53
1 IC Immunity Modeling November 6th, 2011 Alexandre BOYER [email protected] Etienne SICARD [email protected] Alexandre BOYER [email protected] Etienne SICARD [email protected] 2 Objectives of the tutorial Presenting the basic concepts of conducted susceptibility modeling and simulation at IC level. Illustrated by real case studies and a freeware for simulation (IC-EMC). Non exhaustive presentation of modeling methods dedicated to IC susceptibility.

IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER [email protected] Etienne SICARD [email protected]

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

11

IC Immunity Modeling

November 6th, 2011

Alexandre [email protected]

Etienne [email protected]

Alexandre [email protected]

Etienne [email protected]

2

Objectives of the tutorial

• Presenting the basic concepts of conducted susceptibility modeling and simulation at IC level.

• Illustrated by real case studies and a freeware for simulation (IC-EMC).

• Non exhaustive presentation of modeling methods dedicated to IC susceptibility.

Page 2: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

3

IC-EMC

– IC-EMC is a friendly and free PC tool for modeling and simulating EMC at IC level.

– The tool is linked with the shareware WinSPICE derived from SPICE Berkeley for analog simulation (www.winspice.com)

– Download IC-EMC and the user manual http://www.ic-emc.org

– Version used for the tutorial: IC-EMC v 2.5

4

http://www.ic-emc.org

• Download the package icemc.zip

• Unzip in “C:/TEMP”• Open “/system”,

double click “ic-emc.exe” to launch IC-EMC

IC-EMC

Page 3: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

5

Symbol palette

Schematic capture interface

IC-EMC simulation tools

Simulation command

IC-EMC main screen

IC-EMC

IC-EMC

Tools for susceptibility simulation

S parameter simulation

Zin simulation

Susceptibility

simulation

Page 4: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

77

Summary

Context

Structure of IC immunity model

Propagation of conducted disturbances

Modeling of internal behavior

Practical trainings

Context

Page 5: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

9

Immunity to Radio Frequency Interferences

Equipments PCBIntegrated

circuits

Electromagnetic Emission

CablesExternal disturbances

Cables Equipments

System disturbances

System

Failures

Internal activity

EMC of ICs

Integrated circuitsPCB

ICs are at the origin of EMC issues of electronic systems

EMC requirements at IC level (qualification, design rules, modeling)

10

Noise margin

Power supply voltage fluctuation

Vdd

Models for EMC of ICs

Models for IC designers

Prediction of EMI induced voltage fluctuation level and associated

functional failures, check EMC compliance of ICs.

IC design verification and improvement.

Integration of EMC models and dedicated tools in simulation flows

Page 6: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

11

Models for EMC of ICs

Models for system designers

Prediction of susceptibility level of an electronic equipments, which

can embed several ICs.

Use of non confidential IC models (“black box approaches”).

Equipment design verification and improvement ICs are at the origin

of EMC issues of electronic systems

12

System

Cables

Equipment

Printed circuit board

Integrated circuit

Circuit modelCircuit model

PCB model

Equipment model

Models for system designers

Models for EMC of ICs

Hierarchical model

IC models are used as sub blocks of higher level system models.

Page 7: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Structure of IC Immunity Model

1414

Disturbed

block(s)

(Behavior?)

Source of EM

disturbances

(Conducted, radiated, harmonic, pulse…)

IC coupling

path

(Package,

I/O, PDN…)

External

coupling

path

(Cables,

PCB…)

Susceptibility

criterion

(Voltage margin,

SNR, Jitter, bit

error, offset…)

Modeling of IC immunity

Position of the problem

Integrated circuit

EMI Failure

IC Model

Page 8: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

15

Die model• Disturbed block behavior• Internal decoupling• Power distribution

network(PDN)• I/O, ESD protection structure…

Die

Package

IC

Package model• Parasitic RLC• Package – Die resonances

Modeling of IC immunity

IC immunity model structure

IC immunity model can be linked with its physical structure.

16

Victim circuit

Electronic equipment

Cables

PCB

Radiated disturbances

Induced conducted disturbances

Vs

Zs

Zc, Td ZL

Equivalent Thevenin generator of RF disturbances

Cables, PCB lines

Input impedance of victim circuit

Modeling of IC immunity

Conducted immunity

Equivalent model

Page 9: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

17

Integrated circuit

Bias tee

DC supply or low frequency signal generator

RF generator

Power Amplifier

Directional coupler

Power meter

Conducted disturbance

DUT failure monitor

Forward and reflected power

Bus

IEC 62132-4: Direct Power Injection

Modeling of IC immunity

Conducted immunity

Frequency

Forward power

Conducted susceptibility threshold

Max. power = 20 – 30 dBm

18

Susceptibility test bench

Conducted EMI

IC pins

Integrated circuit

Internal BehaviourInternal

Behaviour

Internal noise source

Internal noise source

Failure ?

