22
"Made available under NASA sponsorship in t;'e inthrost of early and wire dis. senimnat:on of Earth Resources Survey PRogram inforination and without liability for any use made thprpnf" I1 I iPlqe !'o,. -- -El7. 3 10.0. 4.0. '----F- / 3 / e/jin typi:',j heare. YOLu maly type ovr thlese words. 'rp. stjIuarely on l. lines. T I' GEOGRAPHIC APPLICATIONS OF ERTS-I IMAGERY TO RURAL LANDSCAPE.CHANGE IN EASTERN TENNESSEE John B. Rehder* and, James R. O'Malley+- University of Tennessee, Knoxville, Tennessee Abstract "----NASA's Earth Resources Technology Satellite has-been '' 'orbiting the earth and transmitting image data since July. ,Because of its capabilities in sensing the same geographic point every 18 days and providing a 13,225 square mile view from each image, ERTS has challenged us to the task of inter- preting landscape change from a regional perspective. A multistage sampling experiment was conducted using low 1(10,000') and high (60,000') altitude aircraft imagery in comparison with orbital (560 miles) ERTS imagery. Although the aircraft data provide detailed landscape observations similar to ground truth data, they cover relatively small areas per image frame for irregular static slices of time. By comparison, ERTS provides repetitive observations in a regional perspective for broad-areal coverage. Microdensito- metric and computer techniques are being used to analyze:the ERTS imagery for gray tone signatures, comparisons, and ultimately for landscape change detection. Since July, NASA's Earth Resources Technology Satellite or ERTS-I has been orbiting the earth in a sun-synchronous polar orbit 560 miles above the earth's surface. Operational sensors on board consist of four channels of a multispectral scanner system which operate from .5 to 1.1 microns. Three return beam vidicon cameras arel also on board but have not Performed under contract NAS5-21726 issued by the National Aeronautics and Space Administration. *Assistant Professor of Geog-aphy +Ph.D. student. i TX~ ,'/C /- WHO WZ WN ~tTJ F3 N co (D)' o t>.t I ni I ~ C) M I ~to FC I e~~n tO t trtnt ! ~~~(D i t D~c trr i cb Qtn I ~~~(D S·P t ^ Ho QX Cot a, to Gc o P o o A -J I 11 .. A M I 0 Details of Illustrations In -this document may be better studied on microfiche 1.3 C0;'.J:1 ;: , ;.;tgrphy may be 1Cii and Daioita Avenue Sioux Fails, SD 57198 purchased f!r lom 2,_ l l I- ... ;a

I1 '----F- / 3

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: I1 '----F- / 3

"Made available under NASA sponsorshipin t;'e inthrost of early and wire dis.senimnat:on of Earth Resources SurveyPRogram inforination and without liabilityfor any use made thprpnf"I1

I iPlqe !'o,. - -

-El7. 3 10.0. 4.0.'----F- / 3 /

e/jin typi:',j heare. YOLu maly type ovr thlese words. 'rp. stjIuarely on l. lines.

T I'

GEOGRAPHIC APPLICATIONS OF ERTS-I IMAGERYTO RURAL LANDSCAPE.CHANGE IN EASTERN TENNESSEE

John B. Rehder* and, James R. O'Malley+-

University of Tennessee, Knoxville, Tennessee

Abstract

"----NASA's Earth Resources Technology Satellite has-been '''orbiting the earth and transmitting image data since July.,Because of its capabilities in sensing the same geographicpoint every 18 days and providing a 13,225 square mile viewfrom each image, ERTS has challenged us to the task of inter-preting landscape change from a regional perspective. Amultistage sampling experiment was conducted using low1(10,000') and high (60,000') altitude aircraft imagery incomparison with orbital (560 miles) ERTS imagery. Althoughthe aircraft data provide detailed landscape observationssimilar to ground truth data, they cover relatively smallareas per image frame for irregular static slices of time.By comparison, ERTS provides repetitive observations in aregional perspective for broad-areal coverage. Microdensito-metric and computer techniques are being used to analyze:theERTS imagery for gray tone signatures, comparisons, andultimately for landscape change detection.

Since July, NASA's Earth Resources Technology Satelliteor ERTS-I has been orbiting the earth in a sun-synchronouspolar orbit 560 miles above the earth's surface. Operationalsensors on board consist of four channels of a multispectralscanner system which operate from .5 to 1.1 microns. Threereturn beam vidicon cameras arel also on board but have not

Performed under contract NAS5-21726 issued by theNational Aeronautics and Space Administration.

