4
THE TRAVELLING WAVE TRANSDUCER D. J. Gunton, M. F. Lewis and E. G. S. Paige Royal Radar Establishment, Malvern, Worcs., England. ABSTRACT The finite velocity of an electromagnetic wave in an interdigital structure leads to some interesting new effects in SAW devices. We describe these effects and how they may be enhanced by deliberately slowing the electromagnetic wave to produce the Travelling Wave Transducer, with its possible applications as a filter, as a discriminator and as an oscillator. Introduction The large ratio between the velocity of an e l e c t r o m a g n e t i c wave (EMW) a n d a surface acoustic wave (SAW) makes it possible to design most SAW transducers under the assumption that the EMW velocity is infinite. However, if the electro- magnetic delay down a long transducer approaches one period (1 /f ) the f i n i t e EMW velocity gives rise to complicaiions"). describe how we exploit these effects, deliberately reducing the speed with which the transducer is excited, to form what we refer to as the Travelling Wave Transducer (TWT). Features of this transducer include i) unidir- ectionality; ii) high conversion efficiency; iii) avoidance of mechanically induced multiple reflections and iv) tunability after manufacture. The TWT has a narrow fractional bandwidth, and its possible applications as a filter, as a discriminator and as an oscillator will be discussed. In this paper we Principles of Operation If we convert the central transducer to a normal one (ie replace the coaxial cable by a busbar), slowing of the EMW will still occur to a reduced extent due to the permittivity of the substrate and the high capacity per unit length of the structure. '?le can display the effect discussed above on thew-k diagram; the relevant branches are shown in Fi[:. 2. This illustrates the forward and reverse SAW and the forward EMW propagating and coupling through the periodic line (hence the f 27r/Ae offset of k from zero). Perturbing effects due to coupling have been omitted from the diagram. Clearly, the phase matched condition ocurrs at two frequencies, f and f assuming infinite EMU velocity. P split about fo, the synchronous frequency aP' The frequency splittin;: is given by where t = ia/Va and t = Le/Ve. L and i are t h e SAW and ZMW path lengths, respectively; V_ a and Ve a r e t h e SAW and EMU phase velocities. In Fig. 1 we show a transducer arrangement i n which a central transducer may be electrically excited from one end, the exciting wave travell- ing along a coaxial cable, say, and exciting each finger pair in sequence. ;io reflected electro- magnetic wave appears if the combined cable- transducer line is terminated in its character- istic impedance. Clearly, peak generation occurs at synchronis:.i which now becornes a phase matchini. condition between EMW and SAW. decause a surface wave can be launched either parallel or anti-parallel to the EMW propagation direction there are two i'eak frequencies, f and f corresponding to the two lamch directions. P aP PORT 4 b k Fig, 2 Travelling Wave Transducer responses, f and f P aP Regardins the TWT as a p a i r o f c o u s l e d (EMW and SAW; transmission lines, the possibility of 100% energy conversion and unidirectionality becomes evident. ,'o achieve this it is necessary to use an exciting frequency which occurs at a +rA+ 4 rA+ + rA-t -PA - Fig. 1 Schematic diagram of the Travelling :lave Transducer. null in the (sin X/X) response of the unwanted SAW and, of course, to have the correct number of couplinc elements. an estimate based on coupled "1975 Ultrasonics Symposium Proceedings, IEEE Cat # 75 CHO 994-SU" 422

[IEEE 1975 Ultrasonics Symposium - (1975.09.22-1975.09.24)] 1975 Ultrasonics Symposium - The Travelling Wave Transducer

  • Upload
    egs

  • View
    215

  • Download
    1

Embed Size (px)

Citation preview

Page 1: [IEEE 1975 Ultrasonics Symposium -  (1975.09.22-1975.09.24)] 1975 Ultrasonics Symposium - The Travelling Wave Transducer

THE TRAVELLING WAVE TRANSDUCER

D. J. Gunton, M. F. L e w i s and E. G. S. Paige

Royal R a d a r Establishment, Malvern, Worcs., England.

