Hydrogen Effects in Materials 1

  • Upload
    hreer

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

  • 8/10/2019 Hydrogen Effects in Materials 1

    1/49

    Hydrogen Effects in Materials

    Brian Somerday

    Sandia National LaboratoriesLivermore, CA, USA

    3rd European Summer School on Hydrogen Safety

    University of Ulster, Belfast, UK

    July 28, 2008

  • 8/10/2019 Hydrogen Effects in Materials 1

    2/49

    Outline

    IntroductionH

    2interactions with metal components

    Safety concern: hydrogen embrittlement (HE)

    Methods to assess material performance

    Variables affecting HE Material

    Environmental

    Mechanical

  • 8/10/2019 Hydrogen Effects in Materials 1

    3/49

    Outline

    Considerations for materials selection

    Component design

    Design approach

    Material property measurement

    Example design analysis

    Recommendations

  • 8/10/2019 Hydrogen Effects in Materials 1

    4/49

    H2 containment components

    On-board fuel tanks Manifold components

  • 8/10/2019 Hydrogen Effects in Materials 1

    5/49

    H2 containment components

    PipelinesTransport and

    stationary tanks

  • 8/10/2019 Hydrogen Effects in Materials 1

    6/49

    H2 interactions with metal components

    H2 gas

    1) H2 gas

    2) H2 adsorption

    3) H2 dissociation to H

    4) H absorption

    5) H diffusion

  • 8/10/2019 Hydrogen Effects in Materials 1

    7/49

    Two principal safety concerns

    H2 permeation through wall of structure

    Effectively results in H2 leak

    Hydrogen embrittlement (HE) of structural

    metal Crack propagation through wall of structure

    HE mechanisms involve H in solution

    Temperatures < 200 oC

    Other H-related degradation mechanismsoperate >200 oC

  • 8/10/2019 Hydrogen Effects in Materials 1

    8/49

    H2

    H2

    H2

    H2

    H2

    H2 H2

    stress

    stress

    defect

    component

    surface

    H2H

    2

    H2

    H2

    H2

    HH

    HH

    H2 H2 H2H

    2

    H absorbsinto surface

    H2

    H2

    H2

    H

    H

    H H

    H2 H

    2 H2H2

    H concentrates

    at defect

    H

    H

    HH

    H

    H2

    H2

    H2

    H2H

    2

    H2 H2 H

    2H2HH H

    H H HH

    H

    H causes embrittlement

    and crack propagation

    HE enables crack propagation

  • 8/10/2019 Hydrogen Effects in Materials 1

    9/49

    Hydrogen embrittlement mechanisms

    Hydrides

    Hydrogen-EnhancedLocalized Plasticity

    (H.E.L.P.)

    Hydrogen-EnhancedDecohesion

    H

    H

    H

    H

    HH

    H

    1 2

    HHHHH

    HHH

    HH

    HH

    H

    H

    H

    1 > 2

    HHH

    H

    HH

    HH

    HH

    H HH

    void

    particle

    hydrides

    C. Beachem, H. Birnbaum,

    I. Robertson, P. Sofronis

    A. Troiano, R. Oriani

    D. Westlake,

    H. Birnbaum

  • 8/10/2019 Hydrogen Effects in Materials 1

    10/49

    HE due to hydrogen-enhanced decohesion

    Intergranular HE can be devastating

    Barthlmy, 1st ESSHS, 2006

  • 8/10/2019 Hydrogen Effects in Materials 1

    11/49

    Material performance: test methods

    strength of materials:

    u,y,f, RA

    S-N

    fracture mechanics:KIH, KTH

    da/dN vs

    K

    dl/d t > 0

    H2

    H2H2

    H2H2

    H2

    H

    HH

    H

    HH

    HH

    dl/d t > 0

    l

    HH

    HH H

    HH

    H

    H

    H

    d/dt 0

    H

    H

    H

    HH H

    H

    H

    H

    H

    HH H

    H

    HHHH2 H2H2H2H2

    H2

    H2H2

    d/dt 0

  • 8/10/2019 Hydrogen Effects in Materials 1

    12/49

    Material performance: test methods

    HE manifested by reduced fracture

    toughness

    H2gas pressure (kpsi)