Printed circuit board

Filtering / decoupling

Building blocks of IC immunity model

Modeling of IC immunity

Page 10: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Propagation of conducted disturbances

20

Position of the problem

…… …

Chip (silicium)

VDD

VSS

Pad

rin

g

Power grid

Package

On-chip voltage fluctuationExternal

disturbance

RF disturbance

VEXTVINT

Filtering effect of IC PDN ?

Page 11: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

21

Coupling of an external disturbance

Power Distribution Network

V1V2

I2 I1

External disturbance

Circuit

Sensitive

functionVss ext

VDD ext

Vss int

VDD int

Port 1Port 2 [ ]

=

2221

1211

ZZ

ZZZ

V1 : voltage fluctuations induced across the IC sensitive function

I2 : external disturbance coupled on a pin

Theoretical analysis

Hypothesis:

The PDN is purely passive (small signal assumption)

The PDN can be modeled by a quadripole (e.g. [Z] matrix)

22

Coupling of an external disturbance

012

112

=

=i

i

vZ

22

12

012

1

Z

Z

v

v

i

=⇒=

Theoretical analysis

012

222

=

=i

i

vZand

The ratio V1/V2 expresses the external noise coupling across the

sensitive function.

Depending on the impedance profile of the PDN, the internal and

external voltage fluctuations can be different.

Page 12: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

23

Coupling of an external disturbance

22

12

01

1 .2

ZZ

Z

v

v

Ciforw +=

=( )2

22

212

01

1 .4

ZZ

ZZ

p

v

C

C

iforw +=

=

( ) ( ) ( )WVZZ

ZZfH

C

CEMI /

.42

22

212

+=

Theoretical analysis Conducted immunity levels are usually expressed in terms of

power level of forward disturbance (Zc = the characteristic impedance of

the RF injection system).

The conducted interference coupling transfer function is given by the ratio between V1 and Pforw.

Quantify the efficiency of the EMI coupling on a node vs. frequency

Correlation with the impedance profile of the IC PDN.

24

Case study 1 – Filtering of EMI by IC PDN

• Characterization of the on-chip voltage fluctuation across the power supply of a digital core in CMOS 0.25 µm during a DPI test, over the range [1 – 1000 MHz].

• Set-up description:

[Ben Dhia11]

Case study 1 description

Page 13: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

25

Asynchronous (or random) sub sampling acquisition mode Low intrusive (Zin > 500 Ω pour f < 2 GHz) Input range = [0 V; 3.75 V]

Isolation from external disturbances and circuit under test noise

[Deobarro09]

On-chip sensor description

Case study 1 – Filtering of EMI by IC PDN

26

Bin width W N

Meas. Range W meas

2

minminmax

=⇒==R

Wn

R

WnN measmeas

On-chip sensor description

Case study 1 – Filtering of EMI by IC PDN

Acquisition principle:

Extraction of the statistical

distribution and statistical

properties (std deviation, peak-

to-peak ampl.)

Evaluation of the distortion

degree for harmonic

disturbance.

Basic rules for the acquisition:

Number of samples n and the number of bins N of the distribution ?

If R is the voltage resolution of the sensor:

Page 14: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

27

[Deobarro09]

On-chip sensor characterization

Case study 1 – Filtering of EMI by IC PDN

3 dB - Bandwidth = 2.2 GHz.

28

[Ben Dhia11]

Case study 1 – Filtering of EMI by IC PDN

On-chip sensor characterization Isolation between sensor and digital core under test power supplies

Good isolation up to 1 GHz

Page 15: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

29

• Example of acquisition of a sinusoidal signal• Frequency of the signal = 10 MHz, pk-to-pk amplitude = 3 V

• Sampling freq = 50 KHz, bin width = 37.5 mV, sample number = 2000.

( ) 1,1

12

<−

= xx

xpπ

Mean value

Std deviation

Meas. 1.99 V 1.03 V

Theory 2 V 1.06 V

Theoretical distribution

Case study 1 – Filtering of EMI by IC PDN

On-chip sensor characterization

30

Identical results Divergence [Ben Dhia11]

Case study 1 – Filtering of EMI by IC PDN

EMI coupling characterization

Very weak

coupling∆Vdd ≈ 0.1 V @ Pforw = 10 W

Strong

coupling

∆Vdd ≈ 0.1 V @ Pforw = 1 mW

Comparison between external and internal measurements.

