50
IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactor s, 26 - 28 September, 2007 EUV spectroscopy from LH D and Atomic Data T. Kato National Institute for Fusion Science

IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Embed Size (px)

Citation preview

Page 1: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007

EUV spectroscopy from LHD and Atomic Data

T. Kato

National Institute for Fusion Science

Page 2: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Introduction

1. Xe ion spectra and atomic data

2. Fe ion spectra and atomic data

3. Data needs for ITER modelling

Page 3: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

1. Xe ion spectra

T.Kato, G. O’Sullivan, N. Yamamoto, H. Tanuma et al

• We have observed EUV spectra of Xenon ions from the Large Helical Device (LHD) at the National Institute for Fusion Science in Toki in the wavelength range of 10 – 17 nm using a high resolution SOXMOS spectrometer. A small quantity of xenon gas was injected into the Large Helical Device. In some cases, the plasma evolution was stable and a steady discharge was obtained for several seconds, but sometimes the plasma underwent radiation collapse and rapid cooling and in this situation the EUV yield was significantly increased. Investigation of the spectra showed that during the heating phase and in a stable plasma, the emission was dominated by ions with open 4s and 4p subshells, while during radiation collapse, the spectra were dominated by lines from species with open 4d subshells. From a comparison of these spectra with theoretical data from atomic structure calculations and also with charge state specific data generated in Tokyo Metropolitan University it was possible to make tentative assignments of the strongest lines arising from 4d-4f and 4p –4d transitions in Xe XVII and XVIII.

Page 4: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

SOXMOS Spectrometer

LHD

Type grazing incidence spectrometer

Grooves 600 grooves/mm

Wavelength 1 ~ 35 nm

Detector 2 MCPs + Phopheor + Photodiode Array

Resolution ~ 0.01 nm

SOXMOS plasma0 deg.

-1 deg.

(TESPEL)

24 cm

Page 5: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Normal Discharge, stable sustained heating

Xe puff

Xe puff

t = 400 ms

Page 6: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Normal Discharge (Te)

Te(=0) ~ 1000 eV, Te(=0.5) ~ 700 eV

Page 7: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Discharge with Radiation Collapse

Xe puff

Xe puff

t = 400 ms

Page 8: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Discharge with Radiation Collapse (Te)

Te(=0) ~ 500 eV, Te(=0.5) < 200 eV @ t=1.4 s

Page 9: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Theory for Xe17+

• Cowan code Hatree Fock with Configuration Interaction (H

FCI) by G. O’Sullivan (UCD)• GRASP2 Multiconfiguration Dirac Fock by D. Kato (NIF

S)• Cascade model (for charge exchange spectr

a) by N. Yamamoto (Osaka Univ.) Grasp code for n = 4, Hullac code for other

levels

Page 10: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

EUV spectrum of Xe ions - shorter wavelength (10 - 14 nm)

800

700

600

500

400

300

200

Counts

140130120110100Wave length (A)

f7_51455 without Xe f5_51456Å@0 deg. (center) f5_51459 -1.0 deg. (edge)

1

2

3

4

5

6

7

8

FeXIX 108.371FeXIX FeXX FeXXII FeXXII FeXIX FeXXIFeXX

FeXXI FeXXIII FeXXII

t = 400 ms

Page 11: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Spectral lines during the heating are identified with 4p - 4d transitions of Xe17+

(4d) - Xe25+(4s) ions in 10 - 12 nm

Xe9

+Xe1

0+

Xe1

1+,1

2+

Page 12: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Identification of Xe ion lines (10 - 12nm)

Line No.

WL(A) LHD

Ion WL(A) Lower state Upper state Ref. No.

1 107.24 Xe17+ 107.185 4p6 4d 3/2 4p5 4d2 7/2 21 “ ” Xe17+ 107.224 4p6 4d 2D 5/2 4p5 4d2 2F7/2 4 3 108.01 Xe17+ 108.005 4p6 4d 2D 5/2 4p5 4d2 2D5/2 4 Xe17+ 107.922 4p6 4d 3/2 4p5 4d 2 5/2 21 Xe20+ 107.94 35 5 108.39 Xe18+ 108.409 4p6 1S0 4p5 4d 1P1 4 “ Fe18+ 108.371

