64
Specification Test Methods ASTM D6890/EN 15195 (IP498) Ignition Quality Tester (IQT™) Technology Update Technology Update Fuel Rating Symposium October, 2010

Iggonition QuaQua ylity Tester (IQT™) Technology Update€¦ · Specification Test Methods ASTM D6890/EN 15195 (IP498) Iggonition QuaQua ylity Tester (IQT™) Technology Update

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Specification Test MethodsASTM D6890/EN 15195 (IP498)

Ignition Quality g o Qua yTester (IQT™)

Technology UpdateTechnology Update

Fuel Rating SymposiumOctober, 2010

WelcomeWelcome

• I would like to thank you for taking time out ofI would like to thank you for taking time out of your busy schedules to come to attend presentation ‐ in particular to hear thispresentation  in particular to hear this D6890/EN 15195 (IP 498) progress review updateupdate

Presentation TopicsPresentation Topics

• IQT™ History• Test Method Development at EI and ASTM• Use of the IQT™ from a global perspective 

Th i ifi f th IQT™ i bi di l f l d l t• The significance of the IQT™ in biodiesel fuel development and commercialization

• The effective use of the IQT™ with cetane improver (2‐ethy hexyl nitrate ‐2EHN and ditertiary butyl peroxide ‐DTB)

• The effective use of the IQT™ in refinery diesel fuel blending optimization (establish blend values for components)opt at o (estab s b e d a ues o co po e ts)

• Regulatory use of the IQT™ for regular and premium diesel fuel

Presentation Topics Cont’d.Presentation Topics Cont d.

• Development of a high precision MDV Fuel Injection Pump that will further improve precision 

• Precision Update Status ( ASTM & EI Exchange Group Data)• Update on Refinery On Line Model (ROLM) IQT™• Update on Refinery On‐Line Model (ROLM) IQT• Preliminary Test Results for New Reference Fuel Blends• Durability track record and recent durability improvements• Update on near Totally Automated Laboratory Model (TALM) 

IQT™• Ease of Maintenance• Ease of Maintenance• Expansion of test method scope above 64 DCN and below 33 

DCN

Presentation Topics Cont’d.Presentation Topics Cont d.

• Combined use of primary reference fuels with heptane and p y pmethylcyclohexane (MCH)  to improve ease of calibration 

• Summary

IQT™ HistoryIQT  History

• The IQT™ was initially developed as a hand operatedThe IQT  was initially developed as a hand operated research tool by Southwest Research Institute (SwRI) in San Antonio, Texas

• AET acquired the technology from SwRI in 1994

IQT™ History Cont’d.IQT  History Cont d.

SwRI’s hand‐operated research CVCC deviceSwRI s hand operated research CVCC device

IQT™ History Cont’d.IQT  History Cont d.

• Considerable effort was required to determine theConsiderable effort was required to determine the major sources of error in order to further develop the instrument

• The main R&D focus was targeted towards developing a robust/optimized ignition delaydeveloping a robust/optimized ignition delay measurement algorithm that was based on a large data base of ASTM – NEG fuel remnants 

IQT™ History Cont’d.IQT  History Cont d.

SwRI hand‐operated research CVCC device in operation (c.1993)

IQT™ History Cont’d.

• The second main R&D focus was automating the

IQT  History Cont d.

The second main R&D focus was automating the instrument’s sequence of injection and combustion events.

IQT™ History Cont’d.IQT  History Cont d.

SwRI/AET’s development of a first prototype IQT™, manufactured by SwRI

IQT™ History Cont’d.IQT  History Cont d.

Prototype IQT™’s combustion chamber and injection pumpyp Q j p p

Handle for inlet valve

Injection release mechanism

Pneumatic piston

Handle for 

mechanism

exhaust valve

IQT™ History Cont’d.IQT  History Cont d.

Updated prototype IQT™ under test at AETp p yp Q

Solenoid actuator

Pneumatically actuated valves

Data acquisition and control computer

Test Method Development at EI and ASTM 

• The first test method was written in accordance withThe first test method was written in accordance with the Energy Institute (EI) format and was first approved by EI as IP 498   

• The EI version was then utilized to commence the ASTM version and approved in 2002 as D6890ASTM version and approved in 2002 as D6890

Test Method Development at EI and ’dASTM Cont’d. 