Page 16: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

31

Case study 1 – Filtering of EMI by IC PDN

Circuit PDN modeling

The difference between measurement results observed

above 50 MHz can be explained by IC PDN filtering effect.

To validate this hypothesis, we extract an equivalent model

of the injection conducted disturbance on core power

supply.

Construction of the equivalent models of core PDN, PCB

PDN and DPI injection path, based on R, L, C elements.

Models available in

system\case_study\digital_core_pdn

32

The on-chip capacitance of the digital core is estimated to 86 pF. The added on-chip decoupling capacitance is equal to 44 pF (component supplied). The pads add an equivalent capacitance of 2 pF between Vdd and Vss.

On-chip PDN interconnects add a serial resistance estimated to 1 Ω for Vdd and Vss. The circuit is mounted into a TQFP128 package (on pin for Vdd, 2 pins for Vss).

Case study 1 – Filtering of EMI by IC PDN

[QFP128MIXITY.geo]

Circuit PDN modeling

Extraction of the package model with IC-EMC (Tools/Advanced

Package Model).

Page 17: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

33

[model_core1_pck.sch]

Case study 1 – Filtering of EMI by IC PDN

Circuit PDN modeling

DEMO

Equivalent model tuned with S11 measurement made on Core_Vdd:

34

|Z11|

Freq

Arg (Z11)

Freq

Case study 1 – Filtering of EMI by IC PDN

IC model validation – comparison with measurements

[model_core1_pck.sch] vs. [core1alim.s1p]

Page 18: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

35

Integrated

circuit

SMA

connector

Conducted

interferences

2.5 V power

plane

1.5 µH choke

inductance100 nF

16 mm long microstrip line

W= 0.7 mm

h= 0.4 mm

Vddcore

VssCore

Case study 1 – Filtering of EMI by IC PDN

PCB PDN and DPI injection path modeling

Schematic of the test board :

36

Model

validation

|Z11|

Freq

[model_core1_pcb_Cdec.sch]

Case study 1 – Filtering of EMI by IC PDN

PCB PDN and DPI injection path modeling

[PCB_injection_path.sch] vs. [S11_core1 _avec_Cdec.s1p]

Page 19: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

37

IC + PCB + test

environment model

Place port 1 on observation point, port 2

on conducted injection point

AC simulation – S parameter calculation

S to Z parameter conversion

Compute EMI coupling TF Hemi

( ) ( )222

212.4

ZZ

ZZfH

C

CEMI +

=

Case study 1 – Filtering of EMI by IC PDN

EMI coupling simulation flow

DEMO

Based on a small-signal analysis

Simulation of the EMI coupling transfer function into a passive PDN

38

• Coupling of the conducted disturbance on the package pin Core_Vdd.

Acceptable model up to 400 MHz

[Ben Dhia11]

Case study 1 – Filtering of EMI by IC PDN

IC model validation – comparison with measurements

[EMI_TF_core1_ext.sch]

Page 20: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

39

• Coupling of the conducted disturbance on the internal Core_Vdd node.

Acceptable model up to 200 MHz

[Ben Dhia11]

Case study 1 – Filtering of EMI by IC PDN

IC model validation – comparison with measurements

[EMI_TF_core1_int.sch]

40

Identical results Divergence

Case study 1 – Filtering of EMI by IC PDN

EMI coupling simulation

The simulation confirms that above 50 MHz, the noise coupled inside

the circuit is different from the noise coupled outside.

Page 21: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

41

EMI

coupling

Phase

DetectorVCO +

Freq. Divider

/4

PLL input

(Fref = 24 MHz)

VDD PH

VSS PH

VDD VCO

VSS VCO

VDD DIV

VSS DIV

PLL output

θVCO

EMI-induced

jitter

PLL phase variations

7 MHz low

pass filter

• PLL developed in CMOS 0.25 µm• Three sub-blocks with separated power supplies• Conducted disturbances applied on the VCO power supply (Vdd VCO).

• Objective: prediction of EMI-induced voltage fluctuation on Vdd VCO.

Case study 2 – Complex PDN

Case study 2 description

42

• Three on-chip voltage sensors placed on the following nodes:

• VCO power supply Vdd VCO• Phase comparator power supply Vdd Ph• Frequency divider power supply Vdd div

• Characterization of the voltage fluctuation on Vdd VCO• Characterization of parasitic couplings between different power supply domains.

