39
Securing IoT-based Cyber-Physical Human Systems against Collaborative Attacks 1 Sathish A.P Kumar, Coastal Carolina University, Conway, SC, USA Bharat Bhargava and Ganapathy Mani Purdue University, West Lafayette, IN, USA Raimundo Macêdo Federal University of Bahia, Ondina, Salvador, Bahia, Brazil

IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

SecuringIoT-basedCyber-PhysicalHumanSystemsagainstCollaborativeAttacks

1

SathishA.PKumar,CoastalCarolinaUniversity,Conway,SC,USABharatBhargavaandGanapathyManiPurdueUniversity,WestLafayette,IN,USARaimundoMacêdoFederalUniversityofBahia,Ondina,Salvador,Bahia,Brazil

Page 2: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

IntroductionandBackground

• CPHSisIntegrationofCyber,Physical,andHumanElements.

• InternetofThingsisusedasamethodologytodeployCPHSystems.

• Duetotheirunpredictability,humanbehaviorisdifficulttomodel.

• Dynamichumaninvolvementinthecontextofcollaborativeattacksneedsfurtherresearch– Multipleadversariescollude,interleave,andattack

• ResultsinsophisticatedCPSattacks• Systembehavesinbyzantinemanner

• Securingsuchsystemistougher 2

Page 3: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

MotivationandRationale

• CPHSystemsinICU– Riskoflifethreateningsituations

• Stressfulandunfriendlyenvironments– Possibilitiesofattacksarehigh

– Effectiveandimmediateinterventionisneededtoreducetherisk

• Intrusiontolerance,prevention,anddetectionshouldworkincoordinatedandintegratedfashion

• ResearchisneededtostudyhumaninteractionsinvariousrolesinCPHS– Requirespropermodelingandtools

3

Page 4: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

SecurityFrameworkforIoTBasedCPHSEnvironment

4

IoT Based CPHS environmentf(x1(t),x2(t),…xn(t), v1(t), v2(t)…vn(t), h1(t), h2(t),…hn(t),m1(t), m2(t),…mn(t), k(t), u(t))

Threat Modeling in IoT Based CPHS environment

Co-ordinated Intrusion Detection of Malicious Collaborating Entities in CPHS TI(t)

Adaptive Coordinated Intrusion Response

Co-ordinated Intrusion Prevention

Autonomic Intrusion Tolerance Using Byzantine Fault Tolerant Replication

A B

CDE

Page 5: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

SecurityFrameworkforIoT BasedCPHSEnvironment(Cont)

• Theproposedframeworkusesafeedbackcontrolscheme.

• Analogoustoahumanbiologicalmodel- whereattackisdetectedbymeasuringthebodyparameters.

• VariousparametersofCPHScomponentsaremonitoredtodetectanattack.

• Ourphilosophyisthatbyidentifyingtheparametersandmonitoringthechangerapidlyinagiventimeframe,theappropriatethreatcanbeidentifiedandacorrectiveactioncanbetaken.5

Page 6: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

IoT-basedCPHSenvironment• NotationofIoTbasedCPHSenvironment

– Attacksensitiveparameters(xn(t))• Examples- PacketDrop,QueueLength,EnergyConsumption

– Nonattacksensitiveparameters(vn(t))• Examples– PatientDemographicDetails,VehicleLocation

– Attackparameters(k(t))• Examples- DoS,CommandInjection,ARPSpoofing

– Controlparameter(u(t))• Examples– IDM,Faulttolerance

– Humanbehaviourparameters(h(t))• Examples–LoginPatterns,PasswordChanges,Accessdetails

6

Page 7: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

ThreatModelinginCPHS- ThreatIndex(TI)

– MetricusedtodetectifaCPHSnodeisunderattackornot.

– TIquantifiesthethreatofnodeinCPHS.

– Computedusingfuzzylogicbasedonsignificantparameters.