“ Xe20+ 108.564 4p4 2 4p3 4d 3 21 6 108.87, .96 Xe19+ 108.845 4p5 3/2 4p4 4d 3/2 21 7 109.53ÅA.63 Xe17+ 109.521 4p6 4d 2D 3/2 4p5 4d2 2F5/2 4

11 112.37 - 112.55

Xe10+ 112.055 4d8 3F4 4d7 4f 4

12 113.68 Xe23+ 113.590 4p 1/2 4d3/2 21 13 114.79 Xe9+ 114.8 4d9 2D 4d8 4f 4 14 119.02 Xe25+ 118.935 3d10 4p 2P 1/2 3d10 4d 2D 3/2

4

Page 13: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Spectral lines during the heating are identified from ions with outer 4s or 4p electrons ( Xe23+(4s24p) -

Xe25+(4s) ) in 12 - 16nm

1. Xe23+  (4s24p)3. Xe24+ (4s2)5. Xe23+7. Xe24+8. Xe25+ (4s)11. Xe23+13. Xe23+14. Xe24+

1. Xe23+

3. Xe24+

5. Xe23+

7. Xe24+

8. Xe25+

11. Xe23+

13. Xe23+

14. Xe24+

1000

800

600

400

200

0

20001800160014001200

Channel number

#51450_4 Center (o deg.)

#51451_4 Edge (-1.0 deg.)

4

3

5

6

7

8

1

2

Fe XXIII 13.283 nm

9 CrXXI 14.99

1011

13

14

6 FeXXII 13.574

t = 400 ms

Page 14: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Identification of Xe ion lines (120 –160 Å) Line

No. N

WL(A) LHD

Ion WL(A) Lower Upper Ref. No.

1 130.66 Xe23+ 130.551 21 2 131.709 Xe18+? [131.740] 4p6 1S 4p5 4d 3D 4 3 132.51 Xe24+ 132.459 4s4p 3P2 21 (Xe19+ 132.875?) 21 5 134.85 Xe23+ 134.948 21 6 135.34 Xe10+ 135.334 4d8 1D, 3F 4d75p 21 7 136.23 Xe24+ 136.169 4s4p 3P2 4s4d 3D1 21 Xe24+ [136.25] 4s4p 1P 4s4d 1D 4 8 138.39 Xe25+ 138.330 4p 2P1/2 4d 2D3/2 21 [138.389] 4p 2P3/2 4d 2D5/2 4 11 160.37 Xe23+ 160.503 4s24p3/2(J=3/2) 4s[4p2

3/2(2)](J=3/2) 21

12 161.46 Xe8+ [161.742] 4d10 1S0 4d95p 3D1 4 13 162.25 Xe23+ 162.47

4s24p3/2(J=1/2) 4s[4p 1/2(1)] 4p3/2(J=1/2)

21

14 164.02 Xe24+ 164.352 4s2 1S0 4s4p 1P1 21 [164.412] 4 15 Xe8+ [165.322] 4d10 1S0 4d95p 1P1 4

Page 15: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Spectra during radiation collapse indicate a recombining plasma

• Many new lines appear in the spectra during radiation collapse. • No.2 (131.709A, Xe18+ ?) and No.6 (135.34A, Xe10+?) increase. • The continuum emission increases.• No.12 is identified as Xe8+. Temperature is low.

1400

1200

1000

800

600

400

200

0160150140130120

f4_51448 Å@Radiation collapse f7_51449 without collapse

1

2

3

4

5

6 7

8

9 10 11

12

13

14

87543

1

1. Xe23+2. Xe18+ 24+3. Xe24+5. Xe23+6. Xe10+7. Xe24+8. Xe25+11. Xe23+12. Xe8+13. Xe23+14. Xe24+

Page 16: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Quasi continuous background 4p64dm - 4p54dm+1 + 4p64dm-14f

Xe XII - XVI (m = 3 to 7) in 121 - 155A

1400

1200

1000

800

600

400

200

0

Counts

165160155150145140135130125120

Wavelength (A)

LHD f4_51448 collapse

1(XXIV)

2 (XIX + XXV)

3 (XXV)

4 (FeXXIII+XeXI)5 (XXIV)

6 (XI)

7 (XXV)8(XXVI)