Case study 2 – Complex PDN

Case study 2 description

[Boyer11]

Page 22: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

PCB ground

43

Case study 2 – Complex PDN

Circuit PDN modeling

VDD VCO

VSS VCO

VDD PH

VSS PH

VDD DIV

VSS DIV

VDD I/O

VSS I/O

Power supply

domain PDN

Power supply

domain PDN

IC

Inter domain

coupling

Inter domain

coupling

Die-PCB

coupling

Die-PCB

coupling

Models available in system\case_study\pll_pdn.

Structure of the PDN

Case study 2 – Complex PDN

Circuit PDN modeling

[Boyer11]

Extraction of the PLL PDN

model by S parameter

measurements

Design of a specific test board

for 2 port measurements with

GS coplanar probes

Possibility to connect (or

disconnect) Vss package pins to

(or from) PCB ground plane

Page 23: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

45

Case study 2 – Complex PDN

Circuit PDN modeling• Structure of the extracted PLL PDN model

[Boyer11]

[PDN_PLL_model.sch]

46

Case study 2 – Complex PDN

Validation of the PDN model

|Z11|

Freq

[S2P_VCOVdd_PhVdd_gnd_0ohms.sch]

[s2p_VddVCO_VddPh_gnd0ohm.s2p]

≈ 7 pF

Port 1 on VddVCO, VssVCO is grounded

Extraction of the VCO on-chip capacitance

Page 24: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Case study 2 – Complex PDN

Validation of the PDN model

|Z11|

Freq

[S1P_VssVCO_gnd_0ohms.sch]

[s1p_VssVCO_gnd0ohms.s1p]

Package pin effect

Port 1 on VssVCO, all the other ground pins are grounded.

Resistive coupling + package inductance effect between ground pins

≈ 15 Ω

48

Validation of the PDN model

|Z12|

Freq

[S2P_VssVCO_VssPh_gndOpen.sch]

[s2p_VssVCO_VssPh_gndOpen.s2p]

Case study 2 – Complex PDN

Port 1 on VssVCO, Port 2 on VssPh, all the other ground pins opened.

Capacitive coupling between the substrate and the PCB gnd plane.

≈ 30 pF

Page 25: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Case study 2 – Complex PDN

Validation of the PDN model

|S12|

Freq

[S2P_VddVCO_VddPh_gnd_0ohms.sch]

[s2p_VddVCO_VddPh_gnd0ohm.s1p]

Significant coupling between power supply domains

Port 1 on VddVCO, Port 2 on VddPh capacitive coupling between

different power supply domains.

50

November 11

Case study 2 – Complex PDN

EMI coupling characterization

[Boyer11]

• Comparison between external and internal measurements of the EMItransfer function on VddVCO.

• Experimentally, the forward power required to induce a voltage fluctuation with an amplitude = 0.25 V is measured (small signal conditions).

Identical results Divergence

Larger voltage fluctutation measured

inside the IC

∆Vdd ≈ 0.1 V @ Pforw = 0.1 mW

Page 26: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

51

• Coupling of the conducted disturbance on the internal VddVCO node.

• Add PCB and DPI injection path to PLL PDN model.

IC model validation – comparison with measurements

Case study 2 – Complex PDN

[EMI_TF_VCO_Vdd.sch]

DEMO

52

• Coupling of the conducted disturbance on the internal VddVCO node.

• Add PCB and DPI injection path to PLL PDN model.

IC model validation – comparison with measurements

Case study 2 – Complex PDN

[Boyer11]Acceptable model up to 1 GHz

Page 27: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

53

Analysis of EMI coupling with the model

Case study 2 – Complex PDN

RFI source

Zc (= 50 Ω)

1.5 µH Choke inductor

VCO equivalent impedance

100 nF decoupling capacitor

VddVCO

PCB Circuit

The RF disturbance source is connected to 3 parallel loads.

Equivalent model of conducted injection on VddVCO:

54

Analysis of EMI coupling with the model

Case study 2 – Complex PDN

The lowest impedance(s) dominate(s).

Page 28: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

55

Is such a complex model necessary ?

Case study 2 – Complex PDN

[EMI_TF_VCO_Vdd_PDN_simple.sch]

Can we simplify the circuit model ?

Remove the substrate coupling, capacitive coupling between power

supply domains and die-board coupling.

56

Is such a complex model necessary ?

Case study 2 – Complex PDN

Large difference of EMI coupling prediction

Page 29: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

57

Case study 2 – Complex PDN

[Boyer11]0

0,2

0,4

0,6

0,8

1

0,E+00 2,E+08 4,E+08 6,E+08 8,E+08 1,E+09

Frequency (Hz)

Tra

nsfe

r fun

ctio

n

VddPh/VddVCO

VddDiv/VddVCO

Is such a complex model necessary ? Transfer functions between VddPh/VddVCO and VddDiv/VddVCO

Non negligible noise injection on the power supplies of phase detector

and frequency divider.