Page 8: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

TIEvaluationExample

0 163119 208

NS USVS

Number of packets drop, PD

µ(x)1

0

908656 1157

NS US VS

Queue length, QL

µ(x)1

0 1.661.33 1.99

NS

US

VS

Energy Consumption, EC (Joules)

µ(x)1

• NS is normal state, US is uncertain state and VS is vulnerable state• Parameters: x1 is packet drop, x2 is queue length and x3 is energy consumption• μj (xi) is the grade of membership of parameter xi for fuzzy rule j.

Page 9: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

• Fortheparametersidentifiedtodetectthreat– Normalstate,UncertainstateandVulnerablestatethresholdsareidentified

• Xaxisindicatesthevaluesoftheparameters• Yaxisindicatesthefuzzymembershipfunctions– Foreg.,ifthepacketdropislessthan119membershipfunctionofNS

is1andtheMFforUSandVSare0– IfthePDisgreaterthan208MFofVSis1andtheMFforUSandNS

are0– IfthePDisexactly163MFofUSis1andtheMFforVSandNSare0

9

TIEvaluationExample(Cont.)

Page 10: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

TIEvaluationExample(Cont.)• k=numberofstates=3[NS,US,VS]• iisnumberofparameters=3[PD,QL,EC]• misnoofrules=ki =33=27;• Ruleoutput[yj]cantakeanyvaluefrom1to10• Foreachrulej,therulestrength[wj]andruleoutput[yj]areidentified– RulestrengthistheminimumMFvalue[μj (xi)] amongallparametersifor rule j

– Foreg.,forrule7ifμ7 (x1) is 1, μ7 (x2) is 0.5 and μ7 (x3) is 0.25 • Min (μ7 (xi)) is 0.25

– Assuming rule output for rule 7 [[y7] is 7, – then w7y7is 7*0.25 =1.75

10

Page 11: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

TIEvaluationExample(Cont.)

• Forallmrules– rulestrength[wj]andruleoutput[yj]arecalculated

• TIisthencalculatedas

• ForexampleifonlyonerulehasWj tobe0.25,whoseoutputyj is7andtherestofWjare0

–TIwillbe1.75/0.25=711

=

=

m

jj

m

jjj

w

yw

1

1TI =

Page 12: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

DetectingCollaborativeAttacks

• Detectionofmultiplehumanentitiesusingtwokeymechanisms,– DataRoutingInformation(DRI)Table– CrossChecking

• DRItablewillhaveinformationaboutdeviceidentities,networkconnectioninformation,andlogofinteractionsofentities.

• CrosscheckingisnothingbutamechanismwhereinsideentitiescheckeachotherandDRItabletoidentifymaliciousentities. 12

Page 13: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

DetectingCollaborativeAttacks

• AnomalydetectionbymeansofdataminingfromuncategorizedsensordataandorderedDRItabledata

• Clustering-layoutapproachtoCPHSystemswhereaCentralMonitor(CM)canvalidatenewentitiesinthesystemandcrosscheckinregulartimeintervals.– CPHsystementitieswillbegroupedinclusters– EachclusterwithCMandbackupCMs– Beaconthecompromisedentities’identitiestootherentitiesinCPHSystems

13

Page 14: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

DetectingCollaborativeAttacks

• DeceptiveSecurityLoopholes:inthisapproach,CPHSystemwillappeartobevulnerabletolureattackers.

• Eachattempt’sinformationandtypeofattackwillbeclassifiedandstored.– Createaknowledgerepository

• Underlyingsystemanditsvulnerabilities• Defendableattacks• Novelattacks• Attacksources

– Collaborativeattackerscanbeidentifiedwithcrosscheckingtheknowledgerepositories.

14

Page 15: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

WhyIntrusionToleranceisrequiredinCPHSystems?

