33
Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary Identication of Interconnected Systems by Instrumental Variables Method Grzegorz Mzyk Institute of Computer Engineering, Control and Robotics Wroc aw University of Technology Poland 3th-May-2012

Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Identification of Interconnected Systemsby Instrumental Variables Method

Grzegorz Mzyk

Institute of Computer Engineering, Control and RoboticsWrocław University of Technology

Poland

3th-May-2012

Page 2: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Structure of the presentation

1 Identification of single-element systems—MISO linear static element—SISO linear dynamic elementLeast squares (LS) method and instrumental variables(IV) method

2 Interconnected linear static systems—LS-based estimate and limit properties— IV-based estimate and limit properties—generation of instrumental variables

3 Nonlinear dynamic block-oriented systems—Hammerstein system—NARMAX system

Page 3: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Structure of the presentation

1 Identification of single-element systems—MISO linear static element—SISO linear dynamic elementLeast squares (LS) method and instrumental variables(IV) method

2 Interconnected linear static systems—LS-based estimate and limit properties— IV-based estimate and limit properties—generation of instrumental variables

3 Nonlinear dynamic block-oriented systems—Hammerstein system—NARMAX system

Page 4: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Structure of the presentation

1 Identification of single-element systems—MISO linear static element—SISO linear dynamic elementLeast squares (LS) method and instrumental variables(IV) method

2 Interconnected linear static systems—LS-based estimate and limit properties— IV-based estimate and limit properties—generation of instrumental variables

3 Nonlinear dynamic block-oriented systems—Hammerstein system—NARMAX system

Page 5: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

MISO linear static block

(1)x(2)x

( )sx

y*a

z

Figure: MISO linear static block

a∗ =

a∗1a∗2...a∗s

Assumptions:

Ez = 0, varz < ∞x (i ), z — independent !!!

XN =

xT1xT2...xTN

=x (1)1 x (2)1 .. x (s)1x (1)2 x (2)2 .. x (s)2...

.........

x (1)N x (2)N .. x (s)N

Page 6: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

MISO linear static block (continued)

YN =

y1y2...yN

, ZN =z1z2...zN

Measurement equation

YN = XNa∗ + ZN

Model

YN (a) = XNa

Least squares criterion∥∥YN −YN (a)∥∥22 → mina

Normal equation

XTNXNa = XTNYN

Uniqueness of the solution

rankXN = s

LS estimate

aN=(XTNXN

)−1XTNYN = X

+NYN

aNp.1→ a∗, as N → ∞

Page 7: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

FIR linear dynamics

kyku kvkε

)( 1−qB

Figure: Linear dynamic object MA(s)

vk = b∗0uk + ...+ b

∗s uk−s

yk = vk + εk

yk = b∗0uk + ...+ b

∗s uk−s + zk

zk = εk

Page 8: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

FIR linear dynamics (2)

ku

ky*b

kz1ku −

k su −

Figure: MA object

b∗ =

b∗0b∗1...b∗s

Assumptions:

Ez = 0, varz < ∞{uk} , {zk} — independent !!!

ΦN =

φT1

φT2

...φTN

=u1 u0 .. u1−su2 u1 .. u2−s...

.........

uN uN−1 .. uN−s

YN = ΦNb∗ + ZN bN=

(ΦTNΦN

)−1ΦTNYN

Page 9: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

IIR linear dynamics

kyku ( )( )

1

1

B q

A q

kvkε

Figure: Linear dynamic object ARMA(s,p)

vk = b∗0uk + ...+ b

∗s uk−s + a

∗1vk−1 + ....+ a

∗pvk−p

yk = vk + εk

yk = b∗0uk + ...+ b

∗s uk−s + a

∗1yk−1 + ....+ a

∗pyk−p + zk

zk = εk − a∗1εk−1 − ...− a∗pεk−p

Page 10: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

IIR linear dynamics (2)

ku

ky*θ

kz1ku −

k su −

1ky −

k py −

Figure: ARMA object

θ∗ =

b∗0b∗1...b∗sa∗1a∗2...a∗p

Ez = 0, varz < ∞

uk−i , zk — independentyk−i , zk — correlated !!!

Page 11: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

IIR linear dynamics (3)

ΦN =

φT1

φT2

...φTN

=u1 u0 · · · u1−s y0 y−1 · · · y1−pu2 u1 · · · u2−s y1 y0 · · · y2−p...

......

......

......

...uN uN−1 · · · uN−s yN−1 yN−2 · · · yN−p

YN = ΦN θ∗ + ZN θN=

(ΦTNΦN

)−1ΦTNYN

Page 12: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Instrumental variables approach

θIVN =

(ΨTNΦN

)−1ΨTNYN

Consistency conditions(a) dimΨN = dimΦN , i.e. ΨN = (ψ1, ...,ψN )

T ,dimψk = s + p + 1(b) PlimN→∞

( 1N ΨT

NΦN)exists and is not singular

(c) PlimN→∞( 1N ΨT

NZN)= 0

θIVN

p→ θ∗, as N → ∞

Generation of the instruments ψk

1) ψk = (uk , uk−1, ..., uk−s , uk−s−1, ..., uk−s−p)T

2) ψk =(uk , uk−1, ..., uk−s , y k−1, ..., y k−p

)T , where y k−i —model output (e.g. L.S.)

