2
10:30am-I 0:45am WP1 A Nuvcl Silicoii Klectro-Optic Device for Sensor Applications P. LeMirili*, N. Akil, 11. W;illinga, P. 11. Woerlee, A. van dcii Hcrg, ;iid J. llolletnai~ MESA' I<esearcli Institute, IJriivcrsity of Twerite, PO. LIox 2 I 750(1 AI7 Eiischcde, tl~c Nctlicrlands 'Tcl: -1 31-53-48') 2729, l;;ix: d 31-53-48') 1034, lhiiil: I'.LcMiiih/l~el.otwciitc.iil liitrocloction Though 11. Newman LI] reported the ;rvalatiche breakdown liglil cniission in coiivcntional pii junction diode half a century ago, there iirc aliiiust iin successful applications of this plienoiiiciioti iii iitdiistiy. 111 this paper, we report tlic realization of ii ouvcl silicoti clcctro-optic dcvicc, explicitly the integriitioii OS diode aiitifiisc and photodetector, mil the tirst impurtaiit results. 'She diudc aiitifiisc (called antifusc to thc rest cif this cuntributiuii) resembles a conventional diode but lias a sii~all size of a few tens of ri;inomctcrs, wliich pcriiiits easy collcctiuii of all ctnittcd photons. We have reported the antifiise device inudclitig elsewhcrc [?I. 1)cvice Pabricatiun& Measiirciiierii The device fiibricatio~iciiiployed ii six-inask CMOS cunipatiblc pruccss (Fig. 4). I h t , photodiodc detector windows were iiindc on wtypc silicoii wafer Iiy iiiqilaiitatiun of boron. The antifuse capaciturs, with two oppositely doped poly-Si electrodes aiid ii 6 iini hick LI'CVI) oxide, having dimensions of I0x 10 pi?, wcrc then deposited on tup of this detector window. Tlic ;~iitifiisc is ci.catcd by curitrolled oxide tmxikdown bctwccn tlic two electrodes. The antifiisc aid detector itre electrically sepmitcd Ily a 100 iiin and 700 iiiii thick thcrnial uxidc. 'i'lic pliotudiode window wiis coiiiparativcly lar,gc to collcct all tlic photons coming downwards. Upoti tlie oxide brcakdowii, prog'ainniing cnrrcnts up to 8 inA were applied to fi1rm high qiiiility antifiiscs, which cliaractcristic is shown on Fig. 5. This g qh indicates the oiiwt nflrrcakdowri voltage at approxiiixitcly 3.5 V and iin aiv:il;mchc ciiment o f I inA at 8 V. The series resistance arises froin the sprcadiiig rcsistaucc of the iiiitifiise, fruiri tlic thin film mtiirc of both clcctrodcs. 'Ilic detector is iiii abrupt pi junction opcratcd in the pliotodiodc rcgimc. Efficieiicy To deninnstrate the antitiise light emitting power, we depusitcil ii 0.85 pin thick positive photoresist (Oil. 907/12-deco11iposition energy 100 inJIcin2) oii top of the device. l'his layer is spccitic;illy sciisitivc to photoiis with ciicrgy larger than 2.75 cV (450 nm). 'l'lic iiust-cxposcil photoresist :ircir was developed according io standard process ;oid p1intogr;iplicd in Fig. I. 'I'Iic time dcpciidciicc fckitnrc sixc is plotted in I'ig. 2. The ciiiittcd power, as c;ilciilatcd, is r~unghly 0.25 W/cii?. 111 Fig. 3, ii incasured spectrum and its iibsurptiun curracted mic arc stiowii io mean that the liglit power iri tlic visible range is ui.dci.s of niagnitiidc larger tlian that iti tlic neiu UV rcgiuri. The biggest ubstaclc that IiindcIs the dcvclupiiicnt of iritcgr;itcd optoclectrunics on silicuii is tlx intcgriition of an efficient light eiiiitter. The convciitional ;~val;irichc hreakdowii light ciiiissiuri qiiantuin etticiciicy is ;ibuni 7~10.~ 131 to 6.5~ IW' 141. l'hcsc low tigores coine nul urily f?unr the light cniitting iticchanisni itscltbiit also tlic nori-r;idiativc currciit loss to tlic large p1an;ir iireii of the juiictiuii, tlic nicasnicnicnt setup c;ipabilitics.. . Tlic nanosc;ilc size diudc-antifiisc light ciiiittc,. JZ on-cliip intcgr;itcd ilctcctui iii 0111' sti iictiirc, iis expected, would Irclp solving tlicsc ~iruhlctiis. In Viz. 6, ihc ~~li~itucur~~eiits nf tlic detcctiir iirc sltowii ai difiic~ciit light miiiiirlg currents of tlx anti-fuse. 'l'ltc pliiitociimxd iiie~~eascs liriciirly with thc iticrciisc ot the aritifiisc ~ " S D bias current (Fig. 7), wliicli is in agiceinciit with rcicrcncc [SI. The precise ctticiericy uf this systciii rcqiiircd viiliics of qiiuiiuin dticiciicy of both the omitier ;ind the dctectoi.. A inore pr;icticel iiiiIic;itiori is t~ic uvcraII electrical cfficiciicy of this systoni, which is ruugIiiy I IOf. This v;i~iic is about oiie or.ilcr of magnitude largc~ than the oiic reported iii rcfcrcricc [hj, iiiid sirriult~iircoiisly ioiplics inucli liiglicr c~uaiitii~n cfficicncy tliiiii the viiliics iiicritioncd iii [3 I, [d]. Ciiiicliisioii A new rnunulithic clcctso -uptiCiil dcvitic has I~ccii dcoionsti~alcd. l'lic dcvicc is bkiscd on :i lighl emitting iliodc mitifiisc i d pliut~~ilctcciur integrated 1111 ii single silicuii water by CMOS tcclitrul~igy. 'Ilic high efficiency of such a systciu indic:iics ii very iuipori;itit improvcnicnt Ibr the rc;iIi~iitiuii of silicou iiploclcctronic dcviccs. Refweiice [I]. I<. Newmiin, " Visilrlc liglii fiow a silicwi piijniictinii', I'liys. Rev., Vol. 100, nr. 2, pp. 700701,1905. 121. N. Akil et d. "Modcliiig uf light cinissioii spcct~'a iiic;isurctl oii silicoii rranuiictor;calcdiutllrantifiiscs", to iippeiir on . - .. j. ;if Appl, Phys., Aug 2000. [3]. A. G. Chyiiowuth et al., " Photuii cinissioii Iioii~ av;il;irichc hreiikdowii iii silicon", I'hy.Rci,., Vul. 102, iir. 2, pp. 169 376,1956. [4]. J. Kratncr et al., " Light crnillirig dcvices iti industrid CMOS tcchiiulogy, Scri.W Actiui. A, Vol. 17-38, pp. 527-531, 1993. [SI. V. I:. Iloiitsina et al., '' Light ciiiissiuri froin silicuir iiiiiioiiictOnciilc diudoaiitifiises" I'roc. ottlic tiit. Coiif. ori Appl. of I'hototi. Tcch. (ICAPT), pp. 209213, Joly 1998 [61. K. Misiakos et til., "Moiiolitliic integmtiori of light emitting diudes, detcctors and uptical fibers oii ii silicun wafer: a CMOS cunipatiblc optical sciisu?, IE1)M l'ccliiiicitl Iligcst, 1998 0-7803-5947-X/00/$10.00@2000 IEEE 523

