30
EE143 Lecture #9 Professor Nathan Cheung, U.C. Berkeley 1 Properties of Error Function erf(z) And Complementary Error Function erfc(z) erf (z) = 2 π π  ⌠  0 z e -y 2  dy erfc (z)  1 - erf (z) erf (0) = 0 erf( ) = 1 erf(- ) = - 1 erf (z)  2 π  z for z <<1 erfc (z)  1 π  e -z 2 z  for z >>1  d erf(z) dz  = - d erfc(z) dz  = 2 π  e 2 -z d 2  erf(z) dz 2  = - 4 π  z e 2 -z  ⌠  0 z erfc(y)dy  = z erfc(z) + 1 π  (1-e -z 2  ) ⌠  0  erfc(z)dz = 1 π

I 6 Diffusion

Embed Size (px)

Citation preview

Page 1: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 1/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 1

Properties of Error Function erf(z)

And Complementary Error Function erfc(z)

erf (z) =2

ππ  ⌡⌠ 

0

z

e-y2dy erfc (z) ≡≡ 1 - erf (z)

erf (0) = 0 erf( ∞) = 1 erf(-∞ ) = - 1

erf (z) ≈  2π

z for z <<1 erfc (z) ≈  1π

 e-z2

zfor z >>1

 d erf(z)

dz= -

d erfc(z)

dz=

2

πe

2-z

d2

erf(z)

dz2 = -

4

πz e

2-z

  ⌡⌠  0 

erfc(y)dy = z erfc(z) + 1π

(1-e-z2 ) ⌡⌠  0 

∞erfc(z)dz = 1

π

Page 2: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 2/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 2

The value of erf(z) can be found in mathematical tables, as build-in functions in calculators andspread sheets. If you have a programmable calculator, you may find the following approximation useful (it is

accurate to 1 part in 107): erf(z) = 1 - (a1T + a2T2 +a3T 3 +a 4T4 +a5T 5) e-z2

where T =1

1+P zand P = 0.3275911

a1

 = 0.254829592 a2

 = -0.284496736 a3

 = 1.421413741 a4

 = -1.453152027 a5

 = 1.061405429

z

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

erfc(z)

exp(-z^2)

Page 3: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 3/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 3

Dopant Diffusion

(1) Predeposition dopant gas

SiO2SiO2

Si

* dose control

(2) Drive-in

Turn off dopant gas

or seal surface with oxideSiO2

SiO2

Si

SiO2

Doped Si region

* profile control

(junction depth;concentration)

Note: Dopant predeposition by diffusion can also be replaced a shallow implantation step

Page 4: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 4/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 4

Dopant Diffusion Sources

(a) Gas Source: AsH3, PH3, B2H6

(b) Solid Source BN Si BN Si

SiO2

(c) Spin-on-glass SiO2+dopant oxide

Page 5: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 5/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 5

(d) Liquid Source.

Page 6: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 6/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 6

Diffusion Mechanisms

(a) Interstitial (b) Substitutional

Page 7: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 7/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 7

Diffusion Mechanisms : ( c) Interstitialcy

Page 8: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 8/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 8

Diffusion Mechanisms : (d) Kick-Out, (e) Frank Turnbull

Page 9: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 9/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 9

Mathematics of Diffusion

Fick’s First Law:

( )

sec][

:

,,

2cm D

constant diffusion D  x

t  xC  Dt  x J 

=

⋅−=

 J 

C(x)

 x

Page 10: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 10/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 10

Using the Continuity Equation

( )

 Equation Diffusion

 x

C  D

 x x

 J 

t  x J t 

t  xC 

   

  

 =−=⇒

=⋅∇+

∂0,

,

Page 11: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 11/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 11

If D is independent of C

(i.e., C is independent of x).

( ) ( )∂

C x t 

t  D C x t 

 x

, ,=2

2

Concentration Independent Diffusion Equation

Page 12: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 12/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 12

Temperature Dependence of D

.,

/106.8

0

5

0

tabulated are E  D

kelvineV 

constant  Boltzmank 

eV inenergyactivation E 

e D D

 A

 A

kT  A E 

×=

==

=

Page 13: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 13/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 13

kT E 

A

e D D −

=Diffusion Coefficients of Impurities in Si

Page 14: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 14/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 14

A. Predeposition Diffusion Profile

( )

( )

( )

= = =

= ∞ =

= =

 Boundary Conditions

 Initial Condition

C x t C solid solubility of the dopant 

C x t 

C x t 

:

:

,

,

,

0

0

0 0

0

Page 15: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 15/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 15

Solid Solubility of Common Impurities in Si

Page 16: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 16/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 16

( )

≡=

  

  

 ⋅=

−⋅=

∫ 

0

0

2

00

2

2

21,

2

C Dt 

Dt 

x erfc C 

dy e C t x C  Dt 

ππ

C 0

t 3>t 2

t 2>t 1

 x=0

 xt 1

Characteristic distance for diffusion.