• DetectionisNOTalwayspossibleortimelyfeasible.– NovelAttacks– Securityloopholes– Insiders’collaborativeattacks

• Recoveringfromintrusiondetectionistimecritical.– Criticalprocessmaynotrecover– Affectdistributedprocessing– Redundancyfromreplicas– Self-healingiscostly

15

Page 16: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

CoordinatedIntrusionPreventionUsingCryptographicPrimitives

• DesignHashfunctionbaseddefensemechanism– GenerateCPHSentitybehavioralproofs– Containinformationfromdatatrafficandforwardingpaths

• Measureandevaluateimpactonparameters– Throughputofapplication– Resourcesdepletion– Detectionandmitigationcapability– Extentofsystemunavailability

16

Page 17: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

Co-ordinatedIntrusionDetectionofMaliciousCollaboratingEntitiesinCPHS

• ThreatIndexTIforIoTnodeiscalculated– Usingattacksensitiveparametersandmachinelearning

• IndicatesvulnerabilityoftheCPHS• TIcanbecomputedoverperiodoftimeandcomparedwithbenchmark

• Datacollectedfromsimulationenvironmentwithandwithoutattacksisusedfortraining

• IfcomputedTI(t)isgreaterthanvulnerablestatethresholdreferenceTI’,thenodeisidentifiedtobeunderthreat 17

Page 18: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

Co-ordinatedIntrusionDetectionofMaliciousCollaboratingEntitiesinCPHS- Example

• N1isnodeunderattack• Thresholdsofparameters[PD,QL,EC]areidentifiedtoconstructfuzzyMF

• Basedontheparameters[PD,QL,EC]observedatN1– Fuzzyrulesaregenerated– TIiscalculated– IfvalueofTIis7,itindicatesnodeisunderthreat

• TI<4isnothreat,TI>6isthreat,TIbetween4and6isvulnerable

18

Page 19: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

AdaptiveCoordinatedIntrusionResponse

• Developandapplyautonomic/self-adaptivetechniquestoimplementadaptivecoordinatedresponseinCPHS

• Ifanodeisunderthreat,neighboringnodesaresubjectedtoresponseandprotectionalgorithm– ToidentifyintruderandisolateintruderfromCPHS

19

Page 20: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

20

AdaptiveCoordinatedIntrusionResponseExample

• Fortheparametersobservedforneighboringnodeforanodeunderattack– IftheIftheparameterswithnormalvaluesaregreaterthanabnormalanduncertainvalues

• Thenode isflaggednormalandaccordinglycertainactionplanistaken– Elseiftheparameterswithabnormalvaluesaregreaterthannormalanduncertainvalues

• Thenode isflaggedmaliciousandaccordinglycertainactionplanistaken

– Elseiftheparameterswithuncertainvaluesaregreaterthannormalandabnormalvalues• Thenode isflaggeduncertainandaccordinglycertainactionplanistaken

Page 21: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

AutonomicIntrusionToleranceUsingByzantineFault-tolerantReplication

21

Page 22: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

AutonomicIntrusionToleranceUsingByzantineFault-tolerantReplication(cont.)

• n-t replicastoreplaceuptot compromisedsystems

l Intelligent adversary requires combination of replica diversity, voting and cryptographic schemes

l Dynamic and complex nature of CPHS requires self-manageable behaviour

l Feedback loop for sensing and adapting to current conditions 22

Page 23: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

OurOngoingWorkonByzantineReplication

• BFT protocol that implements a series ofperformance optimization mechanisms: requestbatching, replica rejuvenation, etc.

l Needrightconfigurationofthesystemtoachieve:Sizeandtimeoutforbatching,checkpointperiod,rejuvenationperiod,primarybackupfailuredetectiontimeout,etc.

23

Page 24: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

OurOngoingWorkonByzantineReplication(cont.)

• Developedaself-manageableversionofBFTtooptimizetherelationthroughput/deliverytime.

• Itisonlineadaptivebecausetheobjective“optimizingdelay/throughput”isnotmodifiedatruntime.

24

Controller PBFT

BFTparameters

clientactivityprotocol/systemperformance

Self-manageablePBFT

Page 25: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

AutonomicBFT:Onestepahead

• BFTAdaptationpoliciesshouldbedynamicallydefinedbyCoordinatedIntrusionResponse.

