IEEE PresentationPower Rectifiers

Embed Size (px)

Citation preview

  • 8/21/2019 IEEE PresentationPower Rectifiers

    1/40

    AC to DC Power Conversion Now and in the Futu re 

    PCIC-2001-14

    Tony Siebert Anders Troedson Stephan Ebner  Member, IEEE Member, IEEE Member, IEEE

     ABB Automation, Inc ABB Automation, Inc ABB Industrie AG

    P.O. Box 372P.O. Box 372 CH- 5300 Turgi

    Milwaukee, WI 53201 Milwaukee, WI 53201 Switzerland

    USA USA

  • 8/21/2019 IEEE PresentationPower Rectifiers

    2/40

     Agenda

    • Introduction

    • System Design Factors

    • Technology Assessment

     –

    • Technology Comparison

    • Innovative Information Technology (IT) support• Conclusions

  • 8/21/2019 IEEE PresentationPower Rectifiers

    3/40

    Rectifier History 

    1913 Fist Mercury-Arc rectifier 

    1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

    1925 Mercury-Arc rectifier for grid control

    1939 First 50 kV HVDC transmission

    1950 Development of Contact Rectifier 

    1947 Invention of Transistor 

    1902 Invention of Semiconductor Diode (Crystal type)

    Mercury Arc Rectifier Contact Rectifier  

  • 8/21/2019 IEEE PresentationPower Rectifiers

    4/40

    Rectifier History 

    1958 First semicond. Diode rectifier 

    1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

    1960 First diode plant > 100 kA

    1968 First thyristor rectifier 1970 First diode rectifier unit > 100 kA

    Introduction of Thyristor Technology

    Introduction of Diode Technology

    Thyristor Rectifier Diode Rectifier  

  • 8/21/2019 IEEE PresentationPower Rectifiers

    5/40

    Rectifier History 

    1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

    1990 First thyristor rectifier for DC-Arc Furnace

    1985 First thyristor rectifier for Aluminium Smelter 

    Ongoing Development of Diode Rectifier Technology

    Ongoing Development of Thyristor Rectifier Technology

    3” Thyristor Rectifier 4” Thyristor Rectifier  2” Thyristor Rectifier 

  • 8/21/2019 IEEE PresentationPower Rectifiers

    6/40

    Rectifier History 

    1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

    Mid-1990’s first Chopper rectifier in Eletrolysis

    Introduction of GTO TechnologyIntroduction of IGBT Technology

    Introduction of IGCT Technology

    IGBT Chopper Module PowerPac3IGCT Chopper Module

  • 8/21/2019 IEEE PresentationPower Rectifiers

    7/40

    System design and decision factors

    AC-Network Design Parameter Ä Voltage level / voltage variation

    Ä Frequency / frequency variationÄ Available short circuit capability

    Ä Allowed power factor 

    Ä Allowed harmonic distortion

    DC-Process Design Parameter Ä Voltage / current operating range

    Ä Voltage / current rippleÄ Voltage / current regulation accuracy

    Ä Voltage / current regulation speed

    Ä Overload capabilities

    Further Decision FactorsÄ System reliability

    Ä System efficiencyÄ Reparability and diagnostics

    Ä Footprint and mechanical dimension

    Ä Investment- / install- / life-cycle cost

    Ä Production load schedule criteriaÄ Energy day-time tariffs criteria

    Ä Plant start-up / lay-off criteria

  • 8/21/2019 IEEE PresentationPower Rectifiers

    8/40

    Process Ratings

    Rectifier Application Current (Amps) Voltage (DC)

    Chemical electrolysis 5,000 - 150,000 40 - 1,000 Volts

     Aluminum potline 10,000 - 300,000 < 1,300 Volts

    DC Arc Furnace 50,000 - 130,000 600 - 1,150 Volts

    Graphitizing Furnaces 20,000 - 120,000 50 - 250 Volts

    Zinc/Lead, etc electrolysis 5,000 - 100,000 100 - 1,000 Volts

    Copper refining 10,000 - 50,000 40 - 350 Volts

    Traction substations 1,000 - 5,000 500 - 1,500 VoltsLV AC Drive (DC bus) 0 - 10,000 250 - 1,000 Volts

    MV Drive (DC bus) 0 - 5,000 3,400 - 6,000 Volts

    Typical Rectifier Rating

  • 8/21/2019 IEEE PresentationPower Rectifiers

    9/40

    Technology Assessment

    • Diode

    • Thyristor 

    • Diode and DC/DC Converter

    (Chopper)