XI

XI

XVII + XVIII XII XI

XI XI

XVII + XVIII

XVII + XVIII XVII + XVIII XVII + XVIII XVII + XVIII XVII + XVIII +XXVIX

X + XVII + XVIII

XVII ? XVII ? X

XI

X

X X

X

X X X

X

X 11 (XeXXIV)

12(XeIX)13(XeXXIV)

14(XeXXV)

XVII-XVIII lines are not identified

Page 17: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Charge Exchange (CX) Spectroscopy ofXe and Sn ions

by Hajime TANUMA, Hayato OHASHI, Shintaro SUDADepartment of PhysicsTokyo Metropolitan University

Page 18: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Xe ion spectra by Charge Exchange Xeq+ + He --> Xe(q-1)+

8 12 16 20 24

Wavelength / nm

q=23

17

16

Xeq+-He

19

20

18

21

22

4p64d

4p6

4p5

4p4

4p3

4p2

4p1

4p64d2

Ground stateConfiguration ofIncident ions

Page 19: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Xe ion spectra by Charge Exchange Xeq+ + Rg --> Xe(q-1)+

Wavelength (nm)

Page 20: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

2

4

6

8

10

12

6 8 10 12 14 16 18

q (incident ion charge)

He

ArXe

Aq+ + Rg → A(q-1)+ (n) + Rg+

Dominant capture levels- prediction with the classical over-barrier model -

It : ionization energy of the target atom

He : 24.588 eV Ar : 15.760 eV Xe : 12.130 eV

nE q2I t(q+2 q)1+2 q

Page 21: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

We make a cascade model for CX spectraEnergy Levels Diagram in Radiative-cascade Model

Xe18+ + Xe Xe17+ (nl) + Xe+ Xe17+ (n’l’) + hv

E(4s24p6)=430eV

4s24p6nl 4s24p54dnl 4s4p64dnl 4s24p44d2nl

4d

4f4d

4d4f

4f

n=5

7p

n=5

4d

4d

5p

4f

n=5

n=6

n=7 8 n=6

4s24p44d4fnl

4s4p64fnl

4s4p54d2nl

4s24p54fnl

6p

4f

5d5d

5p5s

4f4f

910

18 19 20

11 1213 14 15

16 17

= 12-15A

= 10-12A

Electron transferenergy band,

dE~1eV

total energy levels: 8831

Page 22: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

1011

2

3

4

567

1012

2

3

4

567

1013

2

3

4

5

gAr (s

-1 )

11.411.311.211.111.010.910.810.710.610.510.4

wavelength (nm)

1.0

0.8

0.6

0.4

0.2

0.0

700

600

500

400

300

Grasp gAr_Cowan_Osal CX_Xe18_Xe LHD_f5_51459

Xe17+

Xe17+ 109.52 (Sa)

Xe17+ 108.005Xe17+ 107.224

Xe17+ Line identification based on 4p64d - 4p54d2 4p64d 2DJ - 4p54d2 2FJ’ 2DJ’ (Ground state 4p64d 2D3/2 )

Comparison with calculations by GRASP code and Cowan’s code

• Wavelengths calculated fit well with the known three lines.• Broad feature of CX spectrum may be due to cascade transition.

Page 23: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

LHD spectra (yellow) with Cowan (blue) and GRASP (red) code calculations for Xe XVIII for 120 – 150 A.

CX spectrum (green) of Xe XVIII

10

10

2

3

4

5

6

7

8

9

10

11

2

3

4

5

6

7

8

9

10

12

gAr (s

-1

)

15.014.814.614.414.214.013.813.613.413.213.012.812.612.412.212.0

wavelength (nm)

0.8

0.6

0.4

0.2

0.0

1200

1000

800

600

400

200

0

Grasp

gAr_Cowan_Osal

CX_Xe18_Xe

f4_51448

LHD_f4_51448#1

Xe17+

57

57

12

12

37

37

14

14

50

50

6262

XVII + XVIII

XVII + XVIII

XVII + XVIII XVII + XVIII

XVII + XVIII

XVII + XVIII

XVII + XVIII

XVII + XVIII

Page 24: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Cascade Model spectra for charge transfer spectraXe18+ + Xe --> Xe17+ (nl ) --> Xe17+ (n’l’) + hv

(by N. Yamamoto)

0.8

0.6

0.4

0.2

0.0

CX

16.015.515.014.514.013.513.012.512.0

wavelength (nm)

1

2

3

4

5

6

7

8

910

2

3

Cascade Intensity

107

108

109

1010

1011

gAr (s-1)

CX_Xe18_Xe Grasp_Inten gAr_Grasp

Xe17+ lamda = lamd -0.28

Strong by cascadeGRASP calc.Red: w.o. cascadeBlue: with cascade

The wavelengths by GRASP code are shifted by 2.8A.