• DistinctactionplanswilltriggerdistinctadaptationpoliciesoroperationmodesforBFT.Forexample,– ActionPlan3mayrequireBFTtooptimizethroughputtohandleapossibleDoSattack,evenontheexpenseofdelayingservicesresponses.

– OrAction4mayrequireBFTtoimmediatelycheck-pointingstatetodealwithapossibleshutdown.

25

Page 26: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

ThreatModelingWithHumanEntities

• Nearly95%ofthealltheSecurityincidentsarecausedbyhumanerrors[Report:2014IBM’sCyberSecurityIntelligenceIndex].

• HumanentitiesadduncertaintytoCPHSystems.– Intentional(malicious)errors– Maliciouscollaborativeattacks– Unintentional(commonmistakes)errors– Identitycompromise– Privacybreach

26

Page 27: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

ThreatModelingWithHumanEntities

• Nearly95%ofthealltheSecurityincidentsarecausedbyhumanerrors[Report:2014IBM’sCyberSecurityIntelligenceIndex].

• HumanentitiesadduncertaintytoCPHSystems.– Intentional(malicious)errors– Maliciouscollaborativeattacks– Unintentional(commonmistakes)errors– Identitycompromise– Privacybreach

27

Page 28: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

ModelingAttacksUsingCausalRelationships

• Humanerrors(intentionalorintentional)areconsideredasevents(en).– Oneormorecanoccuratthesametime– Theysequentiallyfollowotherevent(s)

• e1à e2à e3e4• Eventscanbe(a)individualattacksor(b)collaborativeattacks

• Thecausalmodel:astateofanindividualattackcausedbyasequenceofintentionalhumanerrorsrepresentsfiniteperiodofindividualattackexecution. 28

Page 29: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

Typeofcollaboration

• Weidentifytwodistincteventscalled“positive”and“negative”collaboration.

• Positivehappenswhentwoindependentattackscollaboratetoincreasethenumberandeffectsoftheresultantdamageevents.

• Oneattackinterferingwithanotherattackandnullifyingtheeffectknownasnegativecollaboration.

29

Page 30: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

ModelingAttacksUsingCausalRelationships(cont.)

• Weemploycausalgraphtomaptheattackpatternsthroughhumanerrors.

• AcausalgraphG=<V,E>forasetofcausalrulesofanattackisalabeleddigraphwith– verticesV={e|events}– edgesE={<p,q>|∃

• acausalrelationshipc• localoperationL• predicateBsuchthat<p,c,q,L,B>isacausalmodel}.

30

Page 31: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

AdvantagesofCausalModel

• ByidentifyingallattackeventswecanproduceaCausalAttackGraph(CAG):itcanmodelattacksthataresequentialaswellasconcurrent.

• Thepre-conditionsandpost-conditionsofattacksthatsatisfychangedynamically,thecausalmodelcancapturethechangethatthestate-of-artattackgraphreductiontechniquescannot.

• Thecausalmodelcanhelpusinmodellinglargescalenetworks. 31

Page 32: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

AdvantagesofCausalModel(cont.)

• Thecausalmodelcandescribetimingofattacks.– Attacksmayneedtobeoperatingwithinaspecifictimeintervalandtraditionalattackgraphanalysisdidnotconsiderit.

• Thecasualmodelcanrepresentunsuccessfulattacks.– Someattemptedattacksareneversuccessfulandcannotbemodeledbytraditionalattackgraphs

32

Page 33: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

Contributions

• HolisticFrameworktomitigatesecurityissuesinCPHSenvironment

• GuidelinesfordevelopingadaptivedefensemechanismsformaliciouscollaborativeattacksinCPHS.

• Leadstoimprovedunderstandinganddealingwithcollaborativeattacksandcoordinateddefensethrough

– Faultyhumancomponent– Byzantinefaulttolerance,– Identitymanagement(IDM)

• Autonomic,self-adaptivetechniquestoprevent,detectandcounterthoseCPHSattacks.