ABSTRACT The f i n i t e v e l o c i t y o f a n e l e c t r o m a g n e t i c wave i n a n i n t e r d i g i t a l s t r u c t u r e l e a d s t o some i n t e r e s t i n g new e f f e c t s i n SAW devices . We d e s c r i b e t h e s e e f f e c t s and how t h e y may be enhanced by d e l i b e r a t e l y s lowing t h e e l e c t r o m a g n e t i c wave t o produce t h e T r a v e l l i n g Wave Transducer , w i t h its p o s s i b l e a p p l i c a t i o n s as a f i l t e r , as a d i s c r i m i n a t o r and as a n o s c i l l a t o r .

I n t r o d u c t i o n

The l a r g e r a t i o between t h e v e l o c i t y o f an e l e c t r o m a g n e t i c wave (EMW) and a s u r f a c e a c o u s t i c wave (SAW) makes it p o s s i b l e t o d e s i g n most SAW t r a n s d u c e r s under t h e assumption t h a t t h e EMW v e l o c i t y is i n f i n i t e . However, i f t h e e l e c t r o - magnet ic d e l a y down a l o n g t r a n s d u c e r approaches one p e r i o d (1 / f ) t h e f i n i t e EMW v e l o c i t y g i v e s

r i s e t o compl ica i ions") . d e s c r i b e how we e x p l o i t t h e s e e f f e c t s , d e l i b e r a t e l y r e d u c i n g t h e speed w i t h which t h e t r a n s d u c e r is e x c i t e d , t o form what we r e f e r t o as t h e T r a v e l l i n g Wave Transducer (TWT). F e a t u r e s o f t h i s t r a n s d u c e r i n c l u d e i ) u n i d i r - e c t i o n a l i t y ; i i ) h i g h convers ion e f f i c i e n c y ; i i i ) avoidance o f mechanica l ly induced m u l t i p l e r e f l e c t i o n s and i v ) t u n a b i l i t y a f t e r manufacture . The TWT h a s a narrow f r a c t i o n a l bandwidth, and its p o s s i b l e a p p l i c a t i o n s as a f i l t e r , as a d i s c r i m i n a t o r and as a n o s c i l l a t o r w i l l be d i s c u s s e d .

I n t h i s paper we

P r i n c i p l e s o f O p e r a t i o n

I f we conver t t h e c e n t r a l t r a n s d u c e r t o a normal one ( i e r e p l a c e t h e c o a x i a l c a b l e by a b u s b a r ) , s lowing o f t h e EMW w i l l s t i l l occur t o a reduced e x t e n t due t o t h e p e r m i t t i v i t y o f t h e s u b s t r a t e and t h e h i g h c a p a c i t y p e r u n i t l e n g t h of t h e s t r u c t u r e . '?le can d i s p l a y t h e e f f e c t d i s c u s s e d above on t h e w - k diagram; t h e r e l e v a n t branches a r e shown i n Fi[:. 2 . T h i s i l l u s t r a t e s t h e forward and r e v e r s e SAW and t h e forward EMW p r o p a g a t i n g and coupl ing through t h e p e r i o d i c l i n e (hence t h e f 27r/Ae o f f s e t o f k from z e r o ) . P e r t u r b i n g e f f e c t s due t o coupl ing have been o m i t t e d from t h e diagram. C l e a r l y , t h e phase matched c o n d i t i o n o c u r r s a t two f r e q u e n c i e s , f

and f

assuming i n f i n i t e EMU v e l o c i t y .