Page 13: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Instrumental variables approach

θIVN =

(ΨTNΦN

)−1ΨTNYN

Consistency conditions(a) dimΨN = dimΦN , i.e. ΨN = (ψ1, ...,ψN )

T ,dimψk = s + p + 1(b) PlimN→∞

( 1N ΨT

NΦN)exists and is not singular

(c) PlimN→∞( 1N ΨT

NZN)= 0

θIVN

p→ θ∗, as N → ∞

Generation of the instruments ψk

1) ψk = (uk , uk−1, ..., uk−s , uk−s−1, ..., uk−s−p)T

2) ψk =(uk , uk−1, ..., uk−s , y k−1, ..., y k−p

)T , where y k−i —model output (e.g. L.S.)

Page 14: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Interconnected systems

1u

1y

nuiu

11,ba

nn ba ,ii ba ,

H

nyiy

1x

nxix

1δ iδ nδ

Figure: Interconnected MIMO linear static system

Page 15: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Identification of i-th element

yi = aixi + biui + ξ i (i = 1, 2, ..., n)

xi = Hiy + δi

YiN = (ai , bi )WiN + ξ i

YiN = [y (1)i , y (2)i , ..., y (N )i ]

WiN = [w (1)i ,w (2)i , ...,w (N )i ], where wi = (xi , ui )T ,

Page 16: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Least squares based approach

(al .s .i , bl .s .i ) = YiNWTiN

(WiNW

TiN

)−1WiN = [w

(1)i , w (2)i , ..., w (N )i ]

wi = (xi , ui )T , where xi = Hiy = xi − δi .

The estimation error

(al .s .i , bl .s .i )− (ai , bi ) = ΘiNWiN

(WiNW

TiN

)−1does not tend to zero, as N → ∞.

Page 17: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Instrumental variables estimate

(ai .v .i , bi .v .i ) = YiNΨTiN

(W TiNΨT

iN

)−1ΨiN = [ψ

(1)i ,ψ

(2)i , ...,ψ

(N )i ]

ψ(k )i =

(ψ(k )i ,1 ,ψ

(k )i ,2

)TTheoremThe optimal instruments with respect to the value of

Q(ΨiN ) = ‖∆(ΨiN )‖ = λmax(

∆(ΨiN )∆T (ΨiN ))

has the form

ψ∗i = w i = (x i , ui )T , where x i = E (xi |u) = HiKu.

Page 18: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Hammerstein system

ku kykz

kw( )⋅μ { } 0i iγ ∞

=kv

Figure: Hammerstein system

A1: |uk | 6 umax, ∃ p.d.f. ν(u)A2:

|µ(u)| 6 wmaxA3:

∑i=0|γi | < ∞

A4: µ(u0) is known for someu0 and γ0 = 1

A5:

zk =∞

∑i=0

ωi εk−i

{εk} — i.i.d. process,independent of {uk}, E εk = 0,|εk | 6 εmax{ωi}∞

i=0 —unknown,∑∞i=0 |ωi | < ∞

Page 19: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Nonparametric regression

Regression function

E (yk |uk = u) = µ (u)

Kernel estimate

µ(u) =N

∑k=1

K (u − ukh(N)

) · yk

/N

∑k=1

K (u − ukh(N)

)

Orthogonal estimate (wavelet-based)

µ (u) =2M−1∑n=0

αMnϕMn (u) +K−1∑m=M

2m−1∑n=0

βmnψmn (u)

αMn =k

∑l=1

yl∫ ulul−1

ϕMn (u) du βmn =k

∑l=1

yl ·∫ ulul−1

ψmn (u) du

Page 20: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Parametric knowledge

ku kykz

kw( )*,cuμ { } 0i iγ ∞

=

kv

Figure: Hammerstein system (parametric model of the static nonlinearity)

given µ(u, c), such that µ(u, c∗) = µ(u), wherec∗ = (c∗1 , c

∗2 , ..., c

∗m)

T —true parametersµ(u, c) —differentiable with respect to cfor each u ∈ [−umax, umax] it holds that

‖5cµ(u, c)‖ 6 Gmax < ∞, c ∈ O(c∗)c∗ is identifiable, i.e. there exits the sequence u1, u2, ..., uN0such that

µ(un, c) = µ(un, c∗), n = 1, 2, ...,N0 ⇒ c = c∗

Page 21: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Nonlinearity estimation

QN0(c) = ∑N0n=1 [wn − µ(un, c)]

2 c∗ = argminc QN0(c)

Stage 1:wn,M = RM (un)− RM (0)

Stage 2:

QN0,M (c) =N0

∑n=1

[wn,M − µ(un, c)]2 → min

c

Page 22: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Limit properties

TheoremIf

RM (un) = R(un) +O(M−τ) in probability, as M → ∞

then

cN0,M = c∗ +O(M−τ) in probability, as M → ∞.