• AET continues to be grateful for the knowledgeableAET continues to be grateful for the knowledgeable help of John Jones with this initial ASTM test method 

B th t t th d d l d i t t ll• Both test methods were developed in a totally open and transparent manner

Test Method Development at EI and ’dASTM Cont’d. 

• Throughout the test method development the IQTTMThroughout the test method development the IQTInstrument User Group (UG) played a major role in test method development and round robin testing

• The IQTTM UG met by teleconference call every two weeks for several years – these teleconference callsweeks for several years  these teleconference calls were kindly hosted by BP Oil

Test Method Development at EI and ’dASTM Cont’d. 

• More recently, the UG helped with the IndependentMore recently, the UG helped with the Independent Laboratory Study (ILS) for B100 materials and their use in D6751 

• AET and the UG has supplied test data for the development of ASTM D7467 – Fuel Specification fordevelopment of ASTM D7467  Fuel Specification for B6 to B20

Test Method Development at EI and ’dASTM Cont’d. 

• AET has planned additional testing of B100 for D613AET has planned additional testing of B100 for D613 and D6890 by UG and AET (on two B100 feedstocksthat meet D6751)

Use of the IQT™ from a Global Perspective

Region Number of IQT™sg QEurope 50

North America 46

Eastern Asia & Australia 17

South America 10

Middle East, Western Asia & India 6Middle East, Western Asia & India 6

Africa 3

Use of the IQT™ from a Global ’dPerspective Cont’d.

Organization Type Number of IQT™sg yp QRefinery 57

Government Laboratory 19

Independent Testing Laboratory 18

Oil Company Laboratory 18

University/Research Laboratory 13University/Research Laboratory 13

Other 7

Use of the IQT™ from a Global ’dPerspective Cont’d.

Use of the IQT™ from a Global ’dPerspective Cont’d.

Use of the IQT™ from a Global ’dPerspective Cont’d.

Use of the IQT™ from a Global ’dPerspective Cont’d.

Use of the IQT™ from a Global ’dPerspective Cont’d.

Some of our Major IQT™ UsersSome of our Major IQT  Users

The Significance of the IQT™ in Biodiesel l l d i li iFuel Development and Commercialization

• Over the past 10 years, the IQT™ has been utilized toOver the past 10 years, the IQT  has been utilized  to test B100 development fuels from approximately 50 different bio sources

• On all of these bio sources, there was never a single problem in providing a DCN indication (many ofproblem in providing a DCN indication (many of these fuels were tested well before the development of ASTM D6751) )

Effective use of the IQT™ with cetane improver (2‐ethy hexyl nitrate ‐2EHN and ditertiary butyl(2 ethy hexyl nitrate  2EHN and ditertiary butyl 

peroxide ‐DTBP)

• Unlike the CFR engine, the IQT™ is sensitive to small concentrations of cetane improvers such as 2‐ethyl hexyl nitrate (2‐EHN) and ditertiary butyl peroxide (DTB).

Refinery use of the IQT™ with Cetane Improver

• Numerous refineries and research centers have beenNumerous refineries and research centers have been using their IQT™s to determine the level of boost for different base fuels with various cetane improver concentrations

IQT™ with Cetane Improver Cont’d.IQT  with Cetane Improver Cont d.20

15

t

High response fuel

10

etan

e B

oost

5

Ce

Low response fuel

0 1000 2000 3000 40000

Amount of Additive (ppm)

Ghosh ‐ Energy & Fuels 2008Predicting the Effect of Cetane Improvers on Diesel Fuels

Effective use of the IQT™ in refinery diesel fuel blending optimization (establish blend values forblending optimization (establish blend values for 

component blending)

• Establish DCN blend values for the blend components

• Determine the optimal dose rates for cetaneimprover

Effective use of the IQT™ in refinery diesel fuel blending optimization (establish blend values forblending optimization (establish blend values for 

component blending)

• Determine cetane improver response with individual components 

• As a result of IQT™ precision, a blend curve can be produced with as few as 4 tests for DCN 

Regulatory use of the IQT™ for regular d d l f land premium diesel fuel

• Many countries, states, regions in the world haveMany countries, states, regions in the world have adopted fuel specifications that utilize ASTM D 6890 or EN 15195 in similar manner to that of ASTM D975, EN 590, D6751

Development of a high precision MDV Fuel Injection Pump that will further improveInjection Pump that will further improve 

precision 

Pump # Pump Statistics

Fuel A B C E AVE StdDev.

