31
15.12.2017 page 1 IEA BIOENERGY Task 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December 2017

IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 1

IEA BIOENERGY Task 36

Waste challenges and Ecoloop technology

KIT – ITC, 05. December 2017

Page 2: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 2

Agenda

1. Technology key messages and highlights

2. Technology discription

3. Unique selling propositions

4. R&D activities

5. Outlook

Page 3: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 3

We have a technology to make syngas from high calorific waste

Our process is simple, emission free and economic

Our process is particularly advantageous for critical waste

Ecoloop´s technology could be an efficient supplement to waste incineration.

Page 4: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 4

Opportunity to make waste utilization chains more valuable

Incineration

Making waste utilization more valuable by syngas as product from waste

High calorific waste

Steam

Power

Turbine

Heat

Page 5: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 5

Key ecoloop highlights

Awarded breakthrough

process technology

Long term success by meeting mega

trends

Strong USP´s as basis for huge

market potential

Syngas production in addition to incineration

Lime loop 15 ton/h

Plastics 5 ton/h

Lime0,8 ton/h

Fine fraction1,3 ton/h

Syngas15.000 Nm3/h

Very simple and high economic process by using a

circulated lime moving bed for turning even difficult waste streams into clean syngas

Standard and proven equipment for full scale realisiation

Waste Volume

Tim

e

Waste vol. growth due to:• growing Population• reduction of land fill

Availability

Tim

e

Expiering fossil valuables• limited valuable ressources• worse ecological balances

Public Acceptance

Tim

eDroping of public acceptance for incineration due to discussion about:„emissions + toxic residues“

Gas quality - allows valuable output applications

Efficiency – more than 80% of feedstock is converted into gas

Input flexibility - no heat value limit; high chlorine and sulphur contents

Emissions - no air emissions and no formation of dioxins or furans

Lime moving bed: Multifunctional key

Incineration

power + heat from steam Product:Syngas

Page 6: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 6

Key corporate accomplishments

2007 - 2010 2011 2012 2013 2014 2015 2016 2017

Foundational IP and technology established

First basispatentsapplied

Decision for subsidiesfrom german government

for alpha plant

EcoloopGmbH

founded

Start oferection

alpha plant

Germaninnovationaward

HugoJunkersaward

Commissioningalpha plant

Start of jointventure withXella group

Hot startupalpha plant

Start of plasticwaste

gasification

Start of re engineeringphase alpha plant

Re start alphaplant

Stop of cooperationwith Xella group / stop

of alpha plant operation

Take over 100% ecoloopshares by Conera Process

Solutions GmbH

Basis engineeringfor beta plant

concept

Start feasabilitystudy for betaplant project

Patent applyfor modifiedtechnology

Start companycapital founding

process

Page 7: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 7

Agenda

1. Technology key messages and highlights

2. Technology discription

3. Unique selling propositions

4. R&D activities

5. Outlook

Page 8: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 8

•Die Gesprächsstrategie mit PS wird aufgrund der Zäsur grundlegend geändert.

Power Grit

First industrial 32 MW plant

Alpha-Version was built on a lime production site in order tu use syngas as natural gas substitute.

Page 9: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 9

Lime loop concept

Fine Fraction1,3 t/h

Page 10: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 10

Lime loop concept

Fine Fraction1,3 t/h

Page 11: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017

The ecoloop process – That‘s how it works.

1| Input material is mixed with lime before entering the hot reactor zones

2| Input material colume forms atmospheric seal

3| Material is driven by own gravity and controlled by a rotating table

4| After gasification in the upper pyrolysis and reduction zone the coke residue is burned in the oxidation zone while providing energy for the process. In the cooling zone water is added

5| Syngas is removed at the reactor top while pollutants are bound on the fine lime surface

6| Pollutants are sieved out together with fine lime and ash

7| Lump lime is used for the next loop again

page 11

The technological key is a moving lime bed as a reaction surface

Page 12: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 12

Lime loop concept

Fine Fraction1,3 t/h

Page 13: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 13

Input – What can be used?

Exam

ples

Ecol

oop

can

gasi

fy

Carbon containing materials in 2d and 3d particle forms

Particle sizes between 5 to 300 mm

Unlimited chlorine and sulfur content

Heating value above 10 Mj/kg (unlimited)

Municipal solid waste fractions (MSW)

Critical Carbons(f.e. salty coal)

Plastic waste(f.e. car shredder)

Sulfur containing oil sands and oil shells

Segregation residues (f.e. yellow sack)

Bituminous materials(f.e. tar lakes)

Critical biomass(f.e. contam. Wood)

Contaminated soil and oil residiues

Sewage Sludge from waste water treatm.