Page 25: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Assignments of Rb I like lines in Xe XVIII based on 4p64d-4p54d2 transitions (unless otherwise stated) New (Kato & O’Sullivan)

Transition Lower upper

Cowan (Å)

gA×1010s-1 CBS ( )Å LHD ( )Å Grasp( )Å gA×1010s-1

2D5/2 - 5 p 2P3/2 80.45 75.40 80.20 - 2D3/2 - 5 p2P1/2 81.70 39.36 81.60 - 2D3/2 - (1D)2F5/2 122.04 4.798 ( Shoulder of strong

unresolvedXe XII 4d-5 p arra yfeatur )e

123.86 0.99

2D5/2 - (1G)2G7/2 122.77 9.071 123.0 - 124.72 9.1

2D5/2 - (1D)2F5/2 125.41 8.834 125.80 ( )shoulder

125.80 127.43 7.52

2D5/2 - (1S)2F7/2 125.72 7.659 126.40 126.4 128.69 17.1

2D3/2 - (1S)2P3/2 126.34 1.396 “ 127.20 1.36

2D5/2 - (3F)4G7/2 127.65 0.744 128.0 128.0 130.647 1.00

2D3/2- ( )P4D1/2 128.48 14.90 128.5 130.05 9.96

2D3/2- (3F)4F5/2 129.33 2.739 129.8 132..35 1.41

2D5/2- (1S)2P3/2 129.96 22.85 129.80 129.8 130.98 16.9

2D5/2-(3 )P 2F5/2 130.69 5.843 131.80 134.19 6.82

2D5/2- (3F)4F5/2 133.12 15.66 133.10 133.1-133.3( blended with X e

XI lin .)e 136.44 4.2

2D3/2- (3P)2D3/2 134.21 13.00 134.0 134.0 (Blended with Xe X I

)line 136.13 6.7

2D5/2- (3F)4D7/2 135.22 10.41 135.40 135.4 (Blend with Xe XI

line )s 137.02 1.35

2D3/2- (1G)2F5/2 136.13 12.80 137.0 136.7-137.0 (Blended with X e

XVII fea )ture 139.12 2.15

2D3/2- (3P)4D5/2 139.59 2.867 140.60 140.60 143.13 1.70

2D5/2- (1G)2F5/2 140.34 1.614 141.80? 141.80 143.65 0.28

2D5/2- (3P)4D7/2 143.47 3.335 144.60 144.60 146.84 0.15

2D5/2 - (1D)2F7/2 145.10 1.980 146.20 146.20 (Blend with Xe XI

)line 148.62 1.80

2D5/2 - (3F)2G7/2 147.74 0.02 148.80 150.92 0.038

2D5/2 - (3P)4P7/2 152.996 0.004 154.80 157.61 0.054

2D5/2 - (3 )P 4P5/2 154.21 0.09 156.2 158.99 0.020

2D5/2 - (3F)4G7/2 154.42 0.05 156.2 159.37 0.001

Page 26: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

CX spectra show 4p54d2 levels are made through Charge Transfer from 4p6

(Inner shell excitation)

• Xe 18+ (4p6) + Xe (or He)

---> Xe 17+ (4p54dnl )

or Xe 17+ (4p44d2nl )

---> Xe17+ (4p54d2 ) + hv (4p - nl)

---> Xe17+ (4p64d ) + hv (4p - 4d)

Page 27: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

LHD spectrum with Xe XVII spectrum CX (green), Cowan code calculations for 120 – 160 A.

gA (s-1) (red)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Intensity (a.u.)