[IEEE LEOS 2000. 2000 IEEE Annual Meeting Conference Proceedings - Rio Grande, Puerto Rico (13-16 Nov. 2000)] LEOS 2000. 2000 IEEE Annual Meeting Conference Proceedings. 13th Annual

  • Upload
    j

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Page 1: [IEEE LEOS 2000. 2000 IEEE Annual Meeting Conference Proceedings - Rio Grande, Puerto Rico (13-16 Nov. 2000)] LEOS 2000. 2000 IEEE Annual Meeting Conference Proceedings. 13th Annual

10:30am-I 0:45am WP1

A Nuvcl Silicoii Klectro-Optic Device for Sensor Applications

P. LeMirili*, N. Akil, 11. W;illinga, P. 11. Woerlee, A. van dcii Hcrg, ;iid J. l lo l le tna i~ MESA' I<esearcli Institute, IJriivcrsity of Twerite, PO. LIox 2 I 750(1 AI7 Eiischcde, t l~c Nctlicrlands

'Tcl: -1 31-53-48') 2729, l;;ix: d 31-53-48') 1034, l h i i i l : I'.LcMiiih/l~el.otwciitc.iil

liitrocloction Though 11. Newman L I ] reported the ;rvalatiche breakdown liglil cniission in coiivcntional pii junction diode half a century ago, there iirc aliiiust iin successful applications of this plienoiiiciioti iii iitdiistiy. 111 this paper, we report tlic realization of ii ouvcl silicoti clcctro-optic dcvicc, explicitly the integriitioii OS diode aiitifiisc and photodetector, mil the tirst impurtaiit results. 'She diudc aiitifiisc (called antifusc to thc rest c i f this cuntributiuii) resembles a conventional diode but lias a s i i ~ a l l size of a few tens of ri;inomctcrs, wliich pcriiiits easy collcctiuii of all ctnittcd photons. We have reported the antifiise device inudclitig elsewhcrc [?I. 1)cvice Pabricatiun& Measiirciiierii The device fiibricatio~i ciiiployed ii six-inask CMOS cunipatiblc pruccss (Fig. 4). I h t , photodiodc detector windows were iiindc on wtypc silicoii wafer Iiy iiiqilaiitatiun of boron. The antifuse capaciturs, with two oppositely doped poly-Si electrodes aiid ii 6 iini hick LI'CVI) oxide, having dimensions of I0x 10 pi?, wcrc then deposited on tup of this detector window. Tlic ;~iitifiisc is ci.catcd by curitrolled oxide tmxikdown bctwccn tlic two electrodes. The antifiisc a id detector itre electrically sepmitcd Ily a 100 iiin and 700 iiiii thick thcrnial uxidc. 'i'lic pliotudiode window wiis coiiiparativcly lar,gc to collcct all tlic photons coming downwards. Upoti tlie oxide brcakdowii, prog'ainniing cnrrcnts up to 8 inA were applied to fi1rm high qiiiility antifiiscs, which cliaractcristic is shown on Fig. 5. This g q h indicates the o i iwt nflrrcakdowri voltage at approxiiixitcly 3.5 V and iin aiv:il;mchc ciiment o f I inA at 8 V. The series resistance arises froin the sprcadiiig rcsistaucc of the iiiitifiise, fruiri tlic thin film mti i rc of both clcctrodcs. ' I l ic detector is iiii abrupt p i junction opcratcd in the pliotodiodc rcgimc. Efficieiicy To deninnstrate the antitiise light emitting power, we depusitcil ii 0.85 pin thick positive photoresist (Oil. 907/12-deco11iposition energy 100 inJIcin2) oii top of the device. l 'his layer is spccitic;illy sciisitivc to photoiis with ciicrgy larger than 2.75 cV (450 nm). 'l'lic iiust-cxposcil photoresist :ircir w a s developed according io standard process ;oid p1intogr;iplicd in Fig. I . 