P s p l i t about f o , t h e synchronous f requency

aP'

The f requency s p l i t t i n ; : i s g iven by

where t = i a / V a and t = L e / V e . L and i a r e

t h e SAW and ZMW p a t h l e n g t h s , r e s p e c t i v e l y ; V _ a and V e a r e t h e SAW and EMU phase v e l o c i t i e s . I n Fig. 1 we show a t r a n s d u c e r arrangement

i n which a c e n t r a l t r a n s d u c e r may be e l e c t r i c a l l y e x c i t e d from one end, t h e e x c i t i n g wave t r a v e l l - i n g a l o n g a c o a x i a l c a b l e , s a y , and e x c i t i n g each f i n g e r p a i r i n sequence. ;io r e f l e c t e d e l e c t r o - magnet ic wave a p p e a r s i f t h e combined c a b l e - t r a n s d u c e r l i n e i s t e r m i n a t e d i n i t s c h a r a c t e r - i s t i c impedance. C l e a r l y , peak g e n e r a t i o n o c c u r s a t synchronis:.i which now becornes a phase matchini. c o n d i t i o n between EMW and SAW. decause a s u r f a c e wave can be launched e i t h e r p a r a l l e l o r a n t i - p a r a l l e l t o t h e EMW p r o p a g a t i o n d i r e c t i o n t h e r e a r e two i'eak f r e q u e n c i e s , f and f

corresponding t o t h e two l a m c h d i r e c t i o n s . P aP

PORT 4

b k

F i g , 2 T r a v e l l i n g Wave Transducer r e s p o n s e s , f and f

P aP

Regard ins t h e TWT as a p a i r of cous led (EMW and SAW; t r a n s m i s s i o n l i n e s , t h e p o s s i b i l i t y of 100% energy convers ion and u n i d i r e c t i o n a l i t y becomes e v i d e n t . ,'o achieve t h i s it is n e c e s s a r y to use an e x c i t i n g f requency which o c c u r s a t a

+ r A + 4 r A + + r A - t

-PA - Fig. 1 Schematic diagram of the Travel l ing :lave

Transducer.

n u l l i n t h e ( s i n X / X ) response of t h e unwanted SAW and, of c o u r s e , t o have t h e c o r r e c t number of c o u p l i n c elements . an estimate based on coupled

"1975 Ultrasonics Symposium Proceedings, IEEE Cat # 75 CHO 994-SU" 422

Page 2: [IEEE 1975 Ultrasonics Symposium -  (1975.09.22-1975.09.24)] 1975 Ultrasonics Symposium - The Travelling Wave Transducer

.>unton, Lewis and Pa ige

mode t h e o r y ( 2 ) Xives t h e number of p-oups o f f i n s e r s , N I n e c e s s a r y t o g i v e 10% convers ion as n / ( 2 G ) , w h e r e r) is t h e enerzy convers ion e f f i c i e n c y o f t h e ;;roup. (The :;roup may c o n s i s t o f a f i n g e r p a i r , or appear as a number of f i n g e r p a i r s which may o r may n o t be tuned.)

One of t h e well-known problems o f l o n g , p e r i o d i c t r a n s d u c e r s t r u c t u r e s is m u l t i p l e r e f l - e c t i o n s o f t h e SAW between f i n g e r s which d i s t o r t s t h e p a s s band r e s p o n s e at t h e c e n t r e f requency. The TWT, by movine t h e c e n t r e f requency from f o

t o f or f d i m i n i s h e s t h e problem. P aP'

R e a l i s a t i o n o f t h e TWT and i ts performance

Because t h e v e l o c i t y o f t h e EMW is not i n f i n i t e , t h e TWT argument a p p l i e s t o any t r a n s - ducer . ducer s t r u c t u r e is about I O , so t h a t V = I O Va

and, from e q u a t i o n ( I ) , t h e f r a c t i o n a l s p l i t t i n g -4 is approximate ly 2.10 . Thus a t r a n s d u c e r of

about 5OGO wavelengths would be r e q u i r e d t o r e s o l v e t h e s p l i t t i n g . T h i s is abnormally l a r g e f o r a t r a n s d u c e r and is presumably why t h e s p l i t t i n g e f f e c t h a s gone unnoted. ( I t is not n e c e s s a r y t o have a p a i r o f o u t p u t t r :csducers as shown i f P i g . 1 ; t h e s p l i t t i n g w i l l appear i n an untermina ted t r a n s d u c e r because t h e E X W t r a v e l s i n both d i r e c t i o n s owing t o r e f l e c t i o n . )