    0 5 10 15 20 25

    Stressintensityfactor,K

    (ksi-in1/2)

    0

    50

    100

    150

    200

    250

    300

    H2gas pressure (MPa)

    0 25 50 75 100 125 150

    Stressintensityfactor,K

    (MPa

    -m1/2)

    0

    50

    100

    150

    200

    250

    300KJIc

    KTH

    X100 ferritic steelWOL specimens

    C-L orientation

    25oC

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

  • 8/10/2019 Hydrogen Effects in Materials 1

    13/49

    Material performance: test methods

    HE manifested by increased fatigue

    crack growth rate

    Stress intensity factor range, K (ksiin1/2)1 10 100

    Fatiguecrackgrowthrate,da/dN

    (in/cycle)

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    X42 ferritic steelfrequency = 1 Hz

    1000 psi H2, R=0.1

    1000 psi N2, R=0.1

    HH

    H

    d/dt > 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    HH

    H

    d/dt > 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    Cialone and Holbrook,Met Trans A, 1985

  • 8/10/2019 Hydrogen Effects in Materials 1

    14/49

    Fuel tanks

    Aluminum or polymer

    lined composite H2 pressure < 70 MPa

    Manifold components

    Austenitic stainless

    steel H2 pressure < 138 MPa

    Low material strength

    No welds

    Material performance: service experience

  • 8/10/2019 Hydrogen Effects in Materials 1

    15/49

    Material performance: service experience

    Storage tanks

    Low-alloy ferriticsteel

    H2 pressure < 42 MPa

    Limited materialstrength

    No welds

    Pipelines

    C-Mn ferritic steel

    H2 pressure < 14 MPa

    Low material strength

    No pressure cycling

  • 8/10/2019 Hydrogen Effects in Materials 1

    16/49

    H2 compatibility guidelines for metals

    Materials favored for H2 service

    austenitic stainless steels, aluminum alloys,

    low-alloy ferritic steels, C-Mn ferritic steels,

    copper alloys

    Materials commonly avoided in H2 service high-alloy ferritic steels, nickel alloys,

    titanium alloys

    HE susceptibility can be sensitive

    to many variables

  • 8/10/2019 Hydrogen Effects in Materials 1

    17/49

    Variables affecting HE

    All metals can be susceptible to HEdepending on

    Material variables Environmental variables

    Mechanical variables

    Trends demonstrated from laboratory

    test methods Emphasize fracture mechanics data Emphasize ferritic steels, austeniticstainless steels, aluminum

  • 8/10/2019 Hydrogen Effects in Materials 1

    18/49

    Material variable: strength (hardness)

    Yield strength (MPa)600 700 800 900 1000 1100

    KTH

    (MPa-m

    1/2)

    0

    20

    40

    60

    80

    100

    120

    Yield strength (ksi)90 105 120 135 150

    K

    TH

    (ksi-in1/2)

    0

    20

    40

    60

    80

    100Pressure Vessel SteelsH

    2gas pressure = 41 MPa

    4130 steel

    4145 steel

    4147 steel

    Loginow and Phelps,

    Corrosion, 1975

    Strength promotes HE in all materials

    Technologically important trend

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

  • 8/10/2019 Hydrogen Effects in Materials 1

    19/49

    Material variable: alloy composition

    Alloy composition affects intergranular

    HE in ferritic steels

    [Mn + 0.5Si + S + P] (wt%)0.0 0.2 0.4 0.6 0.8 1.0

    KTH

    (MPa-m

    )