'I'Iic time dcpciidciicc fckitnrc sixc is plotted in I'ig. 2. The ciiiittcd power, a s c;ilciilatcd, is r~unghly 0.25 W/cii?. 111 Fig. 3, ii incasured spectrum and its iibsurptiun curracted mic arc stiowii io mean that the liglit power iri tlic visible range is ui.dci.s of niagnitiidc larger tlian that i t i tlic neiu UV rcgiuri. The biggest ubstaclc that IiindcIs the dcvclupiiicnt o f iritcgr;itcd optoclectrunics o n silicuii is t l x intcgriition of an efficient light eiiiitter. The convciitional ;~val;irichc hreakdowii light ciiiissiuri qiiantuin etticiciicy is ;ibuni 7 ~ 1 0 . ~ 131 to 6 . 5 ~ IW' 141. l'hcsc low tigores coine nul urily f?unr the light cniitting iticchanisni itscltbiit also tlic nori-r;idiativc currciit loss to tlic large p1an;ir iireii of the juiictiuii, tlic nicasnicnicnt setup c;ipabilitics.. . Tlic nanosc;ilc size diudc-antifiisc light ciiiittc,. JZ on-cliip intcgr;itcd ilctcctui iii 0111' st i iictiirc, iis expected, would Irclp solving tlicsc ~iruhlctiis. In Viz. 6, ihc ~~l i~ i tucur~~ei i t s nf tlic detcctiir iirc sltowii ai difiic~ciit light miiiiirlg currents of t lx anti-fuse. 'l'ltc pliiitociimxd iiie~~eascs liriciirly with thc iticrciisc o t the aritifiisc ~ " S D bias current (Fig. 7), wliicli is in agiceinciit with rcicrcncc [SI. The precise ctticiericy uf this systciii rcqiiircd viiliics of qiiuiiuin dticiciicy of both the omitier ;ind the dctectoi.. A inore pr;icticel iiiiIic;itiori is t ~ i c uvcraII electrical cfficiciicy of this systoni, which is ruugIiiy I IOf. This v;i~iic is about oi ie or.ilcr of magnitude largc~ than the oiic reported i i i rcfcrcricc [hj, iiiid sirriult~iircoiisly ioiplics inucli liiglicr c ~ u a i i t i i ~ n cfficicncy tliiiii the viiliics iiicritioncd i i i [ 3 I, [d]. Ciiiicliisioii A new rnunulithic clcctso -uptiCiil dcvitic h a s I~ccii dcoionsti~alcd. l ' l i c dcvicc is bkiscd on :i lighl emitting iliodc mitifiisc i d pliut~~ilctcciur integrated 1111 ii single silicuii water by CMOS tcclitrul~igy. 'Ilic high efficiency of such a systciu indic:iics ii very iuipori;itit improvcnicnt Ibr the rc;iIi~iitiuii of silicou iiploclcctronic dcviccs. Refweiice [I]. I<. Newmiin, " Visilrlc liglii fiow a silicwi piijniictinii', I'liys. Rev., Vol. 100, nr. 2, pp. 700701,1905. 121. N. Akil et d. "Modcliiig u f light cinissioii spcct~'a iiic;isurctl oii silicoii rranuiictor;calc diutllrantifiiscs", to iippeiir on .. - .. j. ;if Appl, Phys., Aug 2000. [3]. A. G. Chyiiowuth et al., " Photuii cinissioii Iioii~ av;il;irichc hreiikdowii iii silicon", I'hy.Rci,., Vul. 102, iir. 2, pp. 169 376,1956. [4]. J. Kratncr et al., " Light crnillirig dcvices i t i industrid CMOS tcchiiulogy, Scri.W Actiui. A, Vol. 17-38, pp. 527-531, 1993. [SI. V. I:. Iloiitsina et al., '' Light ciiiissiuri froin silicuir iiiiiioiiictOnciilc diudoaiitifiises" I'roc. ottlic tiit. Coiif. ori Appl. of I'hototi. Tcch. (ICAPT), pp. 209213, Joly 1998 [61. K. Misiakos et til., "Moiiolitliic integmtiori of light emitting diudes, detcctors and uptical fibers oii ii silicun wafer: a CMOS cunipatiblc optical sciisu?, IE1)M l'ccliiiicitl Iligcst, 1998