*Assistant Professor of Geog-aphy

+Ph.D. student. i

TX~ ,'/C /-

WHO

WZ WN

~tTJ

F3 N

co

(D)'

o t>.t

I niI ~ C) M

I ~to FC

I e~~n tO ttrtnt

! ~~~(D

i t D~c trr

i cb QtnI ~~~(D S·P

t ^ Ho QX

Cota,to

Gc

o Po

o A

-J

I

11.. A

M I

0

Details of Illustrations In-this document may be better

studied on microfiche

1.3 C0;'.J:1 ;: , ;.;tgrphy may be

1Cii and Daioita AvenueSioux Fails, SD 57198

purchased f!r lom

2,_

l l

I- ... ;a

Page 2: I1 '----F- / 3

I iPmzage[. i .. J .

J. B. REHDER AND J. R. O'MALLEY

,been activated since August. Data gathered by the multispec-:tral scanner system are transmitted to ground stations and

!principally to Goddard Space Flight Center where the inputsin digital format are processed into photographic imagery andl,digital tapes. A useful capability of the system is therepetitive coverage offered by ERTS.: Every 18 days the satel-

'lite passes over the same geographic location at almost pre-

cisely the same hour thus providing a temporal as well as a

spatial dimension to the system.

Approximately 735 photographic images are produced each

day. Since July over 180,000 images have flooded the Goddard!T[nn Laaull.tncr Fa. li.t andl the some nn0 nrinrinal i nlvstia a-j rLa ndlguL FacilitLly aInu Gthe YVIIC Jsm O pri fplub | i n |v - ULg

tors who are examining the data nationwide. The University

of Tennessee Geography Remote Sensing Project receives andanalyzes some 32 images in the 70 mm and 9½ x 9½ formats in

color and in black and white on an 18.day cyclic basis..-_.. .__

Among the capabilities of;thissensing satellite is the large arealinear distance edge to edge on thecoverage of 13,225 square miles per

!

experimental remotecoverage: a 115 mileimagery which providesimage frame (Fig. 1).

Unlike conventional large scale aerial photographywhich, since the early 1930's has been an obvious data source

C _ _ _ _K- -_|~ I t d g g r ,s-trA rrA

Fig. 1. Map of ERTS-Icoverage from

Test Site and the regionala single ERTS image.

a

_ _ I

Page 3: I1 '----F- / 3

3

GEOGRAPHIC APPLICATIONS OF ERTS-I IMAGERY

'for landscape examiners, ERTS-I imagery provides a signifi-cant regional perspective and at the same time possesses _lenough image clarity to make landscape signatures interpret-able.

Using techniques of comparison in a multi-stage sampling:procedure let us examine a case in point in the detection ofregional landscape change produced by surface stripmining inTennessee.1 Conventional low altitude imagery (10,000')produces readily identifiable stripping signatures at a scale!that is too specific for broad coverage applications. Localchange can be detected by the loss of vegetation and surfacesoil on primary excavations. However, such a scale deniesthe observation of more long range and perhaps more signifi-cant regional consequences induced by surface mining.

.___ Intermediate scale imagery until recently has been themost productive for regional interpretation. Some of themost useful has been the high altitude (60,000') imageryIgenerated by the NASA RB-57 aircraft program. Here again,however, the areal extent of the coverage fails to produce an,adequate regional scale. The RB-57 imagery on a 9" x 9" for-,mat encompasses 289 square miles per frame. Thus approxi-mately 45 high altitude images would be required to cover a13,225 square mile area, the same area covered on a singleframe from ERTS.

ERTS-I not only provides a regional scale perspective,it also allow4s for repetitive-observations at regular inter-vals on an 18 day cycle. With isuch a data base of cycliccoverage, landscape change caninot only be detected but alsomonitored. Quantitative data which can be extracted from thejimagery can provide a base from which to calculate furtherlandscape alteration.

Promising in this regard is a current densitometricanalysis of the ERTS imagery for monitoring landscape change.Although the experiment has just begun, it involves the!microdensity scanning of an image of a surficially mined area,in which strip mines appear injlight tones against a darkforested background (Fig. 2 and 3)..

