39

HYBRID MOULDS - THERMAL

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: HYBRID MOULDS - THERMAL
Page 2: HYBRID MOULDS - THERMAL

HYBRID MOULDS - THERMAL

ASPECTS

Prof. Ludwig Cardon October 2017

DEPARTMENT OF MATERIALS, TEXTILES AND CHEMICAL ENGINEERING

Page 3: HYBRID MOULDS - THERMAL

POLYMER, FIBER AND COMPOSITE MATERIALS

@ GHENT UNIVERSITY

October 2017

DEPARTMENT OF MATERIALS, TEXTILES AND CHEMICAL ENGINEERING

Page 4: HYBRID MOULDS - THERMAL

GENERAL STRUCTURE

4

Ghent University

Faculty of Engineering and Architecture

MaTChDepartment of Materials, Textiles and Chemical Engineering

Research groups (CPMT, LCT, MMS, CTSE, …)

Research topics: Polymer, Fibre and Composite Materials

Prof. Ludwig Cardon

Prof. Karen De Clerck

Prof. Dagmar D’hooge

Prof. Kim Ragaert

Prof. Wim Van Paepegem

Page 5: HYBRID MOULDS - THERMAL

Advanced materials

Chemicals

Polymerisation

Polymergranules

Polymerprocessing

Polymericmaterial

Embedded as a multidisciplinary

research field

RESEARCH

5

Page 6: HYBRID MOULDS - THERMAL

Composites

Filtration

3D-Printing

materials

Recycled materialsBio-

medical

Sensors

Artificial turf

Advancedmaterials

RESEARCH

Page 7: HYBRID MOULDS - THERMAL

7

ThermalDifferential Scanning Calorimetry (DSC)

ThermoGravimetric Analysis (TGA)

Dynamic-Mechanical Thermal analysis (DTMA)

Dynamic Vapour Sorption (DVS)

Tg, Tm

Curing of resins

Polymer blends

….

MechanicalFavimat (small-scale: single fibres, ribbons, …)

Statimat (medium-scale: yarns, films, …)

Instron (large-scale: composites, bulk, …)

Performed in climatised conditions

(elevated temperatures possible)

Creep/relaxation

Static, cyclic

Characterization, testing, and

monitoring

Microscopy & Spectroscopy

Optical & Stereo-microscopesScanning electron microscopy

FT-IR and FT-Raman spectroscopy UV-VIS spectroscopy

Monitoring & NDT

During testing, production and lifetime of the part

Fiber Bragg GratingsDigital Image Correlation

Cure monitoring Ultrasonics

Local defect resonance

Page 8: HYBRID MOULDS - THERMAL

8

Industrial Polymer Synthesis

Experimental and Numerical flow analysis

Multi-scalemodeling

Polymer processing

Simulation at micro- and meso-scaleFracture mechanics simulations

Structural simulations (static, impact, fatigue)

Composites

Dry fabricsSimulation of tension, shear, twist, …

Draping simulations

Page 9: HYBRID MOULDS - THERMAL

9

ExtrusionSingle & twin screw

Reactive extrusion

Blow film and plate

Filament extrusion

3D-Printing

Extrusion based 3DP

22 up to 80 T injection machines

Processing

Injection moulding Electrospinning

Page 10: HYBRID MOULDS - THERMAL

10

Mechanical Recycling Microfibrillar composites composites

Recycling

Upcycling Chemical recycling

Page 11: HYBRID MOULDS - THERMAL

POLYMER RESEARCH @ UGENT-CPMT

11

Page 12: HYBRID MOULDS - THERMAL

CPMT GROUP

MATCHDEPARTMENT OF MATERIALS, TEXTILES

AND CHEMICAL ENGINEERING

CENTRE FOR POLYMER AND

MATERIAL TECHNOLOGIES

2 professors

1 bussiness

developer

3 postdocs

15 PhD’s

3 technicians

20 master students

Page 13: HYBRID MOULDS - THERMAL

RESEARCH LINES @ CPMTP

rof.

Car

do

n-

3D

Pri

nti

ng • Extrusion based

3D Printing

• 3D Printing of composites

• Printhead development

• Development of new materials for 3D Printing

• 3D Printing build strategies

• Fablab UGent Pro

f. C

ard

on

-A

dva

nce

d P

oly

mer

Pro

cess

ing • Injection Mould

Engineering

• Conductive polymers

• Hybrid Moulds

• Process simulation

Pro

f. R

agae

rt -

Rec

yclin

g an

dSu

stai

nab

leU

se• Mechanical recycling

• Mixed polymerwaste

• Multilayer packaging

• WEEE recycling

• Compounding

• Microfibrillar composites

• Design for & from Recycling

• Degradation effects

Page 14: HYBRID MOULDS - THERMAL

HYBRID MOULDSTHERMAL ASPECTS

Page 15: HYBRID MOULDS - THERMAL

15

WHAT ARE HYBRID MOULDS?

Who will use this?

Product designers new design methods Mould designersmore freedom of design Mould makers adapted machining parameters Polymer processors adapted processing parameters

Page 16: HYBRID MOULDS - THERMAL

16

WHAT ARE HYBRID MOULDS?

Actual status of mould developmenthybrid moulds conventional production technologies AM technologies

Mould cooling related to cycle time and product quality optimal cooling channel layout conformal cooling mould material selection

Product quality improvement e.g. sink marks degree of crystallisation tribology aspects (e.g. wearing)

Page 17: HYBRID MOULDS - THERMAL

17

WHAT ARE HYBRID MOULDS?