    • Active Rectifier 

  • 8/21/2019 IEEE PresentationPower Rectifiers

    10/40

    Diode Rectifier Topology 

    Double wye connection with interphase transformer 

    LOAD

    6 puls circuit

    3 - phase bridge connection

    LOAD

    6 puls circuit

    Di d S t R l ti P i i l

  • 8/21/2019 IEEE PresentationPower Rectifiers

    11/40

    Diode System Regulation Principle

    Step of current setpoint

    Step of OLTC

    current without saturable reactor ramp control ( load impedance related )

    current with saturable reactor ramp control

    Range of saturable reactor control

    T *) typ. 3 .. 5 s depending on OLTC drive

    (saturable reactor control up to 5 ms depending on the load)

    t [seconds]

    Idc[kA]

    T *)

    Di d R tifi

  • 8/21/2019 IEEE PresentationPower Rectifiers

    12/40

    Diode Rectifiers

    • Simplest Technology

    • Longest use

    • Used with On-Load-Tap-Changers

    • Used with saturable core reactors

    (amplistats, voltage controlled reactors)

    2 4 - P u l s e D i o d e R e c t i f i e r

    + 7 . 5 °

    - 7 . 5 °

    L o a d

    Th i t R tifi T l

  • 8/21/2019 IEEE PresentationPower Rectifiers

    13/40

    Thyristor Rectifier Topology 

    Double wye connection with interphase transformer 

    LOAD

    6 puls circuit

    3 - phase bridge connection

    LOAD

    6 puls circuit

    Th i t S t R l ti P i i l

  • 8/21/2019 IEEE PresentationPower Rectifiers

    14/40

    Thyristor System Regulation Principle

    Step of current setpoint

    theor.current without phase angle ramp control () ( load impedance related )

    current with phase angle ramp control in operation

    Range of phase angle control

    T *) typ. 100 ms .. 300 ms

    possible up to 5 ms depending on the load

    T *) t [milliseconds]

    Idc[kA]

    Steps only with OLTC

    Th ristor Rectifiers

  • 8/21/2019 IEEE PresentationPower Rectifiers

    15/40

    Thyristor Rectifiers

    • Simple Technology

    • Widely Used

    • Can be used with On-Load-Tap-

    Changers• Relatively fast control of current

    2 4 - P u l s e T h y r i s t o r R e c t i f i e r

    + 7 . 5 °

    - 7 . 5 °

    L o a d

    Diode Rectifier + DC Chopper Topology

  • 8/21/2019 IEEE PresentationPower Rectifiers

    16/40

    Diode Rectifier + DC-Chopper Topology 

    3 - phase bridge connection

    LOAD

    6 puls circuit

    DC Chopper Regulation Principle

  • 8/21/2019 IEEE PresentationPower Rectifiers

    17/40

    DC-Chopper Regulation Principle

    Step of current setpoint

    theor.current without PWM ramp control ( load impedance related )

    current with PWM ramp control

    Range of modulation control

    T 1) typ. 100 ms .. 300 ms with electrolyis process load

    possible up to 1 .. 5 ms depending on the load

    t [milliseconds]

    Idc[kA]

    T 1)

    Tmod 2) typ. 0.2 ms .. 1 ms

    Tmod2)

    Ton Toff 

    Diode Rectifier with Chopper Converter

  • 8/21/2019 IEEE PresentationPower Rectifiers

    18/40

    Diode Rectifier with Chopper Converter 

    • Newer Technology

    • Relatively entering into Market

    • Merging of older (diode) and new

    technology• Fast control of current

    +7.5°

    -7.5°

    Active Rectifier Topology (AC Chopper)

  • 8/21/2019 IEEE PresentationPower Rectifiers

    19/40

     Active Rectifier Topology (AC-Chopper)

    3 - phase bridge connection

    LOAD

    6 puls circuit

     Active Current Source Inverter 

    AC Chopper Regulation Principle

  • 8/21/2019 IEEE PresentationPower Rectifiers

    20/40

     AC-Chopper Regulation Principle

    T 1) typ. 100 ms .. 300 ms with electrolyis process load

    possible up to 1 .. 5 ms depending on the load

    Step of current setpoint

    theor.current without ramp control ( load impedance related )

    current with ramp control

    Range of modulation control

    t [milliseconds]

