14
Per. Mineral. (2008), 77, 79-91 doi:10.2451/2008PM0006 http://go.to/permin PERIODICO di MINERALOGIA established in 1930 An International Journal of MINERALOGY, CRYSTALLOGRAPHY, GEOCHEMISTRY, ORE DEPOSITS, PETROLOGY, VOLCANOLOGY and applied topics on Environment, Archaeometry and Cultural Heritage l ABSTRACT. —Two clinoptilolite-bearing ignimbrites belonging to Tertiary Sardinian volcanism and out- cropping in different localities were treated with 2M NaOH, 3M NaOH and 2M NaOH + Al(OH) 3 at 100, 80 and 70 °C in order to enhance their cation exchange capacity. Bronze Teflon-lined autoclaves and a reactor equipped with magnetic stirrer were used for hydrothermal interactions, with interaction times ranging from 30 minutes to 36 hours. In all experimental cycles, clinoptilolite dissolution was followed by Na-P1 zeolite crystallization. The newly- formed zeolite changes from typical ball-shaped morphology to star-shaped grains with interaction increasing. The best interacting solution was 2M NaOH+Al(OH) 3 . The cation exchange capacities (CEC) of the reacted products were higher than those of the raw materials (up to 2.5 times, i.e., from 88 to 268 meq/100 g). The use of a reactor equipped with magnetic stirrer strongly reduces interaction times for complete clinoptilolite dissolution and Na-P1 crystallization. (e.g. < 6 hours at 80 °C). RIASSUNTO. Al fine di aumentarne la capacità di scambio cationico (CEC), due campioni di ignimbriti Terziarie pomiceo-cineritiche della Sardegna, il cui vetro era stato trasformato in clinoptilolite, sono state fatte interagire con soluzioni 2M NaOH, 3M NaOH and 2M NaOH + Al(OH) 3 a 100, 80 and 70 °C. Per le interazioni idrotermali sono state utilizzate autoclavi rivestite in Teflon ed un reattore con agitatore magnetico con tempi di interazione compresi tra 30 minuti e 36 ore. In tutti i cicli sperimentali alla dissoluzione della clinoptilolite è seguita la cristallizzazione di una nuova zeolite ascrivibile alla Na-P1. La zeolite di neoformazione si presenta inizialmente in piccole sfere che, all’aumentare dei tempi di interazione, si trasformano in individui con una morfologia stellata. La migliore soluzione interagente e risultata essere la 2M NaOH+Al(OH) 3 . La capacità di scambio cationico nei prodotti sintetici è aumentata anche di due volte e mezzo rispetto a quella del materiale naturale (da 88 a 268 meq/100 g). E’ importante sottolineare che, utilizzando il reattore con agitatore magnetico, la completa dissoluzione della clinoptilolite e cristallizzazione della Na-P1 si realizza in meno di sei ore a 80 °C. KEY WORDS: Ignimbrite, clinoptilolite, cation exchange capacity, hydrothermal synthesis, Na-P1 zeolite. Hydrothermal treatment at low temperature of Sardinian clinoptilolite- bearing ignimbrites for increasing cation exchange capacity ALESSIA DE FAZIO 1 , PIETRO BROTZU 1 , MARIA ROSARIA GHIARA* 1 , MARIA LUISA FERCIA 2 , ROBERTO LONIS 2 and ANTONIO SAU 2 1 Dipartimento di Scienze della Terra, Università degli Studi di Napoli “Federico II”, Via Mezzocannone, 8, 80134 Napoli, Italy 2 PROGEMISA S.p.A. Agenzia Governativa Regionale, Via Contivecchi, 09100 Cagliari, Italy Submitted, October 2007 - Accepted, January 2008 * Corresponding author, E-mail: [email protected]

Hydrothermal treatment at low temperature of Sardinian ... › riviste › permin › testi › V77.1 › 2008PM0006.pdfPERIODICO di MINERALOGIA established in 1930 An International

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • Per. Mineral. (2008), 77, 79-91 doi:10.2451/2008PM0006 http://go.to/permin

    PERIODICO di MINERALOGIAestablished in 1930

    An International Journal ofMINERALOGY, CRYSTALLOGRAPHY, GEOCHEMISTRY,ORE DEPOSITS, PETROLOGY, VOLCANOLOGYandappliedtopicsonEnvironment,ArchaeometryandCultural Heritage

    l

    AbstrAct.—Twoclinoptilolite-bearingignimbritesbelongingtoTertiarySardinianvolcanismandout-cropping in different localities were treated with2MNaOH,3MNaOHand2MNaOH+Al(OH)3at100,80and70°Cinordertoenhancetheircationexchangecapacity.BronzeTeflon-linedautoclavesanda reactorequippedwithmagneticstirrerwereusedforhydrothermalinteractions,withinteractiontimes rangingfrom30minutes to36hours. Inallexperimentalcycles,clinoptilolitedissolutionwasfollowedbyNa-P1zeolitecrystallization.Thenewly-formed zeolite changes from typical ball-shapedmorphology to star-shapedgrainswith interactionincreasing.The best interacting solution was 2MNaOH+Al(OH)3. The cation exchange capacities(CEC)ofthereactedproductswerehigherthanthoseoftherawmaterials(upto2.5times,i.e., from88to268meq/100g).Theuseofareactorequippedwithmagneticstirrerstronglyreduces interaction timesfor complete clinoptilolite dissolution and Na-P1crystallization.(e.g.<6hoursat80°C).

