26
I II III Ch. 5 - The Periodic Table I. History (p. 123 - 127)

IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Embed Size (px)

Citation preview

Page 1: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

I II III

Ch. 5 - The Periodic Table

I. History(p. 123 - 127)

Page 2: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

A. Mendeleev

Dmitri Mendeleev (1869, Russian) Organized elements

by increasing atomic mass.

Elements with similar properties were grouped together.

There were some discrepancies.

Page 3: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

A. Mendeleev

Dmitri Mendeleev (1869, Russian) Predicted properties of undiscovered

elements.

Page 4: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

B. Moseley - 1913

Henry Mosely (1913, British)

Organized elements by increasing atomic number.

Resolved discrepancies in Mendeleev’s arrangement.

Page 5: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

I II III

II. Organization of theElements

Ch. 5 - The Periodic Table

Page 6: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

MetalsNonmetalsMetalloids

A. Metallic Character

Page 7: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Main Group ElementsTransition MetalsInner Transition Metals

B. Blocks

Page 8: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

I II III

III. Periodic Trends

(p. 140 - 154)

Ch. 5 - The Periodic Table

0

50

100

150

200

250

0 5 10 15 20Atomic Number

Ato

mic

Ra

diu

s (

pm

)

Page 9: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

A. Periodic Law

When elements are arranged in order of

increasing atomic #, elements with similar

properties appear at regular intervals.

0

50

100

150

200

250

0 5 10 15 20Atomic Number

Ato

mic

Ra

diu

s (

pm

)

0

50

100

150

200

250

0 5 10 15 20Atomic Number

Ato

mic

Ra

diu

s (

pm

)

Page 10: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

1

2

3

4 5

6

7

B. Chemical Reactivity

Families Similar valence e- within a group result in

similar chemical properties

Page 11: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

1

2

3

4 5

6

7

B. Chemical Reactivity

Alkali MetalsAlkaline Earth MetalsTransition MetalsHalogensNoble Gases

Page 12: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Atomic Radius size of atom

© 1998 LOGALFirst Ionization Energy Energy required to remove one e- from a

neutral atom.

© 1998 LOGAL

Melting/Boiling Point

C. Other Properties

Page 13: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Atomic Radius

0

50

100

150

200

250

0 5 10 15 20Atomic Number

Ato

mic

Ra

diu

s (

pm

)

D. Atomic Radius

Li

ArNe

KNa

Page 14: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

1

2

3

4 5

6

7

Atomic Radius Increases to the LEFT and DOWN

D. Atomic Radius

Page 15: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Why larger going down?

Higher energy levels have larger orbitals

Shielding - core e- block the attraction between the nucleus and the valence e-

Why smaller to the right?

Increased nuclear charge without additional shielding pulls e- in tighter

D. Atomic Radius

Page 16: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

First Ionization Energy

0

500

1000

1500

2000

2500

0 5 10 15 20Atomic Number

1s

t Io

niz

ati

on

En

erg

y (k

J)

E. Ionization Energy

KNaLi

Ar

NeHe

Page 17: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

1

2

3

4 5

6

7

First Ionization Energy Increases UP and to the RIGHT

E. Ionization Energy

Page 18: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Why opposite of atomic radius?

In small atoms, e- are close to the nucleus where the attraction is stronger

Why small jumps within each group?

Stable e- configurations don’t want to lose e-

E. Ionization Energy

Page 19: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Successive Ionization Energies

Mg 1st I.E. 736 kJ

2nd I.E. 1,445 kJ

Core e- 3rd I.E. 7,730 kJ

Large jump in I.E. occurs when a CORE e- is removed.

E. Ionization Energy

Page 20: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Al 1st I.E. 577 kJ

2nd I.E. 1,815 kJ

3rd I.E. 2,740 kJ

Core e- 4th I.E. 11,600 kJ

Successive Ionization Energies

Large jump in I.E. occurs when a CORE e- is removed.

E. Ionization Energy

Page 21: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

1

2

3

4 5

6

7

Melting/Boiling Point Highest in the middle of a period.

F. Melting/Boiling Point

Page 22: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Ionic Radius

Cations (+)

lose e-

smaller

© 2002 Prentice-Hall, Inc.

Anions (–)

gain e-

larger

G. Ionic Radius

Page 23: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Which atom has the larger radius?

Be or Ba

Ca or Br

Ba

Ca

Examples

Page 24: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Which atom has the higher 1st I.E.?

N or Bi

Ba or Ne

N

Ne

Examples

Page 25: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Which atom has the higher melting/boiling point?

Li or C

Cr or Kr

C

Cr

Examples

Page 26: IIIIII Ch. 5 - The Periodic Table I. History (p. 123 - 127)

Which particle has the larger radius?

S or S2-

Al or Al3+

S2-

Al

Examples