The s lowing o f an EMW on a t y p i c a l t r a n s -

I I I I I

91 93 95 MHz

To enhance t h e s p l i t t i n g t e 1' ta may b e

i n c r e a s e d by v a r i o u s means: ( i j c o a x i a l c a b l e ; ( i i ) m i c r o s t r i p l i n e ; ( i i i i use o f a h i e h d i - e l e c t r i c s u b s t r a t e and ( i v j s u i t a b l e d e s i s n o f t h e t r a n s d u c e r u s i n g c o n v e n t i o n a l s u b s t r a t e s . The f i r s t two achieve t h e d e l a y by p h y s i c a l l y i n c r - e a s i n g t h e EMW p a t h l e n g t h . J?he t h i r d one i n v o l v e s making t h e t r a n s d u c e r s t r u c t u r e i t s e l f i n t o a slow-wave t r a n s m i s s i o n l i n e . 'The l a s t d e s c r i b e s a d e v i c e i n which t h e d e l a y l i n e is inc luded i n t h e t r a n s d u c e r d e s i g n and is i n t e g r a l w i t h i t , r e q u i r i n g one s u b s t r a t e and one e t c h i n g p r o c e s s t o produce t h e complete device . PIost o f t h e r e s u l t s p r e s e n t e d h e r e employed ( i ) f o r con- venience but similar r e s u l t s have been observed u s i n g (ii) and ( i v ) . A11 t h e observed Prequency s p l i t t i n g s a r e i n accordance w i t h e q u a t i o n (I).

The performance of a p r a c t i c a l d e v i c e is i l l u s t r a t e d i n F ig . 3 ( a ) - (d) . The d e v i c e c o n s i s t e d of a 95 MHz c e n t r e f requency d e l a y l i n e w i t h a wi3e-band t r a n s d u c e r o f l e n g t h 601 and a s i n g l e narrow-band t r a n s d u c e r w i t h 20 g o u p s of 3 f i n g e r p a i r s c e n t r e d 20% a p a r t . Its r e s p o n s e when e x c i t e d from a s o l i d busbar is shown i u Fig. 3 ( a ) ; t h e peak o c c u r s a t f . F i g s . j ( b ) and 3 ( c )

show t h e r e s p o n s e s a t f and f o b t a i n e d when

t h e r e w a s i n t r o d u c e d a d e l a y between s u c c e s s i v e groups o f f i n g e r p a i r s of approximate ly 0.6 nS by means o f c o a x i a l cab le . The combined r e s p o n s e , w i t h peaks a t f and f s i m u l t a n e o u s l y , is i n

F ig . 3 ( d ) and was produced by o p e n - c i r c u i t i n g t h e

P aP

P aP

I I I I I

Fig. 3 The d e t e c t e d frequency r e s p o n s e s of a TWT s t r u c t u r e . a ) Busbar e x c i t a t i o n , fo

b ) Forward SAW o u t p u t , f

c ) Reverse SAW o u t p u t , f

d) Combined o u t p u t , f and f

P

aP

P aP

423

Page 3: [IEEE 1975 Ultrasonics Symposium -  (1975.09.22-1975.09.24)] 1975 Ultrasonics Symposium - The Travelling Wave Transducer

Gunton, Lewis and Pa ige

d e l a y l i n e a t one end. The s p l i t t i n g i s about 0.5 HIlz, or a f r a c t i o n a l s e p a r a t i o n from t h e o r i g i n a l c e n t r e f requency o f about f I p a r t i n 400. C a r e f u l examinat ion o f t h e main peaks r e v e a l s t h a t t h e d i s t o r t i o n p r e s e n t i n t h e c o n v e n t i o n a l t r a n s - ducer response and a t t r i b u t e d t o m u l t i p l e r e f l e c t - i o n s is e l i m i n a t e d i n t h e d i s p l a c e d responses .