    riAssunto. — Alfinediaumentarnelacapacitàdiscambiocationico(CEC),duecampionidiignimbriti

    Terziariepomiceo-cineritichedellaSardegna,ilcuivetroerastatotrasformatoinclinoptilolite,sonostatefatteinteragireconsoluzioni2MNaOH,3MNaOHand2MNaOH+Al(OH)3a100,80and70°C.Perleinterazioniidrotermalisonostateutilizzateautoclavirivestite in Teflon ed un reattore con agitatoremagnetico con tempi di interazione compresi tra30 minuti e 36 ore. In tutti i cicli sperimentalialla dissoluzione della clinoptilolite è seguita lacristallizzazione di una nuova zeolite ascrivibileallaNa-P1.Lazeolitedineoformazionesipresentainizialmenteinpiccolesfereche,all’aumentaredeitempi di interazione, si trasformano in individuiconunamorfologiastellata.Lamiglioresoluzioneinteragenteerisultataesserela2MNaOH+Al(OH)3.Lacapacitàdiscambiocationiconeiprodottisinteticièaumentataanchediduevolteemezzorispettoaquelladelmaterialenaturale(da88a268meq/100g).E’importantesottolineareche,utilizzandoilreattoreconagitatoremagnetico, lacompletadissoluzionedellaclinoptiloliteecristallizzazionedellaNa-P1sirealizzainmenodiseiorea80°C.

    Key Words: Ignimbrite, clinoptilolite, cation exchange capacity, hydrothermal synthesis, Na-P1 zeolite.

    Hydrothermal treatment at low temperature of Sardinian clinoptilolite-bearing ignimbrites for increasing cation exchange capacity

    AlessiA de FAzio1, Pietro brotzu1, MAriA rosAriA GhiArA* 1, MAriA luisA FerciA 2, roberto lonis 2 and Antonio sAu 2

    1DipartimentodiScienzedellaTerra,UniversitàdegliStudidiNapoli“FedericoII”,ViaMezzocannone,8,80134Napoli,Italy

    2PROGEMISAS.p.A.AgenziaGovernativaRegionale,ViaContivecchi,09100Cagliari,Italy

    Submitted, October 2007 - Accepted, January 2008

    *Correspondingauthor,E-mail:[email protected]

  • 80 A.DeFazio,P.Brotzu,M.R.Ghiara,M.L.Fercia,R.LonisandA.Sau

    introduction

    The poorly welded ignimbrites and relateddeposits (e.g., epiclastites and base surges)belongingtoSardinianTertiaryvolcanism(Leccaet al.,1997)underwentpostdepositionalalterationprocesses,leadingtomoreorlessseverechangesin the glassy components (e.g. pumice, shardsandash)whichareoften replacedbyamosaicof authigenic minerals (Ghiara et al., 1997,1999,2000;Langellaet al., 1998;Morbidelliet al., 1999,2001;Cerriet al., 2001,2002).InthecentraltonorthernSardinianignimbrites,essentialauthigenic minerals, in order of decreasingabundance,are:clinoptilolite,smectite,opale-CTandquartz;mordenite,analcime,erionite,calcite,glauconite, chalcedony and adularia are alsolocallyobserved.Clinoptiloliteisanaturalzeolitecurrentlyminedallovertheworldandusedinthefieldsofagriculture,industryandpollutioncontrol(Mumpton,1984;Pansini,1996;Kazantsevaet al., 1997).

    TexturalevidenceindicatesthattheauthigenicclinoptiloliteoftheSardinianignimbritesgrowsonglassycomponents(ash,shard)orfillsvugsandtubulartosubsphericalvesicles(Morbidelliet al., 1999).AccordingtoMorbidelliet al., (1999)andCerriet al., (2001),alterationprocessesaredrivenbycirculatingmineralizedhydrothermalfluids.