CF 12 57 2 57 2 57 3 57 3 57 3 05CF‐12 57.2 57.2 57.3 57.3 57.3 .05

Cf‐13 42.0 42.2 42.4 41.9 42.1 .23

Cf‐14 51.2 51.8 51.1 51.2 51.3 .33

1013 42.5 43.2 42.6 42.9 42.8 .32

0811 57.7 57.2 58.0 57.6 .37

0810 52.3 52.0 52.3 52.2 .19

1030 38.9 39.4 39.5 39.9 39.4 .40

Development of a high precision MDV Fuel Injection Pump that will further improveInjection Pump that will further improve 

precision cont’d.

ASTM/EI Test Results

Fuel DCN StdDev CN StdDev

1013 42 7 1 15 44 0 1 421013 42.7 1.15 44.0 1.42

0811 57.2 0.79 55.4 1.78

0810 52.6 0.81 51.0 0.58

1030 38.4 0.34 38.8 1.10

Precision UpdatePrecision Update

• There were 4 ballots to update the precision ofThere were 4 ballots to update the precision of D6890 at the December 2009 ASTM meeting– ASTM/EI Research Report

– Update Reproducibility

– Expand Scope 

– Update Between Method Reproducibility

• All items are going to publication

Precision Update Cont’d.Precision Update Cont d.DCN / CN D6890‐2008 D6890‐2010

(approved)D613‐2008

( pp )

40 2.56 2.23 2.8

45 2.85 2.43 3.4

51 3 20 2 66 4 251 3.20 2.66 4.2

55 3.43 2.81 4.7

Table: Reproducibility p y

DCN / CN D6890‐2008 D6890‐2010(approved)

D613‐2008

40 3 57 3 15 N/A40 3.57 3.15 N/A

45 4.17 3.71 N/A

51 4.90 4.37 N/A

55 5.38 4.81 N/A

Table: Between Method Reproducibility 

Precision Update StatusPrecision Update Status

• ASTM D6890‐10a was published by ASTM in lateASTM D6890 10a was published by ASTM in late September 2010– Reproducibility, repeatability and between‐method reproducibility were recalculated using much larger data set than original calculation

• Original 2002 inter‐laboratory study data ASTM NEG fuelOriginal 2002 inter laboratory study data, ASTM NEG fuel exchange program data, and Energy Institute IP fuel exchange program data

Significant impro ement in reprod cibilit and– Significant improvement in reproducibility and between‐method reproducibility

Precision Update Status Cont’dPrecision Update Status Cont d

DCN/CN r R Rxy r R Rxy r R

D6890‐09 D6890‐10a D613‐08

33 0.85 2.15 2.72 0.67 1.96 2.40 0.8 1.934 0.85 2.21 2.84 0.69 2.00 2.51 0.8 2.135 0.85 2.27 2.97 0.70 2.04 2.62 0.8 2.237 0.85 2.39 3.21 0.73 2.12 2.84 0.8 2.439 0.85 2.50 3.45 0.75 2.19 3.06 0.8 2.740 0.85 2.56 3.57 0.77 2.23 3.17 0.8 2.841 0.85 2.62 3.69 0.78 2.27 3.28 0.8 2.943 0.85 2.74 3.93 0.81 2.35 3.50 0.9 3.245 0.85 2.85 4.17 0.83 2.43 3.72 0.9 3.447 0.85 2.97 4.42 0.86 2.50 3.94 0.9 3.749 0.85 3.08 4.66 0.88 2.58 4.16 0.9 3.951 0.85 3.20 4.90 0.91 2.66 4.37 0.9 4.253 0.85 3.32 5.14 0.94 2.73 4.59 1.0 4.455 0.85 3.43 5.38 0.96 2.81 4.81 1.0 4.756 0.85 3.49 5.50 0.98 2.85 4.92 1.0 4.857 0 85 3 55 5 62 0 99 2 89 5 03 1 0 4 957 0.85 3.55 5.62 0.99 2.89 5.03 1.0 4.959 0.85 3.67 5.86 1.02 2.96 5.25 1.0 5.261 0.85 3.78 6.11 1.04 3.04 5.47 1.0 5.463 0.85 3.90 6.35 1.07 3.12 5.69 1.1 5.764 0.85 3.96 6.47 1.08 3.16 5.80 1.1 5.8