An i l l u s t r a t i o n of t h e post-manufacture t u n i n g c a p a b i l i t y is given i n Fig. 4 ( a ) i n which t h e r e v e r s e SAW r e s p o n s e of a d e v i c e des igned t o have a va lue o f t h e c e n t r e f requency f o of 60.7 MHz h a s been s h i f t e d as shown by i n t r o d u c t i o n o f c o a x i a l c a b l e d e l a y l i n e s o f t h e l e n g t h s shown on the f i g u r e .

A p p l i c a t i o n s o f t h e TWT

Without e x c e s s i v e d e l a y o f t h e (which i n t h e l i m i t matches t h e a c o u s t i c d e l a y ? Y ) t h e TWT c h a r a c t e r i s t i c s d e s c r i b e d h e r e a r e o n l y a p p a r e n t i n narrow bandwidth t r a n s d u c e r s . Thus a t r a n s - ducer w i t h narrow nd f requency o p e r a t i o n , eg f o r MFSK requirements'", may be r e n d e r e d e f f i c i e n t and may be p r e c i s e l y tuned through t h e f i n e c o n t r o l o f f e r e d by a s low wave c i r c u i t . F u r t h e r , t h e number o f f i l t e r s r e q u i r e d is reduced by a f a c t o r o f two by u s i n g both f and f

aP' P

a t i o n o f a narrow band f requency d i s c r i m i n a t o r . A r e d u c t i o n i n t h e number o f f i n g e r p a i r s o u p s from 20 t o 8 i n t h e d e v i c e d i s c u s s e d i n r e l a t i o n t o Fig. 3 broadened t h e bandwidth o f each response s u f f i c i e n t l y t o g i v e a s u i t a b l e o v e r l a p and t h e o u t p u t from a d i f f e r e n t i a l a m p l i f i e r when t h e

Another a p p l i c a t i o n of t h e TWT is t h e form-

Fig. 4 a )

b )

17cm

36 cm

63cm

88crn

$0 61 MHz

93 95 MHz

Demonstrat ion o f t h e t u n i n g c a p a b i l i t y o f t h e TWT. The l e n g t h o f c o a x i a l c a b l e between a d j a c e n t groups o f f i n g e r p a i r s t o produce t h e EMW d e l a y a p p r o p r i a t e t o each curve is shown on t h e f i g u r e .

The r e s p o n s e o f a TWT based f requency d i s c r i m i n a t o r .

d e t e c t e d TWT r e s p o n s e s were used as i n p u t s is shown i n F ig . 4 ( b ) : t h e device oGera tes ass& f requency d i s c r i m i n a t o r over t h e range 94,75 t b ) 95.25 MHz.

We have a l s o used t h e d i s c r i m i n a t o r p r i n c i p l e t o demonstrate t h e TWT e f f e c t i n a normal l a d d e r t r a n s d u c e r v i t h convent iona l b u s b a r s , and t o de te rmine t h e s p l i t t i n g d f = f v e l o c i t y i n t h i s t r a n s d u c e r s t r ) u c t u r e f o r which A f was t o o small t o measure d i r e c t l y . The d i s c r i m i n - a t o r was f e d from t h e two ends o f t h e l a d d e r s t r u c t u r e i n a s i m i l a r manner t o t h a t f o r F ig . b(b). I f t h e o u t p u t o f t h e d i s c r i m i n a t o r is V when t h e