    Theamountofclinoptiloliteinthepoorlyweldedignimbritesfromcentral-northernSardiniavariesgreatly,from32-81wt.%,withmanysamplesintherange45-69wt.%(Cerriet al., 2002).Notably,inseveralignimbriticflows,thereisevidenceofsuddenvariations inclinoptilolitecontent,evenwithin a single cooling unit (Morbidelli et al.,2001).Forinstance,intheCaseOddoraiignimbriticsequence(70mthick),theclinoptilolitecontentprogressivelyincreasesfromthelower(~30wt.%)totheintermediateportions(~60wt.%),andthandecreasestoafewwt.%towardtheupperportion(Morbidelliet al., 2001).Thisisamajorproblemforminingpurposes.Inspiteofthis,somethickdepositsfromtheBonorvaandRomanaareashavehighclinoptilolitecontentsuitableforlarge-scalemining.

    According to the cross exchangemethod theclinoptilolite-bearing pyroclastic flows fromcentral-northernSardiniahaveacationexchangecapacity(CEC)intherange0.35-1.20meq/gwith

    manysamplesintherange0.87-1.20meq/g(Cerriet al., 2002). If compared with other depositsminedintheworld,theSardinianzeolititesfromthecentral-northernSardiniahaveonaveragealowcationexchangecapacity.

    It iswell-knownthathigh-powerzeolitescanbe synthesized throughhydrothermal treatmentwith strongly alkaline solutions (e.g., 2-3 MNaOH) starting fromvariousnaturalmaterials,including clinoptilolite-bearing ignimbrites.Asanexample,threeKoreanacidictuffscontainingdifferingamountsofclinoptiloliteandmordenite,treatedwitha2MNaOHsolutionat103°Cfortimes ranging from1 to 16hours, experiencedclinoptiloliteandmordenitecompletedissolution,forming zeolite Na-P aggregates (Kang andEgashira, 1997). The CEC of the synthesizedproductswerehigherbymorethan2timesthanthoseof thestartingmaterialsand ranged from175to418,129to286and108to271meq/100grespectively.Therefore,hydrothermalprocessesabletoenhancetheexchangecapacityofnaturalzeolite-bearingrocksinnorthernSardiniamustbeconsidered.

    Inthiswork,thehydrothermaltreatmentatlowtemperature(i.e.,70,80and100°C)withNaOHandNaOH+Al(OH)3solutionsoftwodifferentclinoptilolite-bearingignimbrites(samples1-2aandPON16)outcroppingnearthevillagesofBonorvaand Romana (northern Sardinia) respectivelywasinvestigated.Theaimsofthisstudyweretoidentifythenewly-formedmineralsandtodefinetheexchangecapacityof syntheticproducts, inordertohighlightthepotentialuseofSardiniannaturalclinoptilolite-bearingignimbrites.

    exPeriMentAl Methods And MAteriAls

    Samples

    Asrawmaterialstwopoorlyweldedignimbriteblockssized25x25x25cmweresamplednearCaseOddorai(sample1-2AIGMIF.480sez.IIForestaBurgos)andRomanavillage(samplePON16-IGMIF.479sez.IIMara).Bothpyroclasticrockshaveaeutaxitic textureandaporphyritic indexvariable from5 to30wt.%.Thephenocrysticassemblageisdominatedbyplagioclase,quartz,biotite,rareK-feldspar,andminorclinopyroxeneclinopyroxenegrains. The main lithic clasts (~5wt. %) are

  • Hydrothermal treatment at low temperature of Sardinian clinoptilolite-bearing ignimbrites for increasing.... 81

    representedbyangularorfragmentsof“andesitic”rocks and welded ignimbrites. A mosaic ofclinoptilolitegrainsalmostreplacescuspateshardsandtheashymatrix;euhedralcrystalsalsooccurwithinvugsandtubularorsubsphericalvesicles.Lastly,smectiteonglassycomponentsandchloriteonbiotitelathsmaybeobservedasnewlyformedphases;CTopallepispheres,minornewly-formedhematitegrainsandlatefibresofmordeniteoccurlocally. Quantitative diffractometric analysescarriedouton1-2AsampleusingthecombinedRietveld-RIR(ReferenceIntensityRatio)method(for major details see Morbidelli et al., 2001andreferencestherein)indicatedaclinoptilolitecontentof53±3wt.%andloweramountsofCTopal(~4wt.%),glassycomponents(~8wt.%)andclayminerals(~2wt.%).Ahigherclinoptilolitecontent(~62±2wt.%)withminoramountsofglass(~6wt.%)andmordenite(~5wt.%)occursinthePON16sample.

    Thechemicalformula,determinatedbyelectronmicroprobeanalysis,ofclinoptilolitefromsample1-2Ais:(Na0.43K2.41Ca0.90Mg0.73)(Si29.72Al16.16O72)16.66H2O.