Page 23: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Two-stage identification of linear dynamics

ku kykz

kw( )μ ( )( )

1

1

B q

A q

kv

{ } 0i iω ∞

=

Figure: Hammerstein system (parametric model of the linear component)

vk = b0wk + ...+ bswk−s + a1vk−1 + ....+ apvk−pθ = (b0, b1, ..., bs , a1, a2, ..., ap)T

ϑk = (wk ,wk−1, ...,wk−s , yk−1, yk−2, ..., yk−p)T

yk = ϑTk θ + zk , zk = zk − a1zk−1 − ...− apzk−pYN = ΘN θ + ZN , ΘN = (ϑ1, ..., ϑN )

T , ZN = (z1, ..., zN )T

Page 24: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Nonparametric instrumental variables

θ(IV )N ,M = (Ψ

TN ,M ΘN ,M )

−1ΨTN ,MYN

where

ΘN ,M = (ϑ1,M , ..., ϑN ,M )T

ϑk ,M = (wk ,M , ..., wk−s ,M , yk−1, ..., yk−p)T

ΨN ,M = (ψ1,M , ..., ψN ,M )T

ψk ,M = (wk ,M , ..., wk−s ,M , wk−s−1,M , ..., wk−s−p,M )T

Page 25: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Limit properties

TheoremIt holds that

θ(IV )N ,M → θ in probability

as N,M → ∞, provided that NM−τ → 0. In particular, forM ∼ N (1+α)/τ, α > 0, the asymptotic convergence rate is∥∥∥∥θ

(IV )N ,M − θ

∥∥∥∥ = O(N−min( 12 ,α)) in probability.

Page 26: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Optimal instruments

∆(IV )N (ΨN ) , θIVN − θ∗ Z ∗N ,

1√NZN

zmax

Q (ΨN ) , max‖Z ∗N‖2≤1

∥∥∥∆(IV )N (ΨN )∥∥∥22

TheoremIt holds that

limN→∞

Q(ΨN ) > limN→∞

Q(Ψ∗N ) with probability 1

where Ψ∗N = (ψ∗1,ψ

∗2, ...,ψ

∗N )T , and

ψ∗k = (wk , ...,wk−s , vk−1, ..., vk−p)T .

Page 27: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

NARMAX system

ku ky

kz

kw( )µ { }n

ii 0=γ

( )η { }p

jj 1=λkw'

kv

kv'

Figure: The NARMAX system

Λ = (λ1, ..,λp)T

Γ = (γ0, ...,γn)T

c = (c1, ..., cm)T

d = (d1, ..., dq)T

Page 28: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Over-parametrization method

θ = (γ0c1, ...,γ0cm , ...,γnc1, ...,γncm ,

λ1d1, ...,λ1dq , ...,λpd1, ...,λpdq)T

= (θ1, ..., θ(n+1)m , θ(n+1)m+1, ..., θ(n+1)m+pq)T

φk = (f1(uk ), ..., fm(uk ), ..., f1(uk−n), ..., fm(uk−n),

g1(yk−1), ..., gq(yk−1), ..., g1(yk−p), ..., gq(yk−p))T

yk = φTk θ + zk YN = ΦN θ + ZN

Page 29: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Two-stage estimate

Stage 1. Instrumental variables

θ(IV)N = (ΨT

NΦN )−1ΨT

NYN

Θ(IV)Λd , and Θ(IV)

Γc of the matrices ΘΛd = ΛdT and ΘΓc = ΓcT

Stage 2. Singular value decomposition (S.V.D.)

Θ(IV)Λd =

min(p,q)

∑i=1

δi ξ i ζTi Θ(IV)

Γc =min(n,m)

∑i=1

σi µi νTi

Λ(IV)N = sgn(ξ1[κξ1 ])ξ1

Γ(IV)N = sgn(µ1[κµ1])µ1

c (IV)N = sgn(µ1[κµ1])σ1 ν1

d (IV)N = sgn(ξ1[κξ1 ])δ1 ζ1

Page 30: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Theorem

If det{EψkφTk } 6= 0 and Eψkzk = cov(ψk , zk ) = 0 then it holdsthat

Λ(IV)N → Λ

Γ(IV)N → Γ

c (IV)N → c

d (IV)N → d

with probability 1 as N → ∞.

Page 31: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Summary

1 Consistent estimates under correlated excitations anddisturbances

2 Problem decomposition with the use of nonparametricmethods

3 Broad class of models (non-linear-in-parameters static blocks+ I.I.R. linear filters)

Page 32: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Summary

1 Consistent estimates under correlated excitations anddisturbances

2 Problem decomposition with the use of nonparametricmethods

3 Broad class of models (non-linear-in-parameters static blocks+ I.I.R. linear filters)

Page 33: Identi–cation of Interconnected Systems by Instrumental ...staff.iiar.pwr.wroc.pl/grzegorz.mzyk/ect2012slides.pdf · Intro Single-elements Interconnected systems Hammerstein system

Intro Single-elements Interconnected systems Hammerstein system NARMAX system Summary

Summary

1 Consistent estimates under correlated excitations anddisturbances

2 Problem decomposition with the use of nonparametricmethods

3 Broad class of models (non-linear-in-parameters static blocks+ I.I.R. linear filters)