Gray tone densities are then digitized and computer pro-cessed into a computer map printout and a histogram (frequencyIdistribution). By comparing such machine analyzed data fromdifferent dates of-satellite observations, one could determine:if the percentage of gray tones (light) for the strip mined!area had increased at the expense of the dark tones for the

Page 4: I1 '----F- / 3

J. B. REHDER AND J. R. O'MALLEY

eos

¶KJql1 l I 'Iiylil 111)11 ~~~111( ~ ~ ~··111 I1 ~lEJ!5~111l1t~l)Jll/llglllfl?~ttlill$11111llllrrtr.r~!rllrr~~l~l~ i1C$jcf:Ss1~~jI~·~1I:~1$I( 1$1J1t111.111~11~11~1~jj111'~i1f~1f11(f~~11t11E~111111t11$1~f

J~ llilJJ i~ll ~;~ u II ,q ~1 11 i 1 r tgti131~ Irr tpr i rlrlr ~ ll 1lrt i~ rr~trrtit I~ ltlll 11 4'll~l~l~qil iJlilltlllJ rr lqr~lllll I llllllll I

J7 11 II (111ill !l I J~t*r't~ 1 TI~I ~q~()111· ·(1~t1 11·11111~ ~t! g( 11·)1 TlJ) f1~ 1 1TIltl lfllli1 ~tlt111 1q1~11 1i1(1(1i11111

*3 3 3 333333333333333 3 3 331... 1* .. '.. :133 1 1 :3 3113 3 1?3'E33 ?3n.J 3 . 333 3.1343 3333333333.3333343333333333333333.i.4..33?333.........3t333

3333I3333333313333333333333333333333133.ll~qljr~i1`.............

11II: I lllJl I~lJ~litlJ lJ~?~ Jl t/1: J'l I i ~qq t?1 1lb~ J111 Ill J14tl1 ( 111·1 1.I 1 (111 ll~l(llllJ¶111i1111t 1 1¶1~11 111 11 11jlillll

: i ,,,,~~~~,,,,,,,..,,,,,,,,,,,,........ ...............

), Il jlll lilll ijlj -iji .ij:/ ~·j jS1~ 4 I1131lll~11111111lllllll

7~ ~%1· 111111(1~ij1~!t~? 't1 ~111 ?2$j111i t1)1(1111(1~i~ 1~ ~,11~111 i111111(·1111111(111111

Ji~ ~~~~~~~~~~~~1)i ~ jjjjj:~jj 1~ 4j]~4~~1 jj~Ej1 ~ ~ jJ~ii ~ j 4,kl IffJ '~ II~ll II1~' (I I I I 1(·1?1 11()1111(J(

4, 31333333333:3333443333333333331333333333k3i33 .3333 333 333 3 3 333 33 333....3..........3.. 3.. 3.3l3l ' l3.....(3 .

rI I l~i11 ll{(4(; )?i ·('11 ;(p('ij ·j? 1~i~}i1i~~~~g 1 ,{? .:11~J.1( III~*1 11t( ll1l)l:11flI,,,, I( ilr!·! l·(1Il ~q~{~:~}~ii~%S71~[q~: ~ :~? : [Tl~: ~1~t~lll)~t: 1t T `::[i~ ·-.ll()L[ l) li11·) 111rllllffflllll

(? 4ll ~fgrl)I1(1~.~111 11~5f1 ~ : i~11~ ~1 1~1 1~,1 ll~11nllfflllll~f

(] ljl~lil$~jlltltlllll.1][~,l1]:ll~jll llll11lll1:`~11l~1llj~: ~IC{,(~!~l['lilfl,1~

~S ljjlI1~( jIjI1]Iiqqf·11(? i11(111tt11f~q11l1~~11I141lii1~ ,,I ·l t111Jl(l :(·i 'l~$!fll )I: dl J

. .............................................................,: .................

[~ jjl jljl~i?:( ·iii··i jl·i·lli jljl·~~ijj ljlllllll·lll~ ,,,1(!·I! J~~·1~( 1(1 11111illl I

Jti jl111(i)((ilti*ll $1llil1llll!~l:) 1l] ~1~l~l~lrr lrr lir~ ~·.lzl~lj~\ Jl~(llll[~'~J111 lJll£111(1111

Fig~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. .Des.oee sca .n copue prntu .from. ...