    Idc[kA]

    T 1)

    Tmod 2) typ. 0.2 ms .. 1 ms

    Tmod2)

    Ton Toff 

    Active Rectifier (AC-Chopper)

  • 8/21/2019 IEEE PresentationPower Rectifiers

    21/40

     Active Rectifier (AC-Chopper)

    • Newest Application of Technology

    • Limited Market entry

    • Based upon proven technology• Fast control of current

    Active Current Source Inverter 

    Load

    Technology use by Process

  • 8/21/2019 IEEE PresentationPower Rectifiers

    22/40

    Technology use by Process

    Application Diode Thyristor Chopper Active Rectifier Chemical Electrolysis Seldom Standard Seldom Future

     Aluminum Potline Standard Seldom Not Acceptable Distant Future

    DC Arc Furnace Not Acceptable Standard Seldom Future

    Graphitizing Furnace Standard Seldom Future FutureZinc Electrolysis Standard Seldom Future Future

    Copper Refining Seldom Standard Seldom Future

    Traction Substation Standard Seldom Future Distant Future

    LV AC Drive (DC Link) Standard Seldom Not Applicable SeldomMV Drive (DC Link) Standard Seldom Not Applicable Seldom

    Technology Share

  • 8/21/2019 IEEE PresentationPower Rectifiers

    23/40

    Technology Share of Units > 10 kA

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

       1   9   7   2

       1   9   7   4

       1   9   7   6

       1   9   7   8

       1   9   8   0

       1   9   8   2

       1   9   8   4

       1   9   8   6

       1   9   8   8

       1   9   9   0

       1   9   9   2

       1   9   9   4

       1   9   9   6

       1   9   9   8

       2   0   0   0

    Chopper 

    Thyristor 

    Diode

    Technology Share

    Technology Comparison

  • 8/21/2019 IEEE PresentationPower Rectifiers

    24/40

    Technology Comparison

    • Power Factor 

    • Efficiency

    • Harmonic Distortion

    • Reliability / Availability / Service Support

    • Space Requirements• System Cost

    The Process Load Characteristic

  • 8/21/2019 IEEE PresentationPower Rectifiers

    25/40

    The Process Load Characteristic 

    U d o

    I d

    Aluminium

    Zinc

    Chlorine

    Copper 

    I Range

    U Range

    100 %

    100 %

    50 %

    25 %

    75 %

    Power Factor Comparison

  • 8/21/2019 IEEE PresentationPower Rectifiers

    26/40

    Power Factor Comparison

    Power Factor vs Transformer Impedance

    0.8800

    0.8900

    0.9000

    0.91000.9200

    0.9300

    0.9400

    0.9500

    0.9600

    6 7 8 9 10 11 12

    Transformer Impedance

       P  o  w  e  r

       F  a  c   t  o  r

    Diode / DB

    Thyristor / DB

    Note: Low Transformer Impedance = High Voltage

    Harmonics

    Power Factor Comparison

  • 8/21/2019 IEEE PresentationPower Rectifiers

    27/40

    Power Factor Comparison

    0.40

    0.45

    0.50

    0.55

    0.60

    0.65

    0.70

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    250.00 300.00 350.00 400.00 450.00Ud [V]

       P   F

       [  -   ]

    Diode OLTC Thyristor OLTC Thyristor Uncompensated Thyristor Compensated

    Diode vs Thyristor with Electrolysis Process Load 

    Ud

    Id

    Power Factor Comparison

  • 8/21/2019 IEEE PresentationPower Rectifiers

    28/40

    Power Factor Comparison

    • Diode Good

    • Thyristor Low

    • Diode and Chopper Good

    • Active Rectifier Best

    Efficiency vs. Voltage

  • 8/21/2019 IEEE PresentationPower Rectifiers

    29/40

    y g

    0.9

    0.91

    0.92

    0.93

    0.94

    0.95

    0.96

    0.97

    0.980.99

    1

    0 200 400 600 800 1000 1200 1400 1600Voltage

       E

       f   f   i  c   i  e  n  c  y

    Typ Dio/Thy Bridge Typ Dio/Thy Single Way

    Typ Chopper Dio/Thy Projects

    Comparison at Nominal load Operation

  • 8/21/2019 IEEE PresentationPower Rectifiers

    30/40

    p p

    Nominal Load Operation DC-Voltage: 500 V

      DC-Current: 70 kA

      DC-Power: 35 MW

    Diode

    System

    Thyristor 

    System

    Chopper 

    System

     AC-Power (12p-Transformer) 39 MVA 41 MVA 38 MVA

    Power Factor without correction 0.91 0.86 0.93

    Compensation up to PF=0.93 3 MVAR 8 MVAR -Compensation up to PF=0.98 10 MVAR 15 MVAR 7 MVAR