    Blocks 1-2A and PON16 were crushed andreduced toparticleswithgrain sizebetween5-0.7mmand3-0.5mm,respectively.Onlyforthe1-2Asamplethefractionpassingthrougha0.25-mmsievewasalsocollected.Since thepresentstudyispartofaresearchprojectforagriculturalapplicationsofSardinianzeolitites(PONProjectn.12701),onlytheformergrainsizes(i.e.,5-0.7and3-0.5)wereusedinhydrothermalexperimentscarriedoutina4560Parrreactor(seebelow).

    Mineralogical and chemical analyses

    Rock mineralogy and newly-formed phasesinthesynthesizedproductswereinvestigatedbyX-ray powder diffraction in the 5°-75° 2θ range (SEIFERTPAD4diffractometerequippedwitha pyrolitic graphite analyzer crystal) using thefollowingoperativeconditions:unfilteredCuKα radiation, 40 KV, 30 mA, step size = 0.02°,countingtime18sforeachstep,0.5°divergenceslit, 0.1mm receiving slit, 0.5° antiscatter slit.Sideloadingwasusedforallsamplesinordertominimizepreferredorientationeffects.

    Newly-formed phase morphology in thesynthesizedproductswasobservedbyscanning

    electron microscopy (SEM LEO EVO 50VP,OxfordInstruments,ProgemisaS.p.A.Laboratory,Cagliari).

    Al concentrations in the filtered interactingsolutionswasdeterminedbyinductivelycoupledplasmaopticalemissionspectrometry(ICP-OESPerkinElmerOptima2100DV).DetectionlimitforAlwas:0.20mg/l.

    CEC analyses

    Bulk-rock cation exchange capacity wasdetermined in theProgemisaS.p.A.LaboratoryfollowingtherecommendationsofMinatoet al., (1997).

    Synthesis

    Twoexperimentalapparatuswereemployed:a)bronzeTeflon-linedautoclaves,andb)a4560Parrreactorequippedwithmagneticstirrer.Asfora)5.00gofrawmaterialwereputintotheautoclavesanddispersedin50mlofthefollowinginteractingsolutions:2MNaOH,3MNaOHand2MNaOH+Al(OH)3.TheAl(OH)3concentrationinthelattersolutionwas10wt.%.Unstirredhydrothermalexperimentsintheautoclaveswascarriedoutat80±3°Cand100±3°Cforvarioustimesupto39hours(Table1).Inthefirstsixhours,thereactedproductswereanalysedhourlyandthaneverythreehours.Asregardstheb)hydrothermalapparatus,15.00gofrawmaterialwiththecoarsergrainsizewereputintothereactoranddispersedin150mlof2MNaOH+Al(OH)3solution.Asexpectedthehydrothermalreactionsismuchfasterinthestirredexperimentswithinteractiontimesrangingfrom½to6hours(Table2).Thehydrothermalexperimentswascarriedoutat70±3°C,80±3°Cand100±3°Candthereactedproductswereanalysedat½hourandthenhourly.Afterhydrothermalinteraction,thevesselwasquenchedtoroomtemperatureandthesolidproductwasfiltered,washedthreetimeswithdeionizedwater,driedatroomtemperature,andstoredinapolyethylenebottle.

    results And discussion

    Theoveralldata-setofhydrothermalexperimentsperformedwithbronzeTeflon-linedautoclavesand2-3MNaOHsolutionsshowedthatclinoptilolite

  • 82 A.DeFazio,P.Brotzu,M.R.Ghiara,M.L.Fercia,R.LonisandA.Sau

    progressivelydissolvesandthatanewzeolitestartstocrystallizeathigherinteractiontimes.Themostintensepeaksofthisnewlyformedzeolitewereat3.17,7.10,4.10,2.68and5.01Å,correspondingtotheNa-P1zeolite(Breck1974),ahighcapacitycation exchanger.The interaction times for the

    appearanceofNa-P1zeoliteanddisappearanceofclinoptilolitearelistedinTable3.Theyaremainlyrelatedtothetemperatureofhydrothermalsystemandtothegrainsizeofthestartingmaterial,butareirrespectiveofNaOHconcentration.

    Sample Temperature Sampleweight Interactingsolution Grainsize Interactiontimes Exp.50ml number

    1-2A 100±3°C 5g 2MNaOH 5-0.7mm from1hto24h 1

    1-2A 80±3°C 5g 2MNaOH 5-0.7mm from1hto39h 2

    1-2A 100±3°C 5g 2MNaOH <0.25mm from1hto29h 3

    1-2A 80±3°C 5g 2MNaOH <0.25mm from1hto27h 4

    1-2A 100±3°C 5g 3MNaOH 5–0.7mm from1hto24h 5

    1-2A 80±3°C 5g 3MNaOH 5-0.7mm from1hto24h 6

    1-2A 100±3°C 5g 3MNaOH <0.25mm from1hto28h 7

    1-2A 80±3°C 5g 3MNaOH <0.25mm from1hto27h 8

    1-2A 100±3°C 5g 2MNaOH+Al(OH)3 5-0.7mm from1hto24h 9

    PON16 100±3°C 5g 2MNaOH 3-0.5mm from1hto24h 10

    PON16 100±3°C 5g 3MNaOH 3-0.5mm from1hto24h 11

    PON16 100±3°C 5g 2MNaOH+Al(OH)3 3-0.5mm from1hto24h 12

    tAble 1Bronze Teflon-lined autoclaves�� experimental conditions�� experimental conditions