150145140135130125120

Wavelength (A)

300x109

250

200

150

100

50

0

gA (s-1)

1200

1000

800

600

400

200

0

CX_Xe17+ + Xe Cowan gA (s-1) LHD_f4_51448

Xe16+

Page 28: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Assignments of SrI like lines in Xe XVII 4p64d2 - 4p54d3 (Only lines with gA>3x1010 s-1 are included) New

Transition

lower upper

Cowan

(Å)

gA×1010

s-1 CBS ( )Å LHD ( )Å

3F4 - (2 )G 3F4

3F4 - (2 )H 1H5

1D2 - (2F)3F2

3P1 - (2 )D 3P1

3F2 - (2P)3D1

1G4 - (2F)1G4

3P1 - (2F)3F2

3F3 - (4F)3D3

3F3 - (2 )D 1F3

3P2 - (2 )D 1F3

3P2 - (2F)3F3

3F4 - (4F)3D3

3P1 - (2F)3F2

1G4 - (2D)3F3

1S0 - (2P)1P1

3F4 - (2 )D 3H5

3F3 - (2H)3H4

1G4 - (2G)3H4

1D2 - (2P)3D1

1G4 - (4F)3D3

3F4 - (2 )D 3F3

3P2 - (2P)3S1

1G4 - (2D)1F3

3F3 - (4F)5G3

3P1 - (4P)5P1

3F2 - (4F)5D3

3P2 - (2P)3D1

3P1 - (2 )D 3F3

121.20 122.52 122.53 122.75 123.09 123.14

123.15 123.28 124.20 124.38 125.27 125.34 126.15 126.43 126.72

126.78 127.63 128.04 128.52 129.11 129.87 129.89 130.12 130.12 130.54

131.59 132.51 132.86

3.182 13.50 3.753 4.150 3.996 7.856

4.798 6.578 6.286 7.245 6.327 9.615 3.068 2.887 4.253

4.440 3.036 7.114 3.318 9.597 5.326 4.459 5.693 3.528 3.929

3.196 3.969 3.207

- - - 122.80 “ “

“ “ 124.20 124.70 125.10 - 126.0 126.4 126.8

“ 127.4 128.0 128.80 129.20 130.3 “ “ “ 130.7

131.8 133.0 “

- - - - - Overlapped with XeXII 4d-5 p

120array -126 Å “ “ 124.20 124.70 125.10-125.30 “ 126.20(blended with Xe XVII I

)line 126.40 ( blended with Xe XVII I

)line 126.80 ( blended with Xe XVII I

)line “ - 128.00 ( blended with Xe XVII I

)line 128.50 129.1 ( blended with XeXXVI l )ine “ “ “ “

( blended with Xe XIX )line ( blended with Xe XI )line “

Transition

lower upper

Cowan

(Å)

gA×1010

s-1 CBS ( )Å LHD ( )Å

3F4 - (2F)1F3

3F2 - (2P)3S1

3F3 - (4F)5D3

3F3 - (2 )D 1D2

3P1 - (4P)5D0

3F4 - (2F)3G5

3F4 - (2F)1G4

1D2 - (4P)5P1

1D2 - (2D)3F3

3F2 - (4F)5G2

1D2 - (4F)5G2

3F4 - (4F)5D3

3P2 - (2 )D 3P2

1G4 - (2D)3 F4

1D2 - (2D)1D2

3F2 - (2 )H 3G3

1G4 - (2F)3G5

3F4 - (2 )D 3F4

3F3 - (2 )D 3F4

3F4 - (2F)3G5

1G4 - (2G)1G5

3F4 - (2 )G 3H5

133.11 133.18 134.67 134.85 134.96

135.46 135.95 136.23 136.63 136.91 137.04 137.13 137.14 137.88 138.00 138.96

139.88 140.68 141.61 142.25 144.43 144.93

7.423 5.146 9.245 4.361 3.078

6.026 9.410 3.629 5.006 9.525 8.571 5.136 4.251 4.671 3.537 12.180

3.542 8.778 9.804 4.070 6.284 3.492

“ “ 134.20 134.50 “

135.40 135.80 “ 136.80 “ 137.1 “ “ 137.8 138.1 138.9

139.8 140.6 141.8 143.2 144.5 “

“ “ 134.2(blended with Xe XVII I

)line ( blended with Xe XI )line “

( blended with Xe XI )line ( blended with Xe XI )line 137.0 “ ” ” ” - Blended with Xe XXVI line at 138.39 Å Blended with a Xe XI line a t