0

0,2

0,4

0,6

0,8

0,E+00 2,E+08 4,E+08 6,E+08 8,E+08 1,E+09

Frequency (Hz)

Tra

nsfe

r fun

ctio

n V

ddD

iv/V

ddV

CO

Measurement

Simulation

Case study 2 – Complex PDN

Is such a complex model necessary ?

[Boyer11]

Our model overestimates the internal coupling between separated

power supply domains.

Insufficient model for couplings at board level.

58

Page 30: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

• Regulator L4949: used for supplying 5V

to a microcontroller

• Goal: build an immunity model of the

L4949 in direct-power-injection (DPI)

• Available information:

Datasheet of the regulator

Z(f) measurement available

DPI using a +/- 200 mV shift

criterion in the Vout voltage

test Boardtest Board

Case study 3 – Non linear PDN

Case study presentation

59

1

2

3

4

8

7

6

5

L4949

VCC

GND

Si

Vz

Ct

VOUT

So

Reset

L=47µH

C=1nF

R=220ΩC=10µF

Input RF

VDC=12v

Output : 5v

Ferrites

Injection & protection pathLoad

Functional diagram of regulator

Case study 3 – Non linear PDN

Discrete component models

Ferrite Z(f) - Zin_FerriteBLM18HK102SN1.s50

DPI capacitance Z(f) - Zin_DPI_1nF.s

Inductance Z(f) - Zin_L47u.s50

Models available in system\case_study\L4949

60

Page 31: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Case study 3 – Non linear PDN

Discrete component models

61

[Zin_DPI_1nF.sch]

[Zin_Ferrite.sch]

[Zin_L47u.sch]

DEMO

Discrete devices

L4949 PDN

Loads

Case study 3 – Non linear PDN

Impedance validation

62

[Zf_Vcc_L4949.sch]

Page 32: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Z(f) is dependent

on the supply

voltage at low freq.

Used in our model:

nominal VCC 12 V

Bias dependant capacitance variation

Bias independant L,C contributions

Non linear junction capacitance

Linear PCB/package/die impedance

Case study 3 – Non linear PDN

Impedance validation

63

DEMO

[Wu11]

Case study 4 – Non linear PDN

Case study presentation

Digital core

Vss_Core

data

clock

out

Output

buffer

Out

Vdd_Core (2.5 V)

Vdd_IO (5V)

Vss_IO

PCB groundDie-PCB

coupling

Die-PCB

coupling

Vss_Core

Vdd_Core Vdd_IO

Vss_IO

Power supply

domain PDN

Power supply

domain PDNInter domain

coupling

Inter domain

couplingPDN

modeling

Page 33: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

65

Case study 4 – Non linear PDN

I(V) characterization

I(V) characterization between the different pins of the PDN.

+ : Vdd Core

- : Vss Core

+ : Vdd IO

- : Vss IO

Protection diodes between power supply and ground against

invert biasing.

-0.7 V -0.7 V

=≈ =

66

Case study 4 – Non linear PDN

I(V) characterization

+ : Vdd Core

- : Vdd IO

0.9 V

+ : Vss Core

- : Vss IO

Protection diodes between different power supply domains.

=≈

=

+/- 0.7 V

Page 34: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

67

Vss_Core

Vdd_Core Vdd_IO

Vss_IO

Case study 4 – Non linear PDN

PDN with protection elements

Full PDN with protection elements.

Activation of protection diodes for large disturbances across

power supplies and grounds.

68

Summary

Circuit PDN acts as a (2 nd order) filter on external

conducted disturbances.

The EMI coupling efficiency is related to PCB and I C

PDN impedance profile.

Accurate modeling of chip – package resonances,

interblock couplings, substrate coupling, die-PCB

capacitance.

The voltage dependence of the PDN should be taken

into account if required.

Page 35: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Modeling of Circuit Behavior to EMI

70

Macromodelapproach

Netlist approach

Accurate, but confidential data, high complexity, long simulation time

Non confidential data, possible extraction by measurements, low complexity, small simulation time,

but less accurate

Modeling of IC behaviour to EMI

Modeling approach The response of a circuit to a large voltage fluctuation is usually non

linear Modeling and simulation difficulties.