    Sample Temperature Sampleweight

    Interactingsolution Grainsize Interactiontimes Exp.150ml number

    1-2A 100±2°C 15g 2MNaOH+Al(OH)3 5-0.7mm from½hto6h 13

    1-2A 80±2°C 15g 2MNaOH+Al(OH)3 5-0.7mm from½hto6h 14

    1-2A 70±2°C 15g 2MNaOH+Al(OH)3 5-0.7mm from½hto6h 15

    PON16 100±2°C 15g 2MNaOH+Al(OH)3 3–0.5mm from½hto6h 16

    PON16 80±2°C 15g 2MNaOH+Al(OH)3 3–0.5mm from½hto6h 17

    PON16 70±2°C 15g 2MNaOH+Al(OH)3 3–0.5mm from½hto6h 18

    tAble 24560 Parr reactor�� experimental conditions

  • Hydrothermal treatment at low temperature of Sardinian clinoptilolite-bearing ignimbrites for increasing.... 83

    As expected, early crystallization of Na-P1zeolite occurs in the raw natural material withlowergrainsize(i.e.,

  • 84 A.DeFazio,P.Brotzu,M.R.Ghiara,M.L.Fercia,R.LonisandA.Sau

    Fig.1–Experimentalrun1.Scanningelectronmicrographof:a)clinoptilolitecrystalsandopal-CTlepispheresinthestartingmaterial;b)largecavitiesintheclinoptilolitecrystalsafter5hofinteractionandNa-P1spherules;c)clinoptiloliterelictsandclustersofball-shapedNa-P1zeoliteat6hofinteraction.

  • Hydrothermal treatment at low temperature of Sardinian clinoptilolite-bearing ignimbrites for increasing.... 85

    above (Table 4).As expected, the appearanceof Na-P1 and disappearance of clinoptilolitein sample1-2Ashift slightly toward lowerandhighertimesofinteraction,respectively.InsamplePON16nodifferenceswereobservedwithrespecttotheexperimentalcyclecarriedoutusingNa(OH)solution.

    The XRD patterns, including progressivechangesinpeakintensitiesandSEMmicrographsofthereactedproducts,areverysimilartothosedescribedaboveforexperimentalcycleswith2MNa(OH)solutions.

    Hydrothermal experiments in a 4560 Parrreactor equippedwithmagnetic stirrer and2MNaOH+Al(OH)3 solutions show a sharp fall ininteractiontimesforbothNa-P1appearanceandclinoptilolitedissolution(Table5).NotethatNa-P1zeolitealsoformsatrelativelylowtemperatures(e.g., 80°C)andlowinteractiontimes(e.g.,2h).Inaddition,withincreasinginteractionat100°CanalcimestartstocrystallizeandNa-P1tendstobeconsumed.Eitherintheseexperimentalruns,quartzandfeldsparsarenotaltered.

    TheXRDpatternsofclinoptiloliteshowasharpdecreaseinpeakintensityuntilthefirsttimesof

    Fig.2–Experimentalrun1.Scanningelectronmicrographof:a)clusterofbladedrosettesofNa-P1zeoliteafter15hofinteraction;b)clustersofstar-shapedNa-P1zeoliteafter16hofinteraction.

  • 86 A.DeFazio,P.Brotzu,M.R.Ghiara,M.L.Fercia,R.LonisandA.Sau

    hydrothermal interaction, whereas a very goodsettlementofthoseofNa-P1zeolitealreadyoccursafter1hofinteraction,evenat80°C.

    SEMobservationsonsynthesizedproductsfromexperimentalcycle13showearlyNa-P1spherules

    after½hofinteraction.Notethat,inexperimentalcycles14,manyNa-P1spherulesoflessthan2µm(Fig.4a)alreadyappearafter1hofhydrothermalinteraction. Also in the later experimentalcycles,Na-P1zeoliteprogressivelychanges its

    Fig.3–Alluminiumvariationsintheinteractingsolutions

    Sample Grainsize Interactingsolution T Na-P1 Clinoptilolite Exp.appearance disappearance number

    1-2A 5–0.7mm 2MNaOH+Al(OH)3 100±3°C 5h 18h 9PON16 3–0.5mm 2MNaOH+Al(OH)3 100±3°C 6h 10h 12

    tAble 4Times of clinoptilolite disappearance and Na-P1 appearance in the Teflon-lined bronze autoclaves. Teflon-lined bronze autoclaves.