139.190 Å Blended witha Xe XI lines a t139.825 & 139.836 Å 140.6 141.8 blend with Xe XVIII Blended with Xe XI lines at 143.2 14and 3.61 144.6 blend with Xe XVIII “

Kato & O’Sullivan (2007)

Page 29: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

0

10

20

30

40

4 6 8 10 12 14 16îgí∑ (nm)

Study of highly ionized Xe spectra in JT-60U reversed shear plasmas

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

434241403938373635

343332313029282726

0

0

4

6

8

/a

Te

ne

Xe37+, Cl likeXe41+, Al like

Xe28+

( )a

( )b

ITB

10 -3

10 -2

10 -1

10 0

30 35 40 45 50 55 ( .)Viewing chord number ch

measured

calculated

calculatedÅ~1/11

(c)

規格化小半径

軟X線強度分布

(arb

)

0 0.2 0.4 0.6 0.8 1.0

43424140393837363534

333231302928272625

0.0

0.2

0.4

0.6

0.8

1.0

r/a

z

€ € €

Xe37+, - (3Cl like p5)

Xez+

den

sity

(ar

b.)

Cal

cula

tio

n

Xe37+ (1s)2(2s)2(2p)6(3s)2(3p)5

Xe spectra (3s-3p & 3p-3d) observed in JT-60U *The red indicate the lines observed for the first time.

HULLAC and Desclaux’s code were used for the analysis.

In some tokamaks, Xe has been injected to study high-Z impurity behavior or to enhance radiation losses for reduction of heat load to the walls.

In the reversed shear plasma, we can simply calculate spectral lines from the highly ionized Xe atoms inside the internal transport barrier using a coronal equilibrium model and a collisional radiative model with the electron temperature and density at the plasma center.

Internal transport barrier

Wavelength (nm)

Inte

nsi

ty (

arb

.)

r/aNormalized minor radius

(H. Kubo (JAEA), J. Nucl. Mater., 2007)

Page 30: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Summary• EUV Xe ion spectra in 10 ~ 16nm from LHD were measured.• Spectra during heating phase are identified to be lines from X

e 23+ (4p, 762.4 eV) to Xe 25+ (4s, 857.0eV). (outer 4s or 4p electrons)

• They are strong at 25 cm from the center.• The spectra from radiation collapse phase are considered to

be emitted from Xe8+ (4d10, 179.9 eV) to Xe17+ (4d, 452.2 eV). (open 4d shell)

• We have made line identifications for Xe17+ and Xe16+ spectral lines in the wavelength range of 12 - 16 nm.

• Unidentified lines of highly charged Xe ions are measured in JT60 in the wavelength range of 4 - 16 nm.

• We will make a theoretical model for Xe ion emissions for LHD and charge exchange spectroscopy by ECR source.

Page 31: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

2. Fe Spectra and Atomic Data

• Fe is an i ntrinsic  i mpurity in Laboratory Plasmas

• Important also in Astrophysics and the Sun• We are developing a non-equilibrium model for F

e ion emissions.• We studied EUV spectra from Fe XIII ions for pla

sma diagnostics • We evaluate Atomic Data for Fe ions

Ionization, Excitation  

Page 32: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

EUV Spectra measured from LHD

Te=136.6eV, Ne>1013cm-3, N(FeXI)=1.0, N(FeXII)=3.0, N(FeXIII)=0.4

FeXIIIFeXIIFeXISum

~ FeXIII lines region 196-210A ~

Page 33: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

EUV spectra measured from the Sun

Page 34: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Energy levels for Fe XIII lines

3p-3d transition (3s23p2-3s23p3d)( 1 ) 196.525A: 1D2-1F3 (with FeXII)( 2 ) 200.021A: 3P1-3D2( 3 ) 201.121A: 3P1-3D1 (with FeXII)( 4 ) 202.044A: 3P0-3P1( 5 ) 203.793A+203.826A: 3P2-3D2,3D3( 6 ) 208.679A: 1S0-1P1( 7 ) 209.617A: 3P1-3P2

(1)

(2)(3)(4)

(6)

(5)

(7)

#66810-4.3s@LHD1S 1P 1D 1F 3S 3P 3D 3F 5S

(1)

(2,3

)

(4,7

)

(5)

(6)

3s23p2

3s3p3

3s23p3d

Ip=361eV

Page 35: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Hullac v.s. Aggarwal v.s. CHIANTI