Areas in lighter shaded regions are for published precision, hence values in darker shaded regions are an extrapolation of published values

Precision Update Status Cont’dPrecision Update Status Cont d

Precision Update Status Cont’dPrecision Update Status Cont d

Precision Update StatusPrecision Update Status

• ASTM NEG Fuel Exchange Program

Year DCN σ # Labs CN σ # Labs

2003 45.58 1.12 5 45.09 1.19 17

ASTM NEG Fuel Exchange Program

2003 45.58 1.12 5 45.09 1.19 17

2004 48.06 0.82 4 48.18 1.34 18

2005 45.18 0.80 6 45.04 1.55 19

2006 47 38 0 99 7 47 74 1 50 212006 47.38 0.99 7 47.74 1.50 21

2007 44.90 0.96 6 44.67 1.26 20

2008 47.05 0.93 8 47.70 1.19 21

2009 45.90 0.95 8 45.34 1.37 21

2010* 47.11 0.97 10 47.49 1.26 22

Average 46 36 0 94 7 46 36 1 34 20Average 46.36 0.94 7 46.36 1.34 20

*  2010 data up to August 2010

Precision Update StatusPrecision Update Status

• Energy Institute IP Fuel Exchange Program

Year DCN σ # Labs CN σ # Labs

2006 52.90 1.00 9 52.30 1.42 18

Energy Institute IP Fuel Exchange Program

2006 52.90 1.00 9 52.30 1.42 18

2007 51.46 0.78 12 51.29 1.53 18

2008 52.46 0.89 14 52.63 1.10 15

2009 52 30 0 88 15 52 01 1 33 182009 52.30 0.88 15 52.01 1.33 18

2010* 51.97 0.83 18 51.94 1.54 18

Average 52.23 0.91 12 51.94 1.40 18

*  2010 data up to August 2010

Update on Refinery On‐Line Model ( )(ROLM) IQT™

• Automated Bleed Valve SystemAutomated Bleed Valve System– Fuel system flushing between samples

– Torque‐limiting mechanism

New Reference FuelsNew Reference Fuels

• Primary reference fuel blends of cetane andPrimary reference fuel blends of cetane and heptamethylnonane (HMN) are being experimented with in the range from 65‐100

• The reference fuels are being blended according to the Cetane Scale – CN = %vol Cetane + 0.15 * %vol HMN

• As anticipated, the DCN results from the IQT™ match the Cetane Scale 

New Reference Fuel Blends Cont’d.New Reference Fuel Blends Cont d.

120 120

110

DC

N)

IQT020IQT077IQT120DCN/ID Relationship

110

DC

N)

IQT AIQT BIQT CDCN/ID Relationship

90

100

ne N

umbe

r (D

90

100

ne N

umbe

r (D

80

eriv

ed C

etan

80

eriv

ed C

etan

2 2 2 4 2 6 2 8 3 3 260

70

D

2 2 2 4 2 6 2 8 3 3 2

60

70

D

2.2 2.4 2.6 2.8 3 3.2

Ignition Delay (ms)2.2 2.4 2.6 2.8 3 3.2

Ignition Delay (ms)

Scope Expansion (>65CN, <30CN)Scope Expansion (>65CN, <30CN) 

• The results from the experiments are very promisinge esu s o e e pe e s a e e y p o s g

• Additional tests have shown that HMN is 15DCN using the IQT, which is its definition