    Interacting solutions�� 2M NaOH + Al(OH)3

    Sample Grainsize Interactingsolution T°C Na-P1 Clinoptilolite Exp.appearance disappearance number

    1-2A 5-0.7mm 2MNaOH+Al(OH)3 100±2°C ½h 3h 131-2A 5-0.7mm 2MNaOH+Al(OH)3 80±2°C 1h 4h 141-2A 5-0.7mm 2MNaOH+Al(OH)3 70±2°C 2h >6h 15PON16 3-0.5mm 2MNaOH+Al(OH)3 100±2°C ½h 2h 16PON16 3-0.5mm 2MNaOH+Al(OH)3 80±2°C 1h 3h 17PON16 3–0.5mm 2MNaOH+Al(OH)3 70±2°C 2h >6h 18

    tAble 5Times of clinoptilolite disappearance and Na-P1 appearance in the 4560 Parr reactor. Interacting solutions��

    2M NaOH + Al(OH)3

  • Hydrothermal treatment at low temperature of Sardinian clinoptilolite-bearing ignimbrites for increasing.... 87

    Fig.4–Experimentalrun13.Scanningelectronmicrographof:a)clustersofball-shapedNa-P1zeoliteat1hofinteraction;notethestronglycorrodedrelictofclinoptilolite;b)clustersofbladedrosettesofNa-P1zeoliteat2hofinteraction;c)clustersofstar-shapedNa-P1zeoliteat6hofinteraction.Analcimestarttocrystallize.

  • 88 A.DeFazio,P.Brotzu,M.R.Ghiara,M.L.Fercia,R.LonisandA.Sau

    morphology, from spherical aggregates to star-shapedNa-P1zeolitewithincreasinginteractionwithoutanychangesintheXRDpatterns(Figs.4b-c).Theappearanceofafewanalcimecrystalsathigherinteractiontimesinexperimentalcycle13isclearlyrevealedbySEMstudies(Fig.4c).

    Cation Exchange Capacity (CEC)

    In order to evaluate the cation exchangecapacity (CEC) of the synthesized products,severalsampleswithhighinteractiontimesandcontainingbladedorstar-shapedNa-PaggregateswereanalysedfollowingthetechniquedescribedbyMinato(1997).Asregardsproductssynthesizedinautoclaves(Table6),theCECvaluesareoftenmorethantwiceashighasthoseoftherespectivestartingmaterials. Inparticular, theCECvalue

    ofreactedproductsofsamples1-2AandPON16areintherange183-217meq/100gand189-267meq/100grespectivelyafter15hofinteraction.ThehighCECvaluesofsamplePON16areduetothehigherclinoptiloliteamountsinthestartingmaterials.

    OnthebasisofthetheoreticalCEC(460meq/100g)ofpurezeoliteNa–P1,themaximumcontentofzeoliteNa–P1after thealkaline treatmentofSardinian clinoptilolite-bearing ignimbrites isestimatedtobeabout60%.

    NotethathigherCECvaluesareobtainedusing2MNaOH+Al(OH)3interactingsolutions.

    The products synthesized in the Parr reactor(Table7)clearlyshowthattheirCECprogressivelyincreaseswithinteractiontime(Table7).Thesereactedproductsreachveryhighexchangecapacityinashorttime.

    Sample Interactingsolution Times T CEC Exp.meq/100gr number

    1-2AStartingmaterial 88

    1-2A 2MNAOH 21h 100±3°C 183 11-2A 3MNaOH 20h 100±3°C 201 71-2A 3MNaOH 22h 100±3°C 197 71-2A 2MNAOH+Al(OH)3 18h 100±3°C 212 91-2A 2MNAOH+Al(OH)3 20h 100±3°C 217 9PON16Startingmaterial 127

    PON16 2MNAOH 24h 100±3°C 189 10PON16 3MNAOH 21h 100±3°C 211 11PON16 2MNAOH+Al(OH)3 15h 100±3°C 260 12PON16 2MNAOH+Al(OH)3 18h 100±3°C 267 12

    tAble 6 Exchange capacity (meq/100g) of synthesized products with the Teflon-lined bronze autoclaves.with the Teflon-lined bronze autoclaves. Teflon-lined bronze autoclaves.

  • Hydrothermal treatment at low temperature of Sardinian clinoptilolite-bearing ignimbrites for increasing.... 89

    conclusiVe reMArKs

    Zeolites belonging to the Na-P group weresynthesizedwithhydrothermaltreatmentstartingfrom various materials, including sodiumaluminosilicate gels, kaolinite and halloysite,illite-smectite,flyash,volcanicglassandnaturalzeolitites (Mondragomet al.,1990;Amrheinet al.,1996;BerkgautandSinger,1996;Baccoucheet al., 1998;Kanget al., 1998;FaghihiamandKazemian,2000;Gualtieri,2001;Mimuraet al.,2001;Morenoet al.,2001a, b; Querolet al.,1997,2001,2002;Juanet al.,2002).