Contaminated hydro carbons

Recycling

Houses

Waste Separation

Electr.PowerEcoloop

Glas Paper

Mechanical/biologicalSeparation (MBS)

Plastics

High calorificresidues

Metals „Fines“

In case of municipal solid waste (MSW), ecoloop is a part of an integrated concept together with a mechanical biological separation (MBS)

Ecoloop

Page 14: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 14

Lime loop concept

Fine Fraction1,3 t/h

Page 15: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 15

Output and Application Potentials

Syng

as Q

ualit

y

Ecol

oop

Out

put:

Syng

as

Heating value: 2-2,4 kWh/Nm³

Raw gas flare Plant kaltes Tal

Exam

ples

for O

utpu

t App

licat

ions

Power production via efficient gas engines

Phosphor Recyclingfrom mun. sludge

Chemical Recyclingf.e. alcohols

Thermal use as substitute for fossil fuels

• CO 24,5 bis 16,3

• H2 19,9 bis 13,3

• CH4 9,8 bis 6,6

• C2H6 1,1 bis 0,7

• N2 43,0 bis 62,0

• CO2 1,7 bis 1,1

• Summe 100 bis 100

Free from chlorine and sulfur

Dust: < 1 mg/Nm3

Syngas composition (Vol %)

to

to

to

to

to

to

to

Page 16: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 16

Lime loop concept

Fine Fraction1,3 t/h

Page 17: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 17

Fine Fraction – Utilisation Potentials

Fine

Fra

ctio

n Q

ualit

y

Ecol

oop

Out

put:

Fine

Fra

ctio

n

Exam

ples

for F

ine

Frac

tions

App

licat

ionsTypical composition

Fine Fraction is milled to a particle size < 12 mm and transported by standard silo trucks.

Main components:• CaO and Ca(OH)2• heavy metals• Chlorine as CaCl2

Cement Industryas raw material after Cl-eluation

Soda Industryas chemical agent

Chemical Industryas neutralisingagent for cont. waste water

DisposalMountain Filling (f.e. in salt mines)

Component . ValueCaO M% 22,8Ca(OH)2 M% 14,9EBS-Asche M% 41,9CaSO4 M% 5,7CaCl2 M% 12,1CaF2 M% 0,1Cadmium M% 0,0013Thalium M% 0,0004Quecksilber M% 0,0002Arsen M% 0,0006Kobalt M% 0,0014Chrom M% 0,0322Kupfer M% 1,7576Mangan M% 0,0255Nickel M% 0,0120Blei M% 0,0787Antimon M% 0,0347Zinn M% 0,0284Vanadium M% 0,0163Zink M% 0,4511Selen M% 0,0006Tellur M% 0,0006Beryllium M% 0,0003Titan M% 0,0003Total HM M% 2,4422

Page 18: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 18

Agenda

1. Technology key messages and highlights

2. Technology discription

3. Unique selling propositions

4. R&D activities

5. Outlook

Page 19: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 19

Ecoloop provides a gasification process with simple but effective system efficency

Breakthrough by using lime as reaction bed

Carbon rich materials are gasified - not burnt

Pollutants are neutralised in lime e.g.:• Clorine and other halogens are bound as Ca-salts• Sulfur is bounded as Ca-salt• Heavy metals are bounded on huge specific surface of fine lime

Lime is a catalyst for gasification

Costly off gas treatment fully avoided, off-gas cleaning is not necessary.

Halogen corrosion at high temperature can be avoided, due to the bounding of halogens.

Formation of dioxins and furans is fully avoided.

Innovative engineering concept with lowest complexity

Chemistry

Process

Page 20: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 20

Ecoloop – a stainable and profitable solution for critical high calorific waste

Ecological and efficient solution for problematic waste streams

Calorific value

Chlorine

Environmental impact

Economics

• Upper limit due to technical issues and capacity reduction • unlimited

• High maintenance efforts reduce availability and increase OPEX

• Toxic dioxins and furans are formed

• Clorine is captured on lime as uncritical Ca-salt.

• Forming of dioxins and furanes is system immanent impossible

• High temperature corosion reduces efficiency and increases specific CO2-emissions

• Toxic ash and solids disposal

• Hydrogen formation from ash in case of alu input

• Low power generation efficiency and high effort for flue gas cleaning increase OPEX and reduces profits

• No emission

• Ash free from high toxic dioxins and furanes and without hydrogen forming potential

• CO2 reduction due to high efficiency in case of thermal use of syngas

• Very economic due to attractive profit from high gate fee rates and valuable syngas as product.