Surface Concentration (solid solubility limit)

Page 17: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 17/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 17

( ) ( )

 Dt  x

e Dt 

Co

 x

t  Dt C 

dxt  xC t Q

42

2

,

0

0

−−=

∝⋅

=

= ∫ ∞

π∂

π

[1] Predeposition dose

[2] Conc. gradient 

Page 18: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 18/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 18

B. Drive-in Profile

( )

( )( )

⋅==

=

=∞=•

=

Dt x erfc Co t x C 

Conditions Initial 

t x C 

Conditions Boundary 

20,

:

0

0,

:

0∂∂

∂∂

t

C(x)

 x=0

Predep’s (Dt)

Page 19: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 19/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 19

( ) ( ) xQt  xC  δ⋅≈= 0,

C(x)

 At t=0

 x

Shallow Predep Approximation:

( ) ( )

( )

C x t 

Q

 Dt  edrive in

 x Dt 

drive in, = −

−π

2

4C(x)

x

t 1 t 2

( )

Q

C Dt  predep

=

⋅0 2

π

Solution of Drive-in Profile :

Page 20: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 20/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 20

indrive

 predep

 Dt 

 Dt  R

=

x

Approximation over-estimates conc. here

Approximation

under-estimates

conc here

Good

agreement

C(x)/C 0

R=1 

R=0.25 

Exact solution 

Delta function 

Approximation 

How good is the δδ(x) approximation ?

Page 21: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 21/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 21

Summary of Predep + Drive-in

( ) 22

2

42

1

22

110

2

2

1

1

2 t  D x

et  D

t  DC  xC 

 D

 D

    

   

  

  =

==

==

π

 Diffusivity at Predep temperature

 Predep time

 Diffusivity at Drive-in temperature

 Drive-in time

Page 22: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 22/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 22

Semilog Plots of normalized Concentration versus depth

Predep Drive-in

Page 23: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 23/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley 23

Diffusion of Gaussian Implantation Profile

 Note: φ is the implantation dose

Page 24: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 24/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley24

The exact solutions with∂C

∂x

= 0 at x = 0 (. i.e. no dopant loss through surface)

can be constructed by adding another full gaus sian placed at -R  p  [Method of 

Images].

C(x, t) =φ

2π (∆R 2

 p+ 2Dt)1/2

 ⋅ [e-

(x - R  p

)2

2 (∆R 2

 p+ 2Dt) + e

-(x + R 

 p)2

2 (∆R 2

 p+ 2Dt) ]

We can see that in the limit (Dt)1/2 >> R  p and ∆R  p ,

C(x,t) →  φe

- x2 /4Dt

(πDt)1/2(the half-gaussian drive-in solution)

Diffusion of Gaussian Implantation Profile (arbitrary R p)

Page 25: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 25/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley25

The Thermal Budget

Dopants will redistribute when subjected to various thermal cycles of IC processing steps. If the diffusion constants at each step are independent of 

dopant concentration, the diffusion equation can be written as :

∂C

∂t= D(t)

∂2C

∂x2

Let β (t) ≡  ⌡⌠ 

0

tD(t’)dt’

∴ D(t) =∂ β∂t

Using∂C

∂t =∂C

∂β •∂ β∂t

The diffusion equation becomes:∂C

∂β •∂ β∂t

=∂ β∂t

 •∂2C

∂x2or 

∂C

∂β =∂2C

∂x2

Page 26: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 26/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley26

When we compare that to a standard diffusion equation with D being time-

independent:∂C

∂ (Dt)=

∂2C

∂x2, we can see that replacing the (Dt) product in

the standard solution by β will also satisfy the time-dependent D diffusionequation.

Example 

Consider a series of high-temperature processing cycles at { temperature T1,

time duration t1} ,{ temperature T2, time duration t2}, etc. The

corresponding diffusion constants will be D1, D2,... . Then, β = D1t1+D2t2

+..... = (Dt)effective

** The sum of Dt products is sometimes referred to as the “thermal budget”

of the process. For small dimension IC devices, dopant redistribution has to be minimized and we need low thermal budget processes.

Page 27: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 27/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley27

T(t)

time

∑=i

ieffective Dt  Dt 

 Budget Thermal 

)()(

well

drive-in

step

S/D

Anneal

step

* For a complete process flow, only those steps with high Dt values are important

Examples: Well drive-in and S/D annealing steps

Page 28: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 28/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley28

Establish the explicit relationship between:

 No

(surface concentration) ,

x j

(junction depth),

 NB

(background concentration),

R S

(sheet resistance),

Once any thr ee parameters are known, the fourth one can be determined.

Irvin’s Curves

 p-type Erfcn-type Erfc

 p-type half-gaussian

n-type half-gaussian

* 4 sets of curves

See Jaeger text 

Page 29: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 29/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley29

Approach

1) The dopant profile (erfc or half-gaussian )can be uniquely determined if one knows the

concentration values at two depth positions.

2) We will use the concentration values No at x=0 and NB at x=x j to determine the profile C(x).

(i.e., we can determine the Dt value)

3) Once the profile C(x) is known, the sheet resistance R S can be integrated numerically from:

4) The Irvin’s Curves are plots of No versus ( R s• x j ) for various NB.

( ) ( )[ ]∫  −⋅=

 j x B dx N  xC  xq

 Rs

0

1

µ

Motivation to generate the Irvin’s CurvesBoth NB(4-point-probe), R S (4-point probe) and x j (junction staining) can be conveniently

measured experimentally but not No (requires secondary ion mass spectrometry).

However, these four parameters are related.

Page 30: I 6 Diffusion

7/27/2019 I 6 Diffusion

http://slidepdf.com/reader/full/i-6-diffusion 30/30

EE143 Lecture #9Professor Nathan Cheung, U.C. Berkeley30

Figure illustrating the relationship of No,NB,x j, and R S