    Theoveralldata-setofhydrothermaltreatmentatlowtemperatures(

  • 90 A.DeFazio,P.Brotzu,M.R.Ghiara,M.L.Fercia,R.LonisandA.Sau

    lowtemperatures(~70°C);thiswasthemainresultofthepresentresearch;

    •thecationexchangecapacityofthesynthesizedproductsisbyfarhigherthanthatofthestartingmaterials(upto2.5times).Itisimportanttonotethat,inthehydrothermalexperimentscarriedoutat80°Cusingareactorequippedwithmagneticstirrers, the cation exchange capacity of 1-2Asampleincreasesfrom88to268meq/100gafter6hofinteraction.

    OuressentialresultsfitthoseobtainedbyKang.andEsagashira(1997)onKoreannaturalzeolite-bearingrocks.

    Inconclusion,andtakingintoaccounttheaimsofthepresentwork,hydrothermaltreatmentwithalkalinesolutionsallowstoproducehigh-powerzeolites, starting from clinoptilolite-bearingignimbrites outcropping in central-northernSardiniaandoftenformingwideplateaux.Asaconsequence,thepotentialapplicationsforvariouscation-exchangeprocessesofSardinianpoorly-welded ignimbritic rocks should be carefullyreconsidered.

    AcKnoWledGeMents.

    Thisworkispartofaprojectentitled“Applicazionidi zeoliti naturali per lo sviluppo di tecnicheagronomicheinnovativeeperilmiglioramentodellacompatibilità ambientale” financed by the ItalianMinistry of the University and the Scientific andTechnological Research “Programma OperativoNazionale(PON)-Ricerca,SviluppoTecnologicoeAltaFormazione2000-2006”.

    M.deGennaroiskindlyacknowledgedforusefuldiscussionsandreadingofthemanuscript.SpecialthankstoA.Gualtieriforhisusefulcomments.

    REFERENCES

    AMrhein c., hAGhniA G.h., KiM t.s., Mosher P.A., GAGAjenA r.c., AMAnios t.andde lA torre l.(1996)-Synthesis and properties of zeolites from coal fly ash.Environ.Sci.Technol.,30, 3,735-742.

    bAccouche A., srAsrA e.andel MAAoui M.(1998)-Preparation of Na-P1 and sodalite octahydrate zeolites from interstratified illite-smectite.Appl.ClaySci.,13,255-273.

    berKGAutV.andsinGer,A.(1996)-High capacity cation exchanger by hydrothermal zeolitization of

    coal fly ash.Appl.ClaySci.,10,369-378.brecK,D.W.(1974)-Zeolite Molecular Sieves,Wiley,

    NewYorkcerri G., cAPPelletti P., lAnGellA A. and de’

    GennAro M. (2001) - Zeolitization of Oligo- Miocene volcanoclastic rocks from Logudoro (nothern Sardinia, Italy).Contrib.Mineral.Petrol,140,404-421.

    cerri G., lAnGellA A., PAnsini M.andcAPPellettiP.(2002)-Methods of determining cation axchange capacities for clionoptilolite-rich rocks of the Logudoro region in northern Sardinia, Italy.ClaysClayMinerals,50,1,127-135.

    FAGhihiAM H. and KAzeMiAn H. (2000) - Zeolite-P from clinoptilolite rich- tuffs, as a potenzial material for removal of Cs+, Sr+, Ba2+, and Ca2+ from liquid radioactive waste.Clays Clay Mineral.ClaysClayMineral.Sci.J.,37,3,180-187.

    GhiArA M.r., FrAnco e., lonis r., Petti c., luxoro S. and GuAzzo L. (1999) - Occurence of clinoptilolite and mordenite in Tertiary calk-alkaline pyroclastites from Sardinia (Italy). ClayClayMinerals,47,3,319-328.

    GhiArA M.r., lonis r., Petti c., FrAnco e., luxoroS.andbAlAssoneG. (1997)-The zeolitization process of Tertiary orogenic ignimbrites from Sardinia (Italy)�� distribution and mining importance.Per. Mineral.,Per.Mineral.,66,211-229.

    GhiArA M.r., Petti c., FrAnco e.andlonisR.(2000)-Distribution and genesis of zeolites in ignimbrites from Sardinia�� evidence of superimposed mineralogenic process.NaturalZeolitesfor theThirdMillennium,177-192.