0-7803-5947-X/00/$10.00@2000 IEEE 523

Page 2: [IEEE LEOS 2000. 2000 IEEE Annual Meeting Conference Proceedings - Rio Grande, Puerto Rico (13-16 Nov. 2000)] LEOS 2000. 2000 IEEE Annual Meeting Conference Proceedings. 13th Annual

Fig. 1. Developed spot in the phuturesist (t=lOniin, I,=lmA)

a C . U

.* e 0.1

- Y -

0.01

z

d 1 ob0 2 n b 0 30b0

Time [sec]

Pig. 2. Time dependence of the photoresist featurc size

-

Measured spectrum ____ - - 300 nm poly-si

Ahsorption correction

I-

I ------> I

. n. 1E-31 r . , . , . , , ,

8 7 6 5 4 Wavelength [O Ipm]

Fig. 3. Spectrsl photoresist sensitive wavelengths

0 Slhcon(sub) 2 Pdysdicon U Owde

a Silicon (P-type) 1 Polysilicon - Antilure

Pig. 4. Device schematic illustratiun

Vig. 5. Light eniitting diode antifuse current vultage charactcristic

4.0n

- d

-2.on

5 8 4 0.0 U L

2.0n E

I

Fig. 6. Photocurrents passing photodiodes

503.0~ 1.0n1 1.5m 2.0m 2.5m

Antiuse currents [A]

Pig. 7. Linear dependence between photodetector currents and antifuse lighi emitting currents

5 24