4
1 1 Computational Biophysics @ GW II. Biowulf Cluster (64 nodes) I. Comp. Biophys Group 3 faculty, 1 postdoc, 5 grads Multi-Scale Approach Protein Modeling Bio-Networks Protein Complex Network Evolution HIV MA (Bukrinsky) CDK2 HIV/Cancer (Kashanchi) Metabolic Control in Plants (Turano) Hypoxia Sensing (Simha, Donaldson) Gene Regulatory Immunodominance 2 Single Protein Modeling: Structures MAQTDVILCPDTHQKAVCLEKIR EYFDCGLPSAQWCVIKNALLTFR PNMDKILYVVACQGGARASLTLR GAWETRKLHCMQPIVYTTLNGLT MNSAKPLVVTIYSQYNVHLRFDD GFDSKLACVNPMRTYEIWLETFR MLKSPQCNYIAVRIHGRYLDFGS CVNKMYHGFDAALLTRQVLPSLT QIVLTAGNYIGRGPNIPCLDIGS EFIINCAQLVRENHWGVSGLRAN LAGTRVNIMPCDEWSILSLMKIH FHDISAQVYTERPQMVKRLAFRA TCNMRWDPSIVYTWQFGHLCVHE WMTVINEDSAPILCWHGGLMFGN VVEERPAADIMNWGLRCSLKELT ILKNETVGGAPQWYIVHNQFNAK NQKDIETRYPMKSLVSCILHIKM LMKIHYDTFREWQVNSCKLDDVS MSKALLVPQWIVRCSYTPLKWPS TCNMRWDPSIVYTWQFGHLSLVT CAKVINEDSAPILCTRSGLRLTD VNYIPPAADIAQREMRCSLTNQL VDGHETVGGAPQWYFAKRLCRGA DEYLIETRYPMKSLILSTAEEKL ATDIHYDAGREWQVNSFELITSV ETLDLLVPQWIVRCSHTFDIPQS 100,000 proteins in human alone! 1000 folds! φ ψ A K R W

I Multi-Scale Approach€¦ · TAACS -5.85 kcal/mol FAALS -5.83 kcal/mol TAALS -5.30 kcal/mol. 4 7 Oxygen Sensing (Hypoxia Reponse Network) Biologist Engineer Mathematician Flux Analysis

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

1

1

Computational Biophysics @ GW

II. Biowulf Cluster (64 nodes)

I. Comp. Biophys Group

3 faculty, 1 postdoc, 5 grads

Multi-Scale Approach

Protein Modeling

Bio-Networks

Protein Complex

Network Evolution

HIV MA (Bukrinsky)CDK2 HIV/Cancer (Kashanchi)

Metabolic Control in Plants (Turano)Hypoxia Sensing (Simha, Donaldson)

Gene RegulatoryImmunodominance

2

Single Protein Modeling: StructuresMAQTDVILCPDTHQKAVCLEKIR EYFDCGLPSAQWCVIKNALLTFR

PNMDKILYVVACQGGARASLTLRGAWETRKLHCMQPIVYTTLNGLT

MNSAKPLVVTIYSQYNVHLRFDDGFDSKLACVNPMRTYEIWLETFRMLKSPQCNYIAVRIHGRYLDFGS

CVNKMYHGFDAALLTRQVLPSLTQIVLTAGNYIGRGPNIPCLDIGSEFIINCAQLVRENHWGVSGLRAN

LAGTRVNIMPCDEWSILSLMKIHFHDISAQVYTERPQMVKRLAFRA

TCNMRWDPSIVYTWQFGHLCVHEWMTVINEDSAPILCWHGGLMFGNVVEERPAADIMNWGLRCSLKELT

ILKNETVGGAPQWYIVHNQFNAKNQKDIETRYPMKSLVSCILHIKMLMKIHYDTFREWQVNSCKLDDVS

MSKALLVPQWIVRCSYTPLKWPSTCNMRWDPSIVYTWQFGHLSLVT

CAKVINEDSAPILCTRSGLRLTDVNYIPPAADIAQREMRCSLTNQLVDGHETVGGAPQWYFAKRLCRGA

DEYLIETRYPMKSLILSTAEEKLATDIHYDAGREWQVNSFELITSVETLDLLVPQWIVRCSHTFDIPQS

100,000 proteins in human alone! 1000 folds!