Plateau~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. .euto 10. Not .ih .o e ..n

I~~~loe r~;::::::::ight correspond with a~rrrc tul tip ie

same~~~~~~~~~~~~ ae. One .hn . h u d B abl to cocld .Iat .forest.. ..

cove~r had33333333 33333331*333333333333333. 3 .been.... .altered.333. and . a .r .in wr .increasing. 33. 33

because133333333333333333 33'3333333333 3 of the inrae frequency333333 of31333333 33333 3 3ligh t . .oned .signatures.Hoevr .ca.re........ m u s t 33 3 3 betaken 3o exclude33o

partiularl clouds3333333.33333*33333 3 whicht1 ma y333 b e......................... m i s t a k e. fo lg .m ... ine. scrsinth3 d t a s cn n danlyi. .. 3 r 3 3 3 ¶ 3 3 3 3

.1 1. . .. .. .. .. .. .. .. .. . . . . . . . . .Associated 33w33333lllit and.33 v .is.ib f r o .m a regional perstive3o' i~the~ 3:33a. (1.3.3..3... r. .. lands.pe.lements.re be33in de tectedadmonit

prora challenges us to :i n t e r prt theearths lanscape

pi, ersitodit call fr om a perspecivwhcuntilthi decdewa~~~avaESilable onyfro dscri minating map prductions. ~

Plateau. Reduc.i ..........................

*ower 33*33;*333*.333*3333 333333pon 313 3 33 3433333333333333333333333333 33.3.3.3.3.3.3.3.3. .3.3.3.3.3s Indicated 3n 3333e 3 . .

.... 3333..,. 33n3* 33333,33333

13ver 333333333333334.33333331333333333333*333 33333.333333333333333333333.333333 33333333333334333333333333333,3333..3..3.33.33.33.33cause 33333333333333333 33333333333333333*3333 3333333333333333333333333333333333333333333d.. 3333333333333333333333333333333333333

* 3.r 333333333333 3'33333:3*33.3333333333*33333333333333.3.3.3.3.3.3.3.3.3.3.3..3.3.3...3.3

Fig. 2 Densitometer sccanand and omutr ritot ro

other l an ERTS image of strip mines on the Cu m berland

for change such as: forest lowr right corespond wih actual srip mines urba grwtas indicated in figure 3. ual aeas an

same area. One then, should-.be able to conclude that iorescover had been alterd nd that strip mineThs wer increasingi

becaus of the increased frequency of light toned signatures.

mine scars in the data scan and analysis. ladscape

Assciaed ithandvisbl from a rgoa perspective hc ni i dae s

for change such as: forest alteations, hihway contructio

3ur33333a33333growth;333333333and333 suburban encroachment 3on rural3a 33a 333333

the annual-round of cyclic an 33s3ea33333s3o33n3333l33*3changes33333333,333 333333s33333333333333

with33333agricultural33 and3 forested3*333333333333areas ¶33*33Thus-, it is from333333 3333333333

point33333of3*view33 tha th Ea333*3333:*th33333 R'sources3333t*3 Technology3333333Satellite3333

prog am c alle ges s t inter33333*333r333e3.* 3the333433earth's33333333 33landscape's33333333333333

33periodic.ally from a33333 perspective3333which33until333this33decade333was

avai33333ab333 only33333from*3*3discriminating333*333*33ma .p11 productions. 333*33

,·-

Page 5: I1 '----F- / 3

s~

GEOGRAPHIC APPLICATIONS OF ERTS-I IMAGERY

Fig. 3 ERTS-I image of Eastern Tennessee. October 15, 1972. Note strip mines indicated by arrow which correspond with those in the scan in figure 2. K=Knoxville

References

Rehder, John B. Geographic Applications of ERTS-A Imagery to Rural Landscape Change. Type II Report. NASA Contract NAS5-21726. NASA-ERTS Geography Remote Sensing Project, University of Tennessee, Knoxville, Tennessee, December 1972.

Page 6: I1 '----F- / 3

>

^ 7

Page 7: I1 '----F- / 3
Page 8: I1 '----F- / 3

2ERTS - I IMAGERY DESCRIPTON FORM

NASA-ERTS Geography Remote Sensing ProjectDepartment of GeographyUniversity of TennesseeKnoxville, Tennessee 37916

Dr. John B. Rehder - P.I.James R. O'Malley - As.sistant

Standard Print:

Enhanced Image: Enhancement of surface moisture on

the windward slopes of the Great Smoky Mountains

Image Type: MSS band 7

Altitude: 560 miles

Location: eastern Tennessee/ western North Carolina

Date: October 15. 1972 / 10:43 am

Interpretation/Description: center. Dark tones indicate

prominant areas of surface moisture on the western windward

slopes of the Great Smoky Mtns. The area experienced rains

of 2*+. one day before this observation. Other water signatures

are indicated by dark tones for TVA reservoirs to the north.

