontol.1983;10(4):433442.49.ListgartenMA.Natureofperiodontaldiseases:pathogenicmechanisms.JPeriodontalRes.1987;22(3):172178.50.MundargiRC,SrirangarajanS,AgnihotriSA,etal.Developmentandevaluationofnovelbiodegradablemicrospheresbasedonpoly(d,llactide-co-glycolide)andpoly(epsilon-caprolactone)forcontrolleddeliveryofdoxycyclineinthetreatmentofhumanperiodontalpocket:invitroandinvivostudies.JControlRelease.2007;119(1):5968.51.GravesRA,PamujulaS,MoiseyevR,FreemanT,BostanianLA,MandalTK.EffectofdifferentratiosofhighandlowmolecularweightPLGAblendonthecharacteristicsofpentamidinemicrocapsules.IntJPharm.2004;270(12):251262.52.MohammadiG,NokhodchiA,Barzegar-JalaliM,etal.Physicochemicalandanti-bacterialperformancecharacterizationofclarithromycinnanoparticlesascolloidaldrugdeliverysystem.ColloidSurfBBiointerfaces.2011;88(1):3944.53.Page-ClissonME,Pinto-AlphandaryH,OurevitchM,AndremontA,CouvreurP.Developmentofciprofloxacin-loadednanoparticles:physicochemicalstudyofthedrugcarrier.JControlRelease.1998;56(13):2332.

    Dovepress

    CitationReports/ScienceEdition,EMBase,ScopusandtheElsevierBibliographicdatabases.Themanuscriptmanagementsystemiscompletelyonlineandincludesaveryquickandfairpeer-reviewsystem,whichisalleasytouse.Visithttp://www.dovepress.com/testimonials.phptoreadrealquotesfrompublishedauthors.

    Submityourmanuscripthere:http://www.dovepress.com/international-journal-of-nanomedicine-journal

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    33/33