    0

    20

    40

    60

    80

    100Ni-Cr-Mo ferritic steel

    YS= 1450 MPa

    110 kPa H2gas

    296 K

    B7Mn=0.007Si=0.002P=0.003S=0.003Mn=0.02

    Si=0.01P=0.014

    S=0.003

    Mn=0.09Si=0.01P=0.012S=0.005

    Mn=0.02Si=0.27P=0.0036S=0.005

    Mn=0.23Si=0.01P=0.009S=0.005

    B2Mn=0.68Si=0.08

    P=0.009S=0.016

    Mn=0.72Si=0.01P=0.008S=0.005

    B6Mn=0.72Si=0.32P=0.003S=0.005

    Mn=0.75Si=0.20P=0.006S=0.004

    Bandyopadhyay et al.,Met Trans A, 1983

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

  • 8/10/2019 Hydrogen Effects in Materials 1

    20/49

    Material variable: alloy composition

    Nickel affects deformation and/or

    martensite formation in stainless steels

    San Marchi et al.,IJHE, 2008

    H-precharged

    non-charged 316 stainless steels

    HH

    HH

    H

    H

    dl/dt > 0

  • 8/10/2019 Hydrogen Effects in Materials 1

    21/49

    Material variable: welding

    Weld microstructure can promote HE

    Hardness, residual stress also affect HE

    Stainless steel weld Weld tested after H2 exposure

    base metal weld

  • 8/10/2019 Hydrogen Effects in Materials 1

    22/49

    Environmental variable: H2 pressure

    HE more severe at higher H2 pressure

    for all materials

    H2gas pressure (MPa)0 30 60 90 120 150

    KTH

    (MPa-m

    1/2)

    0

    30

    60

    90

    120

    150

    180

    H2

    gas pressure (ksi)0 5 10 15 20

    KTH

    (ksi-in1/2)

    0

    20

    40

    60

    80

    100

    120

    140

    160Pressure Vessel Steels

    4130 steel (YS=634 MPa)4145 steel (YS=669 MPa)4147 steel (YS=724 MPa)

    Loginow and Phelps,

    Corrosion, 1975

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

  • 8/10/2019 Hydrogen Effects in Materials 1

    23/49

    HE can be maximum at ambient temperature

    HH

    HH

    HH

    dl/dt > 0

    Caskey, Hydrogen

    Compatibility Handbookfor Stainless Steels,

    1983

    Environmental variable: temperature

  • 8/10/2019 Hydrogen Effects in Materials 1

    24/49

    Gas impurities can inhibit or intensify

    HE in ferritic steels

    Environmental variable: H2 purity

    (da/dN

    )H2

    +additive

    /(da/d

    N)H

    2

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    O2

    0.10%

    2.25 Cr-1 Mo ferritic steel

    YS= 430 MPa

    1.1 MPa H2gas

    K = 24 MPamfrequency = 5 HzR = 0.1293 K

    CO

    0.99%

    SO2

    1.10%

    H2O

    0.03%

    CH4

    0.98%

    CO2

    1.01%

    CH3SH

    1.04%

    H2S

    0.10%

    Fukuyama et al.,

    Pressure VesselTechnology, 1992

    HH

    H

    d/dt > 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    HH

    H

    d/dt > 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

  • 8/10/2019 Hydrogen Effects in Materials 1

    25/49

    Water vapor promotes HE in

    aluminum alloys

    Environmental variable: H2 purity

    Speidel, Hydrogen Embrittlementand Stress Corrosion Cracking, 1984

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

  • 8/10/2019 Hydrogen Effects in Materials 1

    26/49

    Mechanical variable: loading rate

    HE more severe at lower loading rates

    in all materials

    Loading rate, dK/dt (MPa-m1/2

    /min)0.1 1 10 100

    K

    IH

    (MPa-m

    1/2)

    0

    20

    40

    60

    80

    1004340 ferritic steel

    YS= 1235 MPa

    550 kPa H2gas

    297 K

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    HH

    H

    d/dt 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    Clark and Landes,

    ASTM STP 610, 1976

  • 8/10/2019 Hydrogen Effects in Materials 1

    27/49

    HE more severe at lower load cycle

    frequency in all materials

    Mechanical variable: load cycle frequency

    K (MPa-m1/2)0 15 30 45 60

    da

    /dN

    (m/cycle)