    Losses

    Transformer (including harmonics) 430 kW 450 kW 400 kW

    Rectifier  183 kW 192 kW 170 kW

    Chopper  250 kWLine Filter (for PF=0.93) 56 kW 84 kW

    Total 669 kW 726 kW 820 kW

    Relative Difference -151 kW -94 kW 0 kW

    Efficiency (for Components considered) 0.981 0.980 0.977

    Comparison at Reduced load Operation

  • 8/21/2019 IEEE PresentationPower Rectifiers

    31/40

    p p

    Reduced Load Operation DC-Voltage: 440 V

      DC-Current: 50 kA

      DC-Power: 22 MW

    Diode

    System

    Thyristor 

    System

    Chopper 

    System

     AC-Power (12p-Transformer) 25 MVA 34 MVA 24 MVA

    Power Factor without correction 0.90 0.65 0.93

    Compensation up to PF=0.93 3 MVAR 8 MVAR -Compensation up to PF=0.98 10 MVAR 15 MVAR 7 MVAR

    Losses

    Transformer (including harmonics) 240 kW 260 kW 170 kW

    Rectifier  105 kW 120 kW 100 kW

    Chopper  250 kWLine Filter (for PF=0.93) 56 kW 84 kW

    Total 401 kW 464 kW 520 kW

    Relative Difference -119 kW -56 kW

    Efficiency (for Components considered) 0.982 0.979 0.977

    Efficiency Comparison

  • 8/21/2019 IEEE PresentationPower Rectifiers

    32/40

    y p

    • Diode High

    • Thyristor Medium - High

    • Diode and Chopper Low

    • Active Rectifier Medium - Low

    Harmonic Comparison

  • 8/21/2019 IEEE PresentationPower Rectifiers

    33/40

    p

    15

    711

    1317

    1923 25

    2931

    3537

    4143

    47

    0o

    20o

    40o

    6 0 o

    0

    2

    4

    6

    8

    10

    12

    14

    16

     AC Current in [kA] 

    Harmonic Number 

    2 0 k A , 20 0 V DC , 6 P u l s e R e c t i f i e r  

    D i o d e a n d C h o p p e r ( 0 d e g r e e s ) a n d T h y r i s t o r  d e p e n d i n g o n o u t p u t D C v o l t a g e )  

    0o

    10o

    20o

    30o

    40o

    50o

    60o

    Harmonic Comparison

  • 8/21/2019 IEEE PresentationPower Rectifiers

    34/40

    • Diode Good

    • Thyristor Lower  

    • Diode and Chopper Good

    • Active Rectifier Best

    Reliability Comparison

  • 8/21/2019 IEEE PresentationPower Rectifiers

    35/40

    Based Upon Component Count ofRectifier Devices

    • Diode High

    • Thyristor High

    • Diode and Chopper Low• Active Rectifier Medium

    Service Skill Comparison

  • 8/21/2019 IEEE PresentationPower Rectifiers

    36/40

    • Diode Low

    • Thyristor Medium

    • Diode and Chopper High

    • Active Rectifier High

    System Cost Comparison

  • 8/21/2019 IEEE PresentationPower Rectifiers

    37/40

    Diode Rectifier 105%

    Thyristor Rectifier 100%

    Diode & Chopper 124%

     Active Rectifier 115%

    Based upon past projects, component count and further

    developments.

    Space Comparison

  • 8/21/2019 IEEE PresentationPower Rectifiers

    38/40

    • Diode Average

    • Thyristor Larger  

     – (with power factor included)• Diode and Chopper Larger 

    • Active Rectifier Average

    Conclusions

  • 8/21/2019 IEEE PresentationPower Rectifiers

    39/40

    Considerations

    • Total System Requirements• Future Provision of System

    Requirements

    • Customer’s Experience / Background

    • Technology comparison for exact

    project

     – All Technologies Will continue for near

    future

  • 8/21/2019 IEEE PresentationPower Rectifiers

    40/40

    - Thank You -