d e t e c t e d r e s p o n s e c e n t r e d on f is t h e o n l y i n p u t ,

and is V when f i s t h e o n l y i n p u t , t h e

d i s c r i m i n a t o r o u t p u t when both i n p u t s a r e used is

- fap and t h e EMU

P P

aP aP

A V = V - V P aP

where X = Nn( f - f o ) / fo . (N is t h e e f f e c t i v e number o f a c o u s t i c wavelengths i n t h e l a d d e r t ransducer . ) The approximate e x p r e s s i o n is v a l i d f o r small s p l i t t i n g and square- l a w d e t e c t o r s . I n t h e s e c i rcumstances t h e s e p a r a t i o n of t h e p o s i t i v e and n e g a t i v e peaks i n AV is independent o f d f bu t t h e ampl i tude o f AV is d i r e c t l y p r o p o r t i o n a l t o A f , as shown i n e q u a t i o n (2 ) . I n t h e p a r t i c u l a r l a d d e r t r a n s - ducer i n v e s t i g a t e d we deduced a f r a c t i o n a l s l l i t t i n g of 8.10-5 and a r e d u c t i o n i n t h e EMW v e l o c i t y by a f a c t o r o f 4.1 from its f r e e s p a c e va lue .

A SAW o s c i l l a t o r h a s been made i n which t h e t u n a b i l i t y and t h e i n h e r e n t low i n s e r t i o n l o s s o f t h e TWT are e x p l o i t e d . An i n t e r e s t i n g p o i n t concerns t h e mode s e l e c t i o n requi rement ; s t r i c t l y t h i s can o n l y be met by a d j u s t i n g t h e i n p u t and o u t p u t t r a n s d u c e r e q u a l l y , b u t i n p r a c t i c e a use- f u l r a n g e can b e covered by trimming j u s t one t r a n s d u c e r .

Conclusion

We have d e s c r i b e d a d e v i c e which e n a b l e s u s t o e x p l o i t t h e wave n a t u r e o f t h e e l e c t r o m a g n e t i c feed t o a SAW t r a n s d u c e r . We have demonstrated a SAW t r a n s d u c e r w i t h a f i n e l y c o n t r o l l a b l e f requency r e s p o n s e and w i t h reduced m u l t i p l e r e f l e c t i o n e f f e c t s . Although low convers ion e f f i c i e n c y h a s n o t y e t been achieved , u n i d i r e c t i o n - a l i t y is a p p a r e n t i n Figs . 3 ( b ) and j ( c j . I n p r e s e n t i n g t h e r e s u l t s of t h e TWT we have g i v e n a c l e a r demonst ra t ion o f t h e e f f e c t s o f t h e f i n i t e v e l o c i t y o f t h e EMW f e e d i n g a t r a n s d u c e r . As SAW d e v i c e s become more s o p h i s t i c a t e d and t h e s p e c i f i c a t i o n t o be met becomes more demanding we a n t i c i p a t e t h a t t h e e f f e c t s demonstrated h e r e w i l l become i n c r e a s i n g l y r e l e v a n t i n t h e i r des ign .

Acknowledgments

The a u t h o r s wish t o thank A.S. Young and D.J. S n e l l f o r t h e i r a s s i s t a n c e w i t h t h e p r o d u c t i o n of t h e exper imenta l SAW devices .

(References on next page)

424

Page 4: [IEEE 1975 Ultrasonics Symposium -  (1975.09.22-1975.09.24)] 1975 Ultrasonics Symposium - The Travelling Wave Transducer

Gunton, Lewis and Paige

Beferences

1.

2. Louise11 W H, 'Coupled Mode and Parametric

3. Shibayama K, Yamanouchi K,and Hyodo T, E.

4. Lever K V, Patterson E, Scotter D G and

Heighway J et al. Electronics Lett. 8,642,1972

Electronics', (Wiley, 1960)

Congress Acoustics, Japan, H-1-3,5-8,1968

Feasey B G. IEE International Specialist Seminar on.Component Performam; and ~ystems Applications of Surface Acoustic Wave Devices, Aviemore, 1973, p.329

425