• The primary reference fuels will be used to expand the scope of D6890 from 15‐33 and 65‐100 DCN

• This would permit the IQT™ conversion equation to be anchored at three additional points: 15, 65, and 100 DCN 

• Anchoring the IQT™ conversion equation to the Cetane• Anchoring the IQT™ conversion equation to the Cetane Scale will enable it to be considered a standalone method

Reference Fuels PackageReference Fuels Package

• Quality controlled reference fuels are available for allQuality controlled reference fuels are available for all operators from AET:– Heptane

– MCH

– Low Cetane Check Fuel

– High Cetane Check Fuel

– 65.2 DCN Fuel

Durability track record and recent d b ldurability improvements

• Some heavy use refineries have utilized the IQT™ forSome heavy use refineries have utilized the IQT for more than 28,000 tests or 1,250,00 combustion events

• Exhaust and intake air valves have been removed as a frequent repair component

• Fuel injection nozzles can last from 6 months to 2 or more years

Update on Near ‐ Totally Automated b d l ( )Laboratory Model (n ‐ TALM) IQT™

• Electronic pressure control (UG Driven)Electronic pressure control (UG Driven)

Set point adjustment

Gas hook‐ups

adjustment controls

Nitrogen pressure display

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• Automatic flushing (fuel injector nozzle)Automatic flushing (fuel injector nozzle)

Pneumatic actuator

Solenoid valve

Standard IQT™ bleed valve

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• Automatic flushing (fuel injection pump)Automatic flushing (fuel injection pump)

Pneumatic actuator

Standard IQT™ bleed valvebleed valve

Solenoid valve

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• New drip free fuel reservoir (UG Driven)New drip free fuel reservoir (UG Driven)

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• New enclosure design will be unveiled in NovemberNew enclosure design will be unveiled in November 2010

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• Automated control of nozzle tip and combustionAutomated  control of nozzle tip and combustion chamber pressure transducer temperature

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• Automated control of nozzle tip and combustionAutomated  control of nozzle tip and combustion chamber pressure transducer temperature

Flow sensor with rate outputrate output

Flow indicator

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• Updated graphical user interface (test and parameterUpdated graphical user interface (test and parameter status at a glance) (UG driven)

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• Updated graphical user interface (test and parameterUpdated graphical user interface (test and parameter status at a glance) (UG driven)

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• Automated ‐ Self checking of calibrationAutomated  Self checking of calibration– Verify SQC fuel test results against quality control limits

– Prompt to start automatic calibration procedure if required

• Automated ‐ Self calibration– Determine change in set point required to achieve ARV for g p qn‐heptane and verify that new set point is correct

– Verify the instrument’s measurement sensitivity using th l l hmethylcyclohexane

– Perform post‐calibration quality control test

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• Precision improvement dataPrecision improvement data

1L Fuel Reservoir

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• Precision improvement dataPrecision improvement data

43.5

44.0

er 

42.5

43.0

ne Num

beN)

41 0

41.5

42.0

ived

 Cetan

(DCN

40.0

40.5

41.0

Deri

9:00 AM 1:00 PM 5:00 PM 9:00 PM 1:00 AM 5:00 AM 9:00 AM 1:00 PM

Experimental Results

Update on Near ‐ Totally Automated b d l ( ) ’dLaboratory Model (n ‐ TALM) IQT™ Cont’d.

• The new enclosure will further improve instrumentThe new enclosure will further improve instrument safety

Ease of MaintenanceEase of Maintenance

• Use of bellville washers on the three combustionUse of bellville washers on the three combustion chamber studs mean that high temperature gasket life is greatly extended

• The new enclosure will permit easier access for periodic maintenanceperiodic maintenance

SummarySummary

• From 1993 to 2010 work has been ongoing toFrom 1993 to 2010 work has been ongoing to improve the capability, precision, and durability of the IQT™

• New developments for the Totally Automated Laboratory Model (TALM) IQT™ will further itsLaboratory Model (TALM) IQT  will further its capability and durability characteristics for use with a broad range of fuel options over a cetane range of 15 g p gto 100