    0.1

    1

    10

    100SA 105 ferritic steel103 MPa H

    2gas

    load ratio = 0.1

    1.0 Hz35 MPa He gas

    1.0 Hz

    0.1 Hz

    0.01 Hz

    0.001 Hz

    HH

    H

    d/dt > 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    HH

    H

    d/dt > 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    Walter and Chandler, Effectof Hydrogen on Behavior of

    Materials, 1976

  • 8/10/2019 Hydrogen Effects in Materials 1

    28/49

    Considerations for materials selection

    1) HE data or service experience shouldnot be extrapolated

    H2gas pressure (MPa)

    0 30 60 90 120 150

    KTH

    (MPa-m

    1/2

    )

    0

    30

    60

    90

    120

    150

    180

    H2

    gas pressure (ksi)0 5 10 15 20

    KTH

    (ksi-in1/2)

    0

    20

    40

    60

    80

    100

    120

    140

    160Pressure Vessel Steels

    4130 steel (YS=634 MPa)4145 steel (YS=669 MPa)4147 steel (

    YS=724 MPa)

    Yield strength (MPa)600 700 800 900 1000 1100

    KTH

    (MPa-m

    1/2)

    0

    20

    40

    60

    80

    100

    120

    Yield strength (ksi)90 105 120 135 150

    KTH

    (ksi-in1/2)

    0

    20

    40

    60

    80

    100Pressure Vessel SteelsH

    2gas pressure = 41 MPa

    4130 steel

    4145 steel

    4147 steel

    H2 compatibility must be established for

    specific conditions

  • 8/10/2019 Hydrogen Effects in Materials 1

    29/49

    Considerations for materials selection

    2) HE can be severe in alloys consideredcompatible with H2

    HH

    HH

    HH

    dl/dt > 0

    316 stainless steels

    Intersections of variables important

  • 8/10/2019 Hydrogen Effects in Materials 1

    30/49

    Considerations for materials selection

    3) Materials selection may balance H2compatibility with other constraints

    highcryogenic to

    low

    intermediate

    to highintermediatealuminum

    low to

    intermediate

    ambient to

    high

    low to highlowC-Mn/low-

    alloy steels

    highcryogenic to

    highlow to highhighaustenitic SS

    HE resistanceTemperature

    range

    Specific

    strengthCostMaterial

  • 8/10/2019 Hydrogen Effects in Materials 1

    31/49

    Considerations for materials selection

    4) Materials must be qualified for H2 service

    based on Material property measurements under

    relevant conditions

    Material variables Environmental variables

    Mechanical variables

    Design approach for component

  • 8/10/2019 Hydrogen Effects in Materials 1

    32/49

    Design based on fracture mechanics

    Local stress drives crack extension

    localH2H

    2

    H2

    H2

    H2

    H2 H

    2

    stress ()

    defect

    component

    surface

    H2H

    2

    H2

    H2

    H2

    H2H

    2

    H2 H2 H

    2H2

    local = c

    stress ()

  • 8/10/2019 Hydrogen Effects in Materials 1

    33/49

    )(2

    ijij fr

    K=

    Local stress described by stress-

    intensity factor, KCrack extension governed by criticalK values

    Design based on fracture mechanics

  • 8/10/2019 Hydrogen Effects in Materials 1

    34/49

    Component design: sustained-load cracking

    H2 induces time-dependent crack

    propagation under static loading

    p

    a

    p

    aH2

    H2H2

    N2N2 N

    2

    time

    a

    p

    crack in H2

    crack in N2

  • 8/10/2019 Hydrogen Effects in Materials 1

    35/49

    Sustained-load cracking proceeds

    when K > KTH

    p

    aH2H2

    K = p * f(a/t,Ri,Ro)