Ne=106cm-3 Ne=1010cm-3 Ne=1015cm-3

Hullac -DWAggarwal, 2005 –R-matrixCHIANTI (Landi,1999) -DWTe=136eV (=logT[K]=6.2)

by N. Yamamoto

Page 36: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Hullac / Aggarwal – Cij- excitation

HullacAggarwal

Hullac

Aggarwal

I. Murakami

Page 37: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Hullac / Aggarwal – Cij- excitation

Hullac

Aggarwal

Hullac

Aggarwal

I. Murakami

Page 38: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Tayal S. S., ApJ, 544, 575 (2000)Aggarwal, K. M. & Keenan, F. P., A&A, 429, 1117 (2005)

Eff

ect

ive

co

llis

ion

str

eng

th

3s23p2 3P0 – 3P1

3s23p2 3P0 – 3P2

3s23p2 3P0 – 1D2

3s23p2 3P0 – 1S0

0 105 3x105 5x105 Te (K)

Fe XIII

by I. Skobelev and I. Murakami

Page 39: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

10 20 30 40

Energy (Ryd)

Co

llis

ion

str

eng

th a

nd

eff

ecti

ve c

oll

isio

n

stre

ng

th

1

2

Gupta G.P. & Tayal S. S., ApJ, 506, 464 (1998)Aggarwal, K. M. & Keenan, F. P., A&A, 429, 1117 (2005)

3s23p2 3P1 – 3s23p3d 3D1 Fe XIII

by I. Skobelev and I. Murakami

Page 40: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Line intensity ratios of FeXIII-1N. Yamamoto

Page 41: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Line intensity ratio of Fe XIII-2

FeXIII 202.044 AÇ…ëŒÇ∑ÇÈÅi203.797AÅ{203.838 AÅjÇÃã≠ìx î‰FeXIII 202.044 AÇ…ëŒÇ∑ÇÈÅi203.797AÅ{203.838 AÅjÇÃã≠ìx î‰

by N. Yamamoto by CHIANTI

6

5

4

3

2

1

0

Intensity Ratio, 203.8A/202.0A

106

107

108

109

1010

1011

1012

1013

1014

1015

Electron Density, Ne cm-3

Te=137eV, Fe12+

Hullac code's data (DW) Aggarwal's data (R-matrix) Gupta&Tayal's data (R-matrix) CHIANTI

EBIT

LHD

Active/EIS

Quiet/EIS

Atomic Data are important for Plasma Density Diagnostics by Line Ratios

Page 42: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Atomic data for Ionization of Fe ionsION

*Bartlett 2002 T

*Segui 2003 TK-shell ioniation, DWBA, -40keV,good agreement with Llovetexperiments

*Uddin 2003 T K-shell ionization, BED, -40keV

*Llovet 2002 E K-shell ionization, upto 40keV

Fe+1 Montague 1984 E (XB, sputter) Stenke 1999 E XB, ECR

Fe+2 Mueller 1985 E (XB, PIG) Stenke 1999 E

Fe+3 *Pindzola 1987 T Stenke 1999 E

Fe+4 *Pindzola 1987 T Stenke 1999 E

Fe+5 Gregory 1986 E (XB, ECR) Stenke 1999 E

Fe+6 Gregory 1986 E Stenke 1999 E

Fe+7 *Pindzola 1987 T

Fe+8 Younger 1983 T

Fe+9 Younger 1983 T Stenke 1999 E

Fe+10 Younger 1983 T Stenke 1999 E

Fe+11 Gregory 1987 E

Fe+12 Younger 1983 T

Younger 1983 T

Gregory 1987 E

Fe+14 Younger 1983 T

*Linkemann 1995 E storage ring

Gregory 1987 E

Fe+16 Younger 1982 T

Fe+17 Younger 1982 T

Fe+18 Younger 1982 T

Fe+19 Younger 1982 T

Fe+20 Younger 1982 T

Fe+21 Younger 1982 T *Shevelko 2005 T

double ionization, semi-empricalprediction for B-like iso-electronicseries, direct+inner-shell ion. Auger,