    GuAltieriA.F.(2001)-Synthesis of sodium zeolites from a natural hallosite.J.Phys.Chem.Mineral.,28,719-728.

    juAn r., hernández s., Querol x., AndrésJ.M.andMorenoN.(2002)-Zeolitic material synthesised from fly ash�� use as cationic exchanger.J.Chem.Technol.Biotechnol.,77,299-304.

    KAnG s.-j., eGAshirA K. andyoshidAA. (1998) -Transformation of a low-grade Korean natural zeolite to high cation exchanger by hydrothermal reaction with or without fusion with sodium hydroxide.Appl.ClaySci.,13,117-1354.

    KAnG s.-j.andeGAshirAK.(1997)-Modification of different grades of Korean natural zeolites for increasing cation exchange capacity.Appl.ClaySci.,12,131-144.

    KAzAntseVAL.K.,belitsKyI.A.andFursenKoB.A.(1997)-Zeolite-containig rocks as raw material for Sibeerfoam production.InKirov,L..FilizovaandO.Petrov,(editors)Natural Zeolites- Sofia 95

  • Hydrothermal treatment at low temperature of Sardinian clinoptilolite-bearing ignimbrites for increasing.... 91

    G..Pensoft Publishers, Sofia, Bulgaria, 32-42.PensoftPublishers,Sofia,Bulgaria,32-42.lAnGellA A., cAPPelletti P., cerri G., bishD.L.and

    dè GennAroM.(1998)-Distribution of industrial minerals in sardinia (Italy)��Clinoptilolite bearing rocks of the Logudoro region. In P. MisaelidesInP.Misaelideset al. (eds) Natural Micropourous materials inEnvironmentalTechnology,237-252.

    leccA l., lonis r., luxoro s., secchi G.andbrotzuP.(1997)-Oligo-Miocene volcanic sequenze and rifting stages in Sardinia�� a review.Per. Mineral.,Per.Mineral.,66,7-61.

    MiMurAH.,yoKotAK.,AKibAK.andonoderAY.(2001)-Alkali hydrothermal synthesis of zeolites from coal fly ash and their uptake properties of cesium ion.J.Nucl.Sci.Thechnol.,38,9,766-772.

    MinAtoH.(1997)-Standardization of methods for zeolites specialità determination and techniques for zeolite resources utilization.InG.Kirov,L..FilizovaandO.Petrov,(editors)Natural Zeolites- Sofia 95.Pensoft Publishers, Sofia, Bulgaria, 282-PensoftPublishers,Sofia,Bulgaria,282-292

    MondrAGon F., rincon F., sierrA L., escobArC.,rAMirez J. andFernAndez J. (1990) -New perspectives for coal ash utilization�� synthesis of zeolitic materials.Fuel,69,263-266.

    Morbidelli P., GhiArA M. R., lonis R. and PettiC. (2001) - Quantitative distribution and chemical composition of authigenic minerals in clinoptilolite-bearing ignimbrites from northen Sardina (Italy)�� influences for minerogenic models.Per. Mineral.,Per.Mineral.,70,1,71-97.

    Morbidelli P., GhiArA M. r., lonis R. and sAuA. (1999) - Zeolitic occurence from Tertiary

    pyroclastic flow and related epiclastic deposits outcropping in northen Sardinia (Italy). Per.Per.Mineral.,68,3,287-313.

    Moreno n., QuerolX.andAyorAC.(a),(2001)-Utilization of zeolites synthesized from coal fly ash for the purification of acide mine waters.Envir.Sci.Technol., 35,3526-3534.

    Moreno n., Querol x., AyorA c., AlAstuey A., Fernández-PereirAC.andjAnssen- jurKoVicoVAM. (b), (2001) - Potential enviromental applications of pure zeolitic material synthesized from fly ash.J.Envir.Eng.,994-1002.

    MuMPtonF.A.(1984).The role of natural zeolites in agriculture and aquaculture. Zeo- Agriculture.In W.G.PondandF.A.Mumptoneds.,Use of Natural Zeolites in Agriculture and Aquaculture,WestviewPress,Boulder,Colorado,3-27.

    PAnsini M.(1996) - Natural zeolites as cation exchangers for environmental protection.Mineral.Dep.,31,563-575.

    Querol x., Moreno n., uMAñA j.c., AlAstuey A., hernández e., lóPez-soler A. and PlAnA F.(2002)-Syntesis of zeolites from coal fly ash�� an overview.Int.J.CoalGeol.,50,413-423.

    Querol x., PlAnA F., AndreAs J.M.andlóPez-soler A.(1997)-Syntesis of Na- zeolite from fly ash.Fuel,76,8,793-799.

    Querol x., uMAñA j.c., AlAstuey A., hernández e., lóPez-soler A., MedinAceli A., VAlero A., doMonGo M.J. and GArciA-rojo E. (2001) -Syntesis of zeolites from coal fly ash at pilot plant scale. Example of potential applications.Fuel,80,857-865.