MOULD MATERIAL SELECTION

Thermal characteristics of mould materials are very important

Related to the core/cavity design strategynew part & mould design strategy

“Unknown” material characteristics

heat capacity Cp (DSC analysis) specific density r thermal conduction l

thermal diffusivity a

r

l

Cpa

Page 18: HYBRID MOULDS - THERMAL

Thermal diffusivity a [10-8 m²/sec]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

T [°C]

a [

10

-8 m

²/se

c]

Copper

Protherm

Alumec

Moldmax XL

LaserForm 100

Steel 1730

DirectMetal 20 sinter

Holdax

Impax Supreme

DirectSteel 50 sinter

Ramax

Prometal

Stavax ESR

DirectSteel H20

DirectSteel 20 sinter

CL 50 (LaserCusing)

CL 80 (LaserCusing)

The metal groups: Conventional mould materials

Selective Laser Sintermaterials

Selective Laser Melting materials

Mould material selection method

Page 19: HYBRID MOULDS - THERMAL

The metal groups: Conventional mould materials

Selective Laser Sintermaterials

Selective Laser Melting materials

Mould material selection method

Thermal diffusivity a [10-8 m²/sec] (without Copper, Alumec en Protherm)

200

325

450

575

700

825

950

1075

1200

1325

1450

1575

1700

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

T [°C]

a [

10

-8 m

²/se

c]

Moldmax XL

LaserForm 100

Steel 1730

DirectMetal 20 sinter

Holdax

Impax Supreme

DirectSteel 50 sinter

Ramax

Prometal

Stavax ESR

DirectSteel H20

DirectSteel 20 sinter

CL 50 (LaserCusing)

CL 80 (LaserCusing)

Page 20: HYBRID MOULDS - THERMAL

Example of ahybrid mould

Page 21: HYBRID MOULDS - THERMAL

ProMetal 55 °C ProMetal & Aluminium 50 °C

IR analysis of Prometal and Aluminium mould

Page 22: HYBRID MOULDS - THERMAL

ProMetal & Aluminium 50 °CProMetal 55 °C

IR analysis of Prometal and Aluminium mould

Page 23: HYBRID MOULDS - THERMAL

23

ProMetal 55 °C ProMetal & Aluminium 50 °C

IR analysis of Prometal and Aluminium mould

Page 24: HYBRID MOULDS - THERMAL

24

Combination of:➢multi materials in the same mould➢conventional mould making➢AM technologies➢“conventional” conformal cooling➢“AM” conformal cooling

With final result :➢optimal cooling chanel layout➢No “warpage”➢Faster cycle time➢Beter product quality and material properties

INTEGRATION OF KNOWLEDGE INTO A BUSINESS CARD BOX

Page 25: HYBRID MOULDS - THERMAL

25

• AM insert for living hinge

as for better rheological characteristics and “conformal cooling”

a new cooling has been designed

❖ Optimal “cooling” of living hinge

❖ Better rheology at location of living hinge

verification via Kistler sensors & IR analyses

• Heated injection nozzle

• Integration of DME “Quick Strip” ejection system

extra degree of freedom as for cooling channel design

“conventional” “conformal cooling”

• “freeform” design method related to ejectors

OPTIMIZED MOULD

Page 26: HYBRID MOULDS - THERMAL

26

OPTIMIZED MOULD

Page 27: HYBRID MOULDS - THERMAL

27

conformal cooling insert in “maraging” steelvia EOS SLM technology

OPTIMIZED MOULD

Page 28: HYBRID MOULDS - THERMAL

28

“conventional”conformal cooling insert

OPTIMIZED MOULD

Page 29: HYBRID MOULDS - THERMAL

29

• Packaging

• Heat control for mould making

• Extrusion and stretch blow moulding

• Thermoforming

• Micro injection moulding

• ...

OTHER APPLICATIONS?

Page 30: HYBRID MOULDS - THERMAL

• Conventional cycle time: 38s

• Estimated cycle time (conformal cooling HM): 19s

• Real HM cycle time: 32s

• HM shell is not accurate in calculating cycle time

• 16% of cycle time reduction

• Annual total profit of 222.000 €(6.000.000 parts/year)

Conformal cooling for packaging

Page 31: HYBRID MOULDS - THERMAL

BLOW MOULDING

Page 32: HYBRID MOULDS - THERMAL

BLOW MOULDING

Page 33: HYBRID MOULDS - THERMAL

Blow/cooling air simulation

BLOW MOULDING

Page 34: HYBRID MOULDS - THERMAL

34

MICRO MOULDING

Page 35: HYBRID MOULDS - THERMAL

35

MICRO MOULDING

Page 36: HYBRID MOULDS - THERMAL

THERMOFORMING

Hybrid mould made from PLA Mould via Necuron milling

Page 37: HYBRID MOULDS - THERMAL

THERMOFORMING - REAL

Page 38: HYBRID MOULDS - THERMAL

THERMOFORMING - SIMULATION

Page 39: HYBRID MOULDS - THERMAL

prof. dr. Ludwig Cardon

Head of CPMT

[email protected]

+32 478 224 335

39

CPMT

Technologiepark 915

9052 Zwijnaarde, BE

+32 9 331 03 91

www.match.ugent.be

Member of

prof. dr. Kim Ragaert

Sustainable Use and Recycling of

Polymers & Composites

[email protected]

+32 476 322 700

CONTACT INFORMATION