Two types of approaches

Page 36: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Case study 1 – Linear voltage regulator

Everything simple

Dpi 1 nF ideal

L 47uH ideal

Ferrite 220 ohm

Load ideal

Regulator

88 ohm

27 pF capa

DPI model “A”

[L4949_modelA.sch]

71

Aggressed IC

Model (ICEM)

Package

and IO model (IBIS)

RFI and coupling

path model (Z(f))

Set RFI frequenciesIC-EMC

Time domain simulationsWinSPICE

Criterion analysis

Extract forward power

IC-EMC

DPI measurement

Case study 1 – Linear voltage regulator

DEMO

Susceptibility simulation flow

72

Page 37: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Case study 1 – Linear voltage regulator

No susceptibility

Perfect

decoupling

destroys RFI at

Vout

Purely linear

model, no

rectification, no

offset

Model A

DPI measurement

DPI model “A”

73

Case study 1 – Linear voltage regulator

DEMO

DPI model “B”

Less ideal load

Pcb track

Non ideal 10uF

[L4949_modelB.sch]

74

Page 38: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Less ideal

load

makes a

big

difference

starting 30

MHz

Low

frequency

level still

high

DPI measurement

Model B

Case study 1 – Linear voltage regulator

DPI model “B”

75

“B-element”

LPF

-7V

^2

k

DC offset at low frequency

12 V

5 V + offset

Case study 1 – Linear voltage regulator

DPI model “C”

[L4949_modelC.sch]

76

[Wu11]

Page 39: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Low-frequency

offset reproduced

using a macro-

model

“B-element” is a

powerful

mathematical way to

describe non-

linearities

DPI measurement

Model C

Case study 1 – Linear voltage regulator

DPI model “C”

77

78

RF disturbance

Pforw Prefl

Directional coupler

SMA connector

6.8 nF DPI capacitor Test board

Injection path

External LEDs

To the input buffer

DPI on a 16-bit

microcontroller from

Freescale, through a

6.8 nF capacitor

Criteria: Input state

modification

Case study 2 – Digital Input

Test set-up

Page 40: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

79

Case study 2 – Digital Input

Susceptibility criterion

Coupling path

Forward Power

Input buffer

Supply network

RF source and Amplifier Vdd Vss

Led Coupler Package

model

Equipment model

Board model IC model

Modeling approach

Model available in case_study\s12x

80

Case study 2 – Digital Input

Coupling path model

Total capacitance

20 pF

Total inductance

12 nH

Total resistance 2 Ω

LC resonance

Lsma, Csma

R,LC based model

Non-ideal capa

[s12x_dpi_path.sch]

[s12x_dpi_path.z]

Page 41: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

81

Case study 2 – Digital Input

Exploitation of IBIS

3D reconstruction

R,LC of package

recomputed

I/V curves for

diodes, switches

Positioning of

supply and IO leads

in space

DEMO

[S12X_v2.ibs]

82

Case study 2 – Digital Input

Exploitation of IBIS

R,L,C model of the

package from IC-

EMC & IBIS

C_comp from IBIS

data

I/V of diodes tuned

with IBIS

information

[s12x_io_pt3_dc.sch]

Page 42: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

83

Case study 2 – Digital Input

DPI simulation

A simple IO model

from IBIS gives a

first-order

estimation of DPI

A more detailed IC

model (PDN, non-

linearity ) is

required for

improved tuning

[s12x_dpi_pt3.sch]

[s12x_dpi_pt3.tab]

84

Case study 2 – Digital Input

DPI simulation External Supply

Input buffer

PDN

Ccomp

Package

Input tracks

DPI capacitance

Substrate coupling

External Supply

Input buffer

PDN

Ccomp

Package

Input tracks

DPI capacitance

Substrate coupling

A more detailed IC model

(PDN, non-linearity ) with

substrate coupling and the

output buffer model enables

a fine tuning

[Boyer07]

Page 43: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

DecouplingNetwork

2.5 V

For

war

d po

wer

DIRECTIONAL COUPLER

Ref

lect

ed p

ower

10 W POWER AMPLIFIER

POWER METER

SIGNAL SYNTHESIZER 10 – 1000 MHz

Conducted EMI

VDDVCO On-chip Sensor

SIGNAL GENERATOR

24 MHz

PLL out

ACQUISITION CARD

Internal noise measurement

Functional failure

detection

PLLPLLPLL in

Failure criterion:

+/-2 ns output period variation

Case study 3 – Phase-Locked Loop

Test set-up description

85

Phase

DetectorVCO

Freq.