33

Page 34: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

Conclusion

• DiscussedsecurityissuesinIoTbasedCPS• HumanparticipationinCPHSdeepensthosesecurityissues

• ProposedholisticsecurityframeworkforIoTbasedCPHS

• ThreatmodelinginvolvinghumanelementsinCPHS

• ProposedresearchquestionsanddirectionsfortheCPHSsecurity

34

Page 35: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

Questions

35

Page 36: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

Appendix

36

Page 37: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

TIEvaluationExample(Contd.)

TI =

FOR PD=174, QL =843 and EC = 1.8Joules

m is no of rules = kn = 33 = 27;

Here, j ε {1, 2, …m }, n is the number of input metrics and k the number of membership functions for each metric

= 11.5/2.5 = 4.6

=

=

m

jj

m

jjj

w

yw

1

1

TI =

Here m is the number of fuzzy rules, j ε {1, 2, …m }, and m = kn where n is the number of input metrics and k the number of fuzzy membership functions.

Here, wj = min(μj (xi)) where μj (xi) indicate MF of significant parameters of that rule.

weight yj à NS, US and VS TI threshold values denoting the particular rule output.

=

=

m

jj

m

jjj

w

yw

1

1

Page 38: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

TIEvaluationExample(Contd.) FOR PD=174, QL =843 and EC = 1.8Joules

Rule Number (j) μj (PD)μj (QL) μj(EC) Rule Strength, wj , min(μj(PD)μj(QL)

μj(EC))

Output, yj wjyj

10 0.25 0

01 0

20 0.25 0.4

01 0

30 0.25 0.6

01 0

40 0.75 0

01 0

50 0.75 0.4

04 0

60 0.75 0.6

04 0

70 0 0

01 0

80 0 0.4

04 0

90 0 0.6

07 0

100.75 0.25 0

01 0

110.75 0.25 0.4

0.254 1

120.75 0.25 0.6

0.254 1

130.75 0.75 0

04 0

140.75 0.75 0.4

0.44 1.6

150.75 0.75 0.6

0.64 2.4

160.75 0 0

04 0

170.75 0 0.4

04 0

180.75 0 0.6

07 0

190.25 0.25 0

01 0

200.25 0.25 0.4

0.254 1

21 0.25 0.25 0.6 0.25 7 1.7522

0.25 0.75 00

4 023

0.25 0.75 0.40.25

4 124 0.25 0.75 0.6 0.25 7 1.7525

0.25 0 00

7 026

0.25 0 0.40

7 027

0.25 0 0.60

7 0

m is no of rules = kn = 33 = 27;

Here, j ε {1, 2, …m }, n is the number of input metrics and k the number of membership functions for each metric

= 11.5/2.5 = 4.6TI =

=

=

m

jj

m

jjj

w

yw

1

1

Page 39: IEEE ICIOT Securing IoT-based Cyber-Physical Human Systems ... · • Anomaly detection by means of data mining from uncategorized sensor data and ordered DRI table data • Clustering-layout

39

N1

M0,1

M2,1

M3,1

M4,1

M5,1

Parameter UCLvs UCLus M01to N1 M21toN1 M31to N1 M41to N1 M51toN1 Average

(PD) 208.63 119.1 155/ US 2000/VS 20/NS 20/NS 20/NS 443

(QL) 1157.72 656.0 120/ NS 12000/VS

120/NS 120/NS 120/ NS 2496

(EC) 1.9941 1.34 1.3 /NS 3.92 /VS 2.33 /VS 2.36 /VS 2.61/ VS 2.51

Rule Number (j) μj (PD) μj (QL) μj(EC) Rule Strength, wj , min(μj(PD)μj(QL) μj(EC))

Output, yj wjyj10 0 0 1 020 0 1

01 03

0 0 00

4 040 0 1

04 05

0 1 00

1 060 1 0

04 07

0 1 10

7 081 0 0

01 09

1 0 00

4 0101 0 1

07 0

11 1 1 000 7 012

1 1 111 7 7

TI = = 7/1 = 7∑

=

=

m

jj

m

jjj

w

yw

1

1

Co-ordinatedIntrusionDetectionofMaliciousCollaboratingEntitiesinCPHS- Example