Technical Informationprint paper: Kodak Medalist F-h

Enlarger: Beseler

Lens: Schneider 105mm

Aperture: f 5.6

Exposure Time: 65 seconds

Developer/Developing Time Kodak Ektaflo #1

58 seconds

Stop Bath: Kodak Ektaflo Stoo Bath

Fixer: Kodak TRaD,d Fixer

Page 9: I1 '----F- / 3
Page 10: I1 '----F- / 3

NASA-ERTS Geography Remote Sensing ProjectDepartment of GeographyUniversity of TennesseeKnoxville, Tennessee 37916

Dr. John B. Rehder - P.I.James R. O'Malley - Assistant

Standard Print:

Enhanced Image: Enhancement of topographic and hydrologic

Image Type: MSS band 7-printed through positive transparency

Altitude: 560 miles

Location: eastern Tennessee/ western North Carolina

Date: October 15, 1972 10:43 am

Interpretation/Description:Negative print enhances

light toned hydrologic features-reservoirs.streamsand surface

moisture. Topographic grain, surface roughness, slope angles

and lineated ridges are sharply enhanced,

Technical Informationprint paper: Kodak Medalist F-4

Enlarger: Beseler

Lens: Schneider 105mm

Aperture: F 8

Exposure Time: 10 seconds

Developer/Developing Time Kodak Ektaflo #1

1.5 minutes

Stop Bath: Kodak Ektaflo Stop Bath

Fixer: Kodak Raici Fixer

Page 11: I1 '----F- / 3
Page 12: I1 '----F- / 3

4ERTS - I IMAGERY DESCRIPT'ON FORM

NASA-ERTS Geography Remote Sensing ProjectDepartment of GeographyUniversity of TennesseeKnoxville, Tennessee 37916

Dr. John B. Rehder - P.I.James R. O'Malley - Assistant

Standard Print:

Enhanced Image:Enhancement of cultural landscape features:

agricultural lands. highravs.cities,and surface mines.

Image Type: MSS band 5- printed through positive transparency

Altitude: 560 miles

Location: eastern Tennessee/ western North Carolina

Date: October 15, 1972 10:h3 am

Interpretation/Description: Negative print enhances cultural

landscape features by reproducing them in dark tones. Roads

appear as dark lines (Interstate 81 upper right). cities as

large dark masses (Knoxville left of center), broad agricultural

lands to the East, and strip mines as dark lines tothe West.

Technical Informationprint paper: Kodak Medalist F-h

Enlarger: Beseler

Lens: Schneider lQOmnm

Aperture: f_ .

Exposure Time: 5 seconds

Developer/Developing 'Time Kodak Ektaflo #1'

1 minute

Stop Bath: Kodak Ektaflno Stop TRth

Fixer: KodakR 3nid Fipr

Page 13: I1 '----F- / 3
Page 14: I1 '----F- / 3

NASA-ERTS Geography Remote Sensing ProjectDepartment of GeographyUniversity of TennesseeKnoxville, Tennessee 37916

Dr. John B. Rehder - P.I.James R. O'Malley - Assistant

Standard Print: X-to be compared with Images 1-h.6

Enhanced Image:

Image Type: MSS band 5

Altitude: 560 miles

Location: eastern Tennessee

Date: October 15, 1972 10:43 am

Interpretation/Description: Cultural lands~ape features

shown by lighter tones. Cleared land in light shades

in center of image. Dark forested areas to the West.

Strip mines appear as white irregular lines within

the western forested area - Cumberland Plateau.

Technical Informationprint paper: Kodak Medalist F-4

Enlarger: Beseler

Lens: Schneider 105mm

Aperture: f 5^6

Exposure Time: 35 seconds

Developer/Developing Time Kodak Ektaflo #1

1.5 minutes

Stop Bath: Ektaflo StoD Bath

Fixer: Kaoda! np .d FiArp

Page 15: I1 '----F- / 3
Page 16: I1 '----F- / 3

ERTS - I IMAGERY DESCRIPTON FORM

NASA-ERTS Geography Remote Sensing ProjectDepartment of Geography ,University of TennesseeKnoxville, Tennessee 37916

Dr. John B. Rehder - P.I.James R. O'Malley - Assistant

Standard Print:

Enhanced Image: Enhancement of Hydrologic features

Image Type: MSS band 7

Altitude: 560 miles

Location: eastern Tennessee

Date: October 15, 1972 m10:h3 an

Interpretation/Description: Streams and TVA resemrvnrs

appear in dark tones with other phyvsicr features

suppressed.