Divider

Fref = 24 MHz

VDD PH

VSS PH

VDD VCO

VSS VCO

VDD DIV

VSS DIV

PLL output

EMI

coupling

+

θVCOEMI-induced

jitterθin

PLL frequency

variations

θout+∆θout

Case study 3 – Phase-Locked Loop

Failure mechanism

86

Page 44: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

87

87 November 11

VCO (delay cell controlled ring oscillator)

Frequency divider

Phase comparator and 1st order filter

Case study 3 – Phase-Locked Loop

PLL SPICE Model

[Boyer11b]

Case study 3 – Phase-Locked Loop

PLL SPICE Model – Simulation of jitter

Without RFI

With RFI

EMI induced jitter

+/- 2 ns

42 ns

Time (ns)

PLL period (ns)

RFI

T0 +/- 2 ns

Simulation of the PLL failure with IC-EMC

Failures !

[EMC Signal Analysis]

DEMO

Simulation of the susceptibility criterion:[PLL_EMI_VddVCO.sch]

88

Page 45: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

( )( ) ( )22

0

2

2.2

.

2

1

EMI

EMIVCOEMI

F

VK

FF

ππσ ϕ =VCO phase Jitter:

( ) ( ) ( ) 2

022 2exp1. TFjFF EMIEMIEMIT πσσ ϕ −−=VCO period Jitter:

PLL period Jitter: PLLVCOTPLLT G×= σσ

Case study 3 – Phase-Locked Loop

Failure mechanism – analytical model

Only the VCO is disturbed, by a sinusoidal

noise.

The VCO acts as a frequency modulator

dependent on power supply fluctuations.

The VCO instantaneous frequency and power

supply voltage are related by a constant

parameter called pushing coefficient Kvco.VddVCO

FVCO KVCO

F0

VDD0

89

9090 November 11

P(f) V(f)

D(f)

+

θVCO

Jitter induitθin

θout

Case study 3 – Phase-Locked Loop

Failure mechanism – analytical model Block diagram of the PLL

PLL period Jitter:

PLLVCOTPLLT G×= σσ

( ) ( )( ) ( ) ( )fDfVfP

fDfG

VCO

outPLL +

==1θ

θ

Comparison between

SPICE and analytical

model

[Boyer11]

Page 46: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Measurement Simulation SPICE

Case study 3 – Phase-Locked Loop

Measurement vs. simulation of PLL sensitivity to EM I

On-chip measurement with the sensor to measure the sensitivity of

PLL to voltage fluctuation on VddVCO.

Simulation reproduces the failures of the PLL.

Noise level to induce unlocking is overestimated in

simulation.91

92

PLL transistor netlist

SPICE transient

simulation

Freq. EMIVDD VCO

fluctuations

10 MHz 0.1 V

20 MHz 0.15 V

… …

Sensitivity table

Case study 3 – Phase-Locked Loop

Simulation of PLL susceptibility

Construction of the Internal Behavior Block:

The sensitivity of the PLL to VddVCO fluctuations is first simulated in time

domain and included.

And then include in a “sensitivity table”.

Page 47: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

DEMO

Case study 3 – Phase-Locked Loop

Simulation of PLL susceptibility

Circuit PDN

PCB model

DPI test benchExtraction of VddVCO

noise amplitude

Failure detection:For each EMI frequency,

Failure if VddVCO noise > Value in sensitivity table.

[simu_immunity_PLL_List.sch]

93

Case study 3 – Phase-Locked Loop

Simulation of PLL susceptibility

[List_freq_susc_PLL_meas_2ns_v3.TXT ] [Meas_immunity_PLL_List.tab]

94

Page 48: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

Practical training about IC susceptibility

96

EMC Training

May 2008

2-DAYS TRAINING IN EMC OF ICs

Ex. 1. FFT of typical signals Ex. 2. Transient current estimation Ex. 3. Interconnect parasitics Ex. 4. di/dt noise Ex. 5. intrinsic decoupling Ex. 6. added on-chip decoupling Ex. 7. PDN modelling

Ex. 8. Radiated emission modelling Ex. 9. Estimation of susceptibility level Ex. 10. Susceptibility of analog input Ex. 11. Susceptibility of output buffer Ex. 12. Susceptibility of a micro-controller

Quality labeled course

Page 49: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

97

EMC Training

EX 7 - PDN MODELLING C51 Z(f): find an R,L,C model Tune to measurement file

Emission >

C51 >

c51_supply_impedance.s50

98

– Estimate the forward power to induce 1 V across the load over

the frequency range 10 MHz – 1 GHz.

– A RF generator produces a conducted disturbance whi ch is

injected on a 200 Ω load, though a directional coupler.

EX 9 - ESTIMATION OF SUSCEPTIBILITY LEVEL

EMC Training

Page 50: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

99

– Launch Susceptibility tool

– Configure the RF disturbance and launch SPICE simulation

– Configure the voltage criterion and extract susceptibility threshold

– Display the susceptibility threshold

EMC Training

EX 9 - ESTIMATION OF SUSCEPTIBILITY LEVEL

100

– A RF disturbance is conducted to

an analog input.