φ

ψ

A

K

R

W

2

3

Design Procedure

100

101

102

103

104

105

Designability (Number of "Compatible" Sequences)

100

101

102

Num

ber

of S

truc

ture

s

II. Pick Top Folds

III. Sequence Design and Verification

I. Model Computation

βαβ motif

2nac 2bnh

4

Single Protein Modeling: Drug Design

ATP-analogInhibitors

New Class of KinaseInhibitors

DoublingDNA

Cell Growth

Cell Division (Mitosis)

R

Cell Cycle & Cancer HIV-1 Replication

3

5

Experimental Verification (Fatah Kashanchi’s group)

cdk2cdk2/E

ATP (µm) - 0 1 10 50 100 0 1 10 50 100

Biotin-Tat (41/44) Biotin-Purv.A

cdk2cdk2

1 2 3 4 5 6 7 8 9 10

cyc EWB

cyc E

cdk2cdk2/E

ATP (µm) - 0 1 10 50 100 0 1 10 50 100

Biotin-Tat (41/44) Biotin-Purv.A

cdk2cdk2

1 2 3 4 5 6 7 8 9 10

cyc EWB

cyc E

PBMC Infection (HIV-1 UG/92/029, SI)

0

200

400

600

800

1000

1200

0 6 12 18 24 Days Post Infection

p24

(pg/

ml)

PBMC

PBMC + SI

PBMC + SI + WT peptide

PBMC + SI + 41/44 peptide

p24

(pg/

ml)

PBMC Infection (HIV-1 THA/92/00, NSI)

0

500

1000

1500

2000

2500

0 6 12 18 24

Days Post Infection

PBMC

PBMC + NSI

PBMC + NSI + WT peptide

PBMC + NSI + 41/44 peptide

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 110

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11

126

WT

WT

WT

134

150

234

180

178

WT

WT

GST-Cdk2

GST-Cdk9 - - - - - - - --

B)

--

1 8765432 11109

8765432 9

Tat Peptide

Cdk2

Tat Peptide (wt) - + - - - - - - - - +

-Tat Peptide (41/44) - + + + + + + + + -

- - - - - - -- + +GST -Cdk9 -GST -Cdk2 + + + + + + + + + - -

WT WT

126

134

150

234

180

178

1 8765432 11109

8765432 9

Tat Peptide

Cdk2

Tat Peptide (wt) - + - - - - - - - - +

-Tat Peptide (41/44) - + + + + + + + + -

- - - - - - -- + +GST -Cdk9 -GST -Cdk2 + + + + + + + + + - -

WT WT

126

134

150

234

180

178A)

Phos

phor

oIm

ager

Uni

ts

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 110

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11

126

WT

WT

WT

134

150

234

180

178

WT

WT

GST-Cdk2

GST-Cdk9 - - - - - - - --

B)

--

1 8765432 11109

8765432 9

Tat Peptide

Cdk2

Tat Peptide (wt) - + - - - - - - - - +

-Tat Peptide (41/44) - + + + + + + + + -

- - - - - - -- + +GST -Cdk9 -GST -Cdk2 + + + + + + + + + - -

WT WT

126

134

150

234

180

178

1 8765432 11109

8765432 9

Tat Peptide

Cdk2

Tat Peptide (wt) - + - - - - - - - - +

-Tat Peptide (41/44) - + + + + + + + + -

- - - - - - -- + +GST -Cdk9 -GST -Cdk2 + + + + + + + + + - -

WT WT

126

134

150

234

180

178A)

Phos

phor

oIm

ager

Uni

ts

Mode of Action !

in vitro binding in vivo ChIP

in vitro mutagenesis cell culture vital suppression

6

From Nodes to Network Cdk2 knockout mice are viable.

P. Kaldis et al, NCI, Frederick, MD, Curr Biol 2003, 13:1775-1785

TAALD -8.04 kcal/mol TAALE -6.35 kcal/mol LAALS -5.85 kcal/mol TAACS -5.85 kcal/mol FAALS -5.83 kcal/mol

TAALS -5.30 kcal/mol

4

7

Oxygen Sensing (Hypoxia Reponse Network)

Biologist Engineer Mathematician

Flux Analysis

Control Theory –

• Kirchhoff’s Conservation Law

• Second Law of Thermodynamics: positive entropy production(dc current and voltage, I V = Heat Dissapation)

3. Flux and Chemical Potential -> nonlinear relation(low external flux -> linear Hill-Onsager’s Theory)

8

Oxygen Low – 90% of the flux Oxygen High – 90% of the flux

Pathway Switch Leads to Sharp Oxygen Response