Incineration

Critical high calorific waste

Page 21: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 21

Mitigating technical risk by using proven standard equipment

Reactor(proven lime kiln technology)

Syngas filtration(proven carbide technology)

Syngas cooling(proven carbide technology)

Control system + Safety(world class standard)

Solid handling(proven technology)

Breakthrough gasification + standard equipment

Breakthrough gasification technology

Page 22: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 22

Agenda

1. Technology key messages and highlights

2. Technology discription

3. Unique selling propositions

4. R&D activities

5. Outlook

Page 23: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017

Technical University of Clausthal

Ecoloop research at the university of Clausthal

Gasification in a lime moving bed offers new research potentialspage 23

Institute for energy process engeneering

Runtime end 2016

1 doctoral thesis4 – 5 diploma thesis

Prof. Dr. Roman Weber

German ministry of economics promotedresearch with 0,8 Mio €

Page 24: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017

Test and pilot lab

The Ecoloop process will be completely simulatablepage 24

Practical orientated research

Research equipment had to be developedand constructed

Gasification kinetic research including limeinfluence

Pressure loss tests

Reaction front research

Simulation of whole process

Ecoloop research at the university of Clausthal

Page 25: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017

KIT Institute for Technical Chemistry

Ecoloop research at KIT

Results showing the real technology potential, experimental conditions to be optimised!page 25

Gasification tests of new pellet generationfrom high calorific waste fractions

Long term R&D cooperation within newgovernment aid project

Institute for technical chemistry

Prof. Dr. Dieter Stapf

First experimental studies of sewage sludgegasification in presents of CaO.

Page 26: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 26

M

Cooling Zone

Air CaO + Ash

ReductionZone

800

1000

150

600

Light Oil

Heavy Oil

OxidationZone

1200

Heavy Oil

Light Oil

Air NGNG Air

ReductionZone

SyngasSyngas

CruteCaO

+Waste

SteamSteam

PyrolysisZone

450Pyrolysis

Zone

450

Reactor head• Reduction of rector height• Simplyfied charging concept• Changed gas flow direction makes former dust

sedimentation impossible

Pyrolysis zone• Counterflow changed to parallel flow concept.• Therefore pressure drop reduction and capacity increase

Shaft design• Changed from zylinder to negative cone construction• Therefore optimized solid bed flow and linear gas flow rate

Cooling zone• Optimized gas distribution increases effciency• Symplified discharging system reduces particle abrasion

Beta reactor: Higher specific performance and lower investment

Alpha reactor Beta reactorRe Engineering by joint expert team provides

further process potential

Air NG

Pyrolyse-Zone

Neben-Schacht

Chargier-Zone

Reduktions- Zone

Chargier-Zone

Pyrolyse-Zone

Reduktions- Zone

Oxidations- Zone

Kühl-Zone

Kühl-Zone

Pre Heating Zone

ChargingZone

Air NG

PyrolysisZone

PyrolysisGas

Reduction Zone

Reduction Gas

CaO + Ash

Air Air

Zone

150150

Page 27: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 27

Agenda

1. Technology key messages and highlights

2. Technology discription

3. Unique selling propositions

4. R&D activities

5. Outlook

Page 28: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 28

German Beta Plant Project – Current Situation 2017

Shredder plant

Car recycling

Plastic fraction Steel converter

Blast furnace

Steel

Power

Steel production site

Power plant

Steel production Site

Steel company activities

New project activities

Building fraction

Raw iron

Furnace gas

Metal fraction

WasteIncineration

Natural Gas Demand

Page 29: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 29

German Beta Plant Project – Target Situation 2021

Shredder plant

Car recycling

Plastic fraction Steel converter

Blast furnace

Steel

Power

Steel production site

Production of specified pellets

with defined heating value

Fine fraction with impurities

PreConditioning

Beta Plant Project

Power plant

Steel production Site

Steel company activities

New project activities

Building fraction

Raw iron

Furnace gas

Metal fraction

Page 30: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 30

Closed recycling loop out of two key areas of living

Shredderfractions

Car recycling

Car life time

Carproduction

Steelproduction

Special instant pellets

Heat-insulation production

Consciously construction

Energy efficent living

Urban mining

EBS / PU waste fractions

Page 31: IEA BIOENERGY Task 36task36.ieabioenergy.com/wp-content/uploads/2018/03/... · 15.12.2017 page 1 IEABIOENERGYTask 36 Waste challenges and Ecoloop technology KIT – ITC, 05. December

15.12.2017 page 31

•Die Gesprächsstrategie mit PS wird aufgrund der Zäsur grundlegend geändert.

Power Grit

Thanks very much for your attention!