– Equivalent model: serial 1 K Ω

resistor and a 22 pF capacitor.

– Susceptibility criterion : input noise

< 100 mV from 10 MHz to 1 GHz.

EX 10 - SUSCEPTIBILITY OF ANALOG INPUT

EMC Training

Page 51: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

101

– The following output is loaded

by a 200 Ω load and a 0.5 nF

capacitance.

– The susceptibility of the buffer

is tested using DPI standard.

– Harmonic disturbances are

injected on power supply

RFI

Susceptibility criterion ?

EX 11 - SUSCEPTIBILITY OF OUTPUT BUFFER

EMC Training

102

– Injection on the Vdd pin

– Add a 100 MHz RFI sinus signal with 2 V amplitude.

Describe the failure

EMC Training

EX 11 - SUSCEPTIBILITY OF OUTPUT BUFFER

Page 52: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

103

– Consider the following digital circuit:

CMOS 65nm technology

32 bits CPU, 250 Kgates, surface = 3 mm²

The core is supplied by 4 dedicated

power supply pairs

The IC is mounted in a 324-pin BGA

package

The circuit is soldered on a 150×100 mm

FR4 printed circuit board, with 2 internal

power supply and ground planes.

EMC Training

EX 12 - SUSCEPTIBILITY OF OUTPUT BUFFER

104

IEC62132-3 Direct Power Injection

(DPI) standard, 1 MHz – 1 GHz, power

limit 25 dBm.

Work to do

Build an equivalent model of the core.

(Suggestion: use Tools/ICEM model

expert)

Build the PCB and the injection path

models.

Predict by simulation the

susceptibility threshold of the

component.

EX 12 - SUSCEPTIBILITY OF OUTPUT BUFFER

EMC Training

Page 53: IC Immunity Modelingic-emc.org/download/EMCCompo 2011-Tutorial.pdf11 IC Immunity Modeling November 6th, 2011 Alexandre BOYER Alexandre.boyer@laas.fr Etienne SICARD Etienne.sicard@insa-toulouse.fr

105

EMC Training

A TWO-DAYS

INTRODUCTORY

COURSE IN EMC

OF ICS

Eurotraining Quality

Course

9-10 Feb 2012

Toulouse, France

Morning : lectures

Afternoon: practical

session using IC-EMC

and WinSpice

106

References[ICEMC]: E. Sicard, A. Boyer "IC-EMC User's manual version 2.5", INSA editor, October 2011, ISBN 978-2-87649-056-7, www.ic-emc.org

[Deobarro09]: M. Deobarro, B. Vrignon, S. Ben Dhia, A. Boyer, “Use of on-chip sampling sensor to evaluate conducted RF disturbances propagated insid e an integrated circuit”, EMC Compo 2009, Toulouse, November 17 – 19 2009

[BenDhia11]: S. Ben Dhia, A. Boyer, B. Vrignon, M. Deobarro, T. V. Dinh, “On-Chip Noise Sensor for Integrated Circuit Susceptibility Investigations”, to appear in IEEE Trans. On Instrumentation and Measurements

[Boyer11]: A. Boyer, B. Li, S. Ben Dhia, C. Lemoine , B. Vrignon, “Development of an Immunity Model of a Phase-Locked Loop”, 2011 Asia-Pacific In ternational Symposium on Electromagnetic Compatibility, May 16 – 19, 2011, Jeju Island, Korea

[Boyer11b]: A. Boyer, S. Ben Dhia, C. Lemoine, B. V rignon, “An On-Chip Sensor for Time Domain Characterization of Electromagnetic Interferences”, 8th International Workshop on electromagnetic Compatibility of Integrated Circuits, November 6 – 9 , 2011, Dubrovnik, Croatia

[Wu11]: Wu Jian-fei, E. Sicard, A. Cissé Ndoye, F. L afon, Li Jian-cheng, Shen Rong-jun, "Investigation on DPI Effects in a Low Dropout Volt age Regulator", EMC Compo 2011, Dubrovnick, Croatia, November 2011

[Boyer07]: A. Boyer, S. Ben Dhia, E. Sicard "Modelli ng of a Direct Power Injection Aggression on a 16 bit Microcontroller Input Buffer", EMC Compo 07 Torino, Nov 2007, Italy, pp. 35 – 39

[Sicard11]: E. Sicard, A. Boyer, “Enhancing Enginee rs Skills in EMC of Integrated Circuits”, 8 th

International Workshop on electromagnetic Compatibi lity of Integrated Circuits, November 6 – 9, 2011, Dubrovnik, Croatia