Technical Informationprint paper: Kodak Medalist F-h

Enlarger: Beseler

Lens: Schneider 10Omm

Aperture: f h ,5

Exposure Time: 10 seconds

Developer/Developing Time Kodak Ektaflo #1[

30 seconds

Stop Bath: Kodak Ektaflo Stop Bath

Fixer: Kodak Rapid Fix"pr

Page 17: I1 '----F- / 3
Page 18: I1 '----F- / 3

7ERTS - I IMAGERY DESCRIPTON FORM

NASA-ERTS Geography Remote Sensing ProjectDepartment of GeographyUniversity of TennesseeKnoxville, Tennessee 37916

Dr. John B. Rehder - P.I.James R. O'Malley - Assistant

Standard Print:

Enhanced Image: 1nhanempntr of .mrfcep rPlief

Image Type: MSS band 7

Altitude: 560 miles

Location: Southern Appalachians/ E. Tenn./ W. N.C.

Date: December 7, 1972 10:38 am

Interpretation/Description: Topographic texture

enhanced in dark tones to indicate slope angles and

relief in the Southern Appalachians. Thp French Broad

River and Asheville, N.C. are located to the left of

center.

Technical Informationprint paper: Kodak Medalist F-h

Enlarger: Beseler

Lens: Schneider 105Qm

Aperture: f ,.6

Exposure Time: 30 seconds

Developer/Developing Time Kodak Ektaflo 1

22 seconds

Stop Bath: Kodak gktaflo Stop path

Fixer: Kodnk Rnipd Fixer.r

Page 19: I1 '----F- / 3
Page 20: I1 '----F- / 3

NASA-ERTS Geography Remote Sensing ProjectDepartment of GeographyUniversity of TennesseeKnoxville, Tennessee 37916

Dr. John B. Rehder - P.I.J James R. O'Malley - Assistant

Standard Print:X- to be compared with TImags 7, 9

Enhanced Image:

Image Type: MSS band 5

Altitude: 560 miles

Location: Southern ApDalachians/ E.Tenn/ W. Ir.n

Date: December 7, 1972 10:38 am

Interpretation/Description: Physiographic provinces

of the Piedmont (east), Southern Appalachians- Blue Ridge,

and Great Smoky Mountains (center), and the Ridge and

Valley Province to the west. A= Ashville. N.C,

Technical Informationprint paper: Kodak Medalist F-h

Enlarger: Beseler

Lens: Schneider 105mm

Aperture: F 8

Exposure Time: 40 seconds

Developer/Developing Time Kodak

1.5 minutes

Stop Bath: Kodak Stop Bath

Fixer: Kndvi x-_,r * ¥-

Ektaflo #1-A&06AAAI% ZLA-

Page 21: I1 '----F- / 3
Page 22: I1 '----F- / 3

9ERTS - I IMAGERY DESCRIPTON FORM

NASA-ERTS Geography Remote Sensing ProjectDepartment of GeographyUniversity of TennesseeKnoxville, Tennessee 37916

Dr. John B. Rehder - P.I.James R. O'Malley - Assistant

Standard Print:X- to be compared with Images 7.8

Enhanced Image:

Image Type: MSS band 7

Altitude: 560 miles

Location: Southern Appalachians/ E. Tenn./ W- NX.-

Date: December 7. 1972 10:38am

Interpretation/Description: Phvsiographic provinces

of the Piedmont (east), Southern ADpalachians - Blue Ridge,

Great Smoky Mountains (center), and the Ridge and Valley

to the Northwest. Hydrologic features appear in the

darkest tones. A- Asheville, N.C.

Technical Informationprint paper: Kodak Medalist F4i

Enlarger: Beseler

Lens: Schneider 105mm

Aperture: f 8

Exposure Time: 25 seconds

Developer/Developing Time Kodak El

1.5 minutes

Stop Bath: Kodak Ektaflo Stop Bath

Fixer: Kodak Rapid Fixer

ktaflo 0#1