    Ri

    Ro

    t

    time

    a

    K

    KTH

    measured in

    laboratory

    Component design: sustained-load cracking

  • 8/10/2019 Hydrogen Effects in Materials 1

    36/49

    Crack growth under cyclic loading

    accelerated by H2

    p

    a

    pa

    H2H2H2

    N2N2 N

    2

    a

    Number of pressure cycles, N (time = N/f)

    p

    crack in H2

    crack in N2

    p

    Component design: fatigue crack growth

  • 8/10/2019 Hydrogen Effects in Materials 1

    37/49

    Fatigue crack growth rates (da/dN)

    are a function of K

    paH2H2

    K = p * f(a/t,Ri,Ro)

    Ri

    Ro

    t

    da/dN

    K

    measured in laboratory

    H2 gas

    measured in laboratory

    N2 gas

    da/dN = C[K]m

    Component design: fatigue crack growth

  • 8/10/2019 Hydrogen Effects in Materials 1

    38/49

    Component design analysis

    Objective: calculate number of pressure cycles, Nc,to grow crack to critical length, ac

    Calculation requires material property

    measurements: KTH and da/dN vs

    K

    a t

    ac

    Number of pressure cycles, NN

    c

    critical crack depth for

    sustained-load crackingcycles to

    critical crack depth

    K = p * f(a/t,Ri,Ro)

    paH2H2

    Ri

    Ro

    t

    a

  • 8/10/2019 Hydrogen Effects in Materials 1

    39/49

    Measurement: fatigue crack growth

    HH

    H

    d/dt > 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

    HH

    H

    d/dt > 0

    H2H2H2

    H2

    H2

    H2

    H2

    H2

  • 8/10/2019 Hydrogen Effects in Materials 1

    40/49

    Measurement gives crack length vs

    number of cycles in design analysis

    a = C[p * f(a/t,Ro,Ri)]m

    Number of pressure cycles, N

    a

    K (MPa-m1/2)0 15 30 45 60

    da/dN

    (m/cycle)

    0.1

    1

    10

    100SA 105 ferritic steel103 MPa H

    2gas

    load ratio = 0.1

    1.0 Hz35 MPa He gas

    1.0 Hz

    0.1 Hz

    0.01 Hz

    0.001 Hz

    Measurement: fatigue crack growth

    da/dN = C[K]m

  • 8/10/2019 Hydrogen Effects in Materials 1

    41/49

    Measurement: cracking threshold

    Load(

    P)

    Time in H2

    Po Ko

    Loading bolt

    Load cell

    13 mm

    PTH KTH

    Wedge Opening Load

    (WOL) specimen

  • 8/10/2019 Hydrogen Effects in Materials 1

    42/49

    Measurement gives critical crack depth(ac) in design analysis

    ac/t = g(KTH,p,Ro,Ri)

    ac

    Number of pressure cycles, NNc

    a

    H2gas pressure (MPa)

    0 30 60 90 120 150

    KTH

    (MPa-m

    1/2)

    0

    30

    60

    90

    120

    150

    180

    H2gas pressure (ksi)

    0 5 10 15 20

    KTH

    (ksi-in1/2)

    0

    20

    40

    60

    80

    100

    120

    140

    160Pressure Vessel Steels

    4130 steel (YS

    =634 MPa)

    4145 steel (YS=669 MPa)4147 steel (YS=724 MPa)

    Measurement: cracking threshold

    E l d i l i f H i li

  • 8/10/2019 Hydrogen Effects in Materials 1

    43/49

    Example design analysis for H2 pipeline

    Parameters for H2 pipeline(ASME, Hydrogen Standardization Interim Report, 2005)