5-80 keV

Fe+22 Younger 1982 T *Chang 2004 T TPDW, -10Ip

Wong 1993 E EBIT, only one energy point

*Inal 2002 T K-shell ionization, 1s^22s->1s2s MJJ=-1,0,1, upto 2000Ry

*Kuo 2001 T

*Uddin 2004 T modified BED, -10Ip

O'Rourke 2001 E EBIT, -40keV

*Uddin 2003 T extend to higher energies (-100keV)that O'Rourke experiments

*Younger 1981

Fe+23 Younger 1982 T

T

Fe+13

AR1992 LATER (-2006)

Fe+0 McGuire 1977 T

Fe+15

XB: cross-beamPIG: Penning ionguage*: AMDIS ñ¢ì¸óÕ

Fe+24 Younger 1982 T

Fe+25 Younger 1982 T

Experimental data are still not sufficient

by D. Kato

Page 43: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Fe+15

Linkemann, PRL 74, 4173 (1995)

Ion storage ring measurement

Gregory (1987)

Linkemann

by D. Kato

Page 44: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Fe+14 Theoretical calculations only

Pindzola et al., Nuclear Fusion special suppl. (1987)“Recommended data on atomic collision processes involving iron and its ions”

EA is dominant.

Direct cross section is factor three smaller. Younger’s calculations (1983) include the direct cross section only.

by D. Kato

Page 45: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Summary for Fe ions

1. EUV spectral line intensities for Fe XIII are studied

Line ratios with different atomic data are compared

2. Excitation rate coefficients for Fe XIII are evaluated

3. Ionization data are surveyed

Page 46: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Atomic, Molecular and Surface DataNeeds for ITER Modelling

A.S. Kukushkin1, D. Reiter2

1 ITER Organization, Cadarache, France 2 FZ Jülich, Jülich, Germany

Prepared for DCN meeting, October 2007, Vienna

Page 47: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

IntroductionITER: modelling is the way of extrapolation from present experiments

A&M&S data necessary to model the plasma and wall interaction

data on surface interactions equally important!

Composition of the plasma:fusion reactions D, T, Hemixed materials on PFCs Be, C, Wimpurity seeding for core control Ne, Ardiagnostics Li, …off-normal events O, Fe, Cu, …

Plasma conditionsCore: fully ionized (but NBI, pellets?), T ~ 0.2 – 20 keV, n ~ 102

0 m-3

Edge: a lot of neutrals, T ~ 0.1 – 200 eV, n ~ 1019 – 1021 m-3

This presentation: mostly edge modelling

Page 48: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Surface Materials: W

Physical sputtering: rates known (?)No molecules no chemical erosion (despite carbides?)Ionization, recombination: no full data set; accuracy?Excitation, multi-step ionization?Elastic collisions with D, T ions?

– probably unimportant, atomic mass too largeToo many charge states, usual multi-fluid approach inefficient

“bundling” certain charge states together for transport raw cross-section data + technology for effective rates are needed

Surface properties: hydrogen uptake, interaction with Be, C?

Limited experience in ITER modelling yet (DIVIMP – test particle approximation)

Page 49: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Seeded Impurities: Ne, Ar(, Kr, Xe)

Atomic species, no chemistryNe, Ar very probable candidates for the plasma control; Kr, Xe might cause problems with transmutations, although radiate better

Ne: ionisation, recombination data exist for all charge states; accuracy?

charge exchange?detailed excitation data? multi-step ionization?elastic collisions with D, T ions – some data exist; accuracy?

Ar: the same state as for Ne, probably less reliable?

Data for the core conditions equally important

Page 50: IAEA 2nd RCM on Atomic Data for Heavy Element Impurities in Fusion Reactors, 26 - 28 September, 2007 EUV spectroscopy from LHD and Atomic Data T. Kato

Conclusions for ITER data needs

Edge modelling is now an essential part of the ITER projectdesign analysisdevelopment of the operation strategy

It relies strongly on the A&M&S data supplied by the communitythe results depend on the completeness and accuracy of the data

Most important groups of species:Fuel (D, T): data for the edge (A&M) and beam (A, up to 1 MeV). Isotope effects in molecules!Ash (He): data for the edgeWall produced, light (Be, C): data for the edge. Hydrocarbons!Wall produced, heavy (W): data for the edge & core. Bundling!Seeded (Ne, Ar): data for the edge and coreStructural materials (Fe, Cu, …): data for the edge and core to analyze severity of possible off-normal events

Data on surface interactions equally important for all groups