    X42 ferritic steel Inner radius, Ri = 15 cm

    Wall thickness, t, from 0.5 to 1.3 cm

    Maximum pressure, p = 10 MPa

    Existing defect with depth aoand length parallel to pipe axis

    p

    RiRo

    aot

    E l d i l i f H i li

  • 8/10/2019 Hydrogen Effects in Materials 1

    44/49

    Case 1: t=0.8 cm (h=65% SMYS) and ao/t=0.10

    Case 2: t=1.3 cm (h=43% SMYS) and ao/t=0.10

    Case 3: t=1.3 cm (h=43% SMYS) and ao/t=0.05

    p

    10 MPa

    N

    1 MPa

    cycle 1

    K1=f(ao,p,Ro,Ri,t)a=(2.51x10-12)K16.56

    a1=ao+a

    cycle 2

    K2=f(a1,p,Ro,Ri,t)a=(2.51x10-12)K26.56

    a2=a1+a

    ao a1 a2

    Example design analysis for H2 pipeline

    p

    RiRo

    aot

    h

    E l d i l i f H i li

  • 8/10/2019 Hydrogen Effects in Materials 1

    45/49

    Material/component performance canbe quantified with design analysis

    number of pressure cycles0 50000 100000 150000 200000 250000

    crack

    depth/wallt

    hickness,a/t

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    hydrogent=1.3 cm

    h=43% SMYS

    nitrogent=1.3 cm

    h=43% SMYS

    X42 Pipelinepressure cycle = 1 - 10 MPainner diameter = 30 cm

    X

    X

    critical crack depthcalculated from K

    Ic

    critical crack depthcalculated from K

    TH

    Stress intensity factor range, K (ksiin1/2)1 10 100

    Fatiguecrackgrowthrate,

    da/d

    N

    (in/cycle)

    10-8

    10-7

    10-6

    10-5

    10

    -4

    10-3

    10-2

    X42 ferritic steelfrequency = 1 Hz

    da/dN=(3.55x10-11

    )K3.83

    da/dN=(2.51x10-12

    )K6.56

    1000 psi H2, R=0.1

    1000 psi N2, R=0.1

    Example design analysis for H2 pipeline

    E l d i l i f H i li

  • 8/10/2019 Hydrogen Effects in Materials 1

    46/49

    Performance depends on both materialproperties and component design

    number of pressure cycles0 5000 10000 15000 20000 25000 30000 35000 40000 45000

    crack

    depth/wallt

    hic

    kness,a/t

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    case 1t=0.8 cm

    h=65% SMYS

    case 2t=1.3 cm

    h=43% SMYS

    case 3t=1.3 cm

    h=43% SMYS

    X42 PipelineH

    2gas

    pressure cycle = 1 - 10 MPainner diameter = 30 cm

    X

    X X

    critical crack depthscalculated from K

    TH

    Stress intensity factor range, K (ksiin1/2)1 10 100

    Fatiguecrackgrowthrate,

    da/d

    N

    (in/cycle)

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    X42 ferritic steelfrequency = 1 Hz

    da/dN=(2.51x10-12

    )K6.56

    1000 psi H2, R=0.1

    case 1 initial K

    case 2 initial K

    case 3 initial K

    Example design analysis for H2 pipeline

    Recommendations

  • 8/10/2019 Hydrogen Effects in Materials 1

    47/49

    1) Austenitic stainless steels, aluminum

    alloys best candidates for H2 service

    Based on service experience and testing

    Do not extrapolate performance or test data

    Define temperature, alloy composition for

    austenitic stainless steels

    Define water vapor content of gas for

    aluminum alloys

    Design analysis can quantify safety margins

    Recommendations

    Recommendations

  • 8/10/2019 Hydrogen Effects in Materials 1

    48/49

    2) Ferritic steels are susceptible to HE

    under wide range of conditions Service experience may be adequate but

    design analysis required in many cases

    Measure properties under specific conditions Material: strength, alloy composition,

    fabrication (e.g., welding)

    Environment: H2 pressure, H2 composition,temperature

    Recommendations

    Recommendations

  • 8/10/2019 Hydrogen Effects in Materials 1

    49/49

    3) Nickel alloys, titanium alloys are generally

    not recommended for H2 service Design analysis required

    May require other measures such as H2

    permeation barrier

    Recommendations