85
Halaman 1 dari 2 T ugas 5 KL- 4220 PIPA BAWAH LAUT Dosen : Prof. Dr. Ir. Ricky Lukman Tawekal, MSE/  Eko Charnius Ilman, ST, MT Diberikan : Sela sa, 16 Feb ruari 2016 Dikumpul : Senin, 29 Februari 2016 (Jam 7.00 WIB Pagi sebelum kuliah dimulai) Nama : NIM : BAGIAN A   FREE SPAN ANALYSIS (BOBOT 100%) Didapatkan data-data dua buah pipa penyalur bawah laut yang bersebelahan dengan jarak 100 meter pada kedalaman 20 s.d. 100m dengan lokasi sekitar 450m dari Platform, seperti berikut: Data proses:  Design temperature 100 0 C  Berat jenis gas 35 kg/m 3  or 2.185 pcf  Pressure design 1230 psi  Product ion life 25 thn  Corrosion Rate 0.06 mm/yea r Data pipa :  Material API 5L X-65  Berat jenis baja 490 pcf  Pipa pertama: NPS 60”, Wall thickne ss 1 inch. Tebal conc rete coating 3 inch.  Pipa ked ua: NPS 16”,  Wall Thickne ss 0.5 inch. Tebal c oncrete coating 2 inch.  Berat jenis beton 190 pcf  Young’s Modulus baja 3 x 10 7  psi  Poisson’s Ratio baja 0.3 Data lingkungan:  Seawater Density 64 pcf  Kinematic V isc osity of Se awater = 1.05E-6 m 2 sec -1   Hydrody namic coeff: Cd = 0.9 Cm = 3.29 CL = 0.9  A stronomical Tide: o HA T: 1.8m o LA T: 1.4m  Kecepatan arus: 1 Ye ar (m/s) 100 Ye ar (m/s) 0% WD 0.74 0.93 20% WD 0.69 0.81 40% WD 0.57 0.68 90% WD 0.51 0.63 100% WD 0.47 0.57  Gelombang: Return Period 1-y rs 100-y rs Significant wave height (m) 2 3.7 Significant wave period (s) 4.2 5.5 Maximum In dividual height (m) 4 6 Note: Tp = 1.05*Ts T ugas A nda: Untuk kedua pipa di atas, hitung Allowable free span secara a. Static dan b. Dynamic (3 kon disi: hydro test, o perasi, instalasi) 15512006 REEZALI RAHARJAYA 1 of 84. 1 of 84. NPS 60 --> 60 inch REEZALI RAHARJAYA 15512006

HW5 2016 15512006

Embed Size (px)

Citation preview

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 1/84

Halaman 1 dari 2

Tugas 5 KL- 4220 PIPA BAWAH LAUTDosen : Prof. Dr. Ir. Ricky Lukman Tawekal, MSE/  Eko Charnius Ilman, ST, MT

Diberikan : Se lasa, 16 Februari 2016Dikumpul : Senin, 29 Februari 2016 (Jam 7.00 WIB Pagi sebelum kuliah dimulai)

Nama : ______________________________________

NIM : ______________________________________

BAGIAN A  – FREE SPAN ANALYSIS (BOBOT 100%)

Didapatkan data-data dua buah pipa penyalur bawah laut yang bersebelahan dengan jarak 100meter pada kedalaman 20 s.d. 100m dengan lokasi sekitar 450m dari Platform, seperti berikut:

Data proses:  Design temperature 1000C   Berat jenis gas 35 kg/m3 or 2.185

pcf

  Pressure design 1230 psi  Production life 25 thn

  Corrosion Rate 0.06 mm/yearData pipa :

  Material API 5L X-65   Berat jenis baja 490 pcf  Pipa pertama: NPS 60”, Wall thickness 1

inch. Tebal concrete coating 3 inch.  Pipa kedua: NPS 16”, Wall Thickness 0.5

inch. Tebal concrete coating 2 inch.

  Berat jenis beton 190 pcf

  Young’s Modulus baja 3 x 107 psi

  Poisson’s Ratio baja 0.3Data lingkungan:

  Seawater Density 64 pcf  Kinematic Viscosity of Seawater = 1.05E-6 m2sec-1 

  Hydrodynamic coeff:

Cd = 0.9Cm = 3.29CL = 0.9

  Astronomical Tide:o  HAT: 1.8mo  LAT: 1.4m

  Kecepatan arus:1 Year (m/s) 100 Year (m/s)

0% WD 0.74 0.93

20% WD 0.69 0.8140% WD 0.57 0.68

90% WD 0.51 0.63100% WD 0.47 0.57

  Gelombang:

Return Period 1-yrs 100-yrs

Significant wave height (m) 2 3.7

Significant wave period (s) 4.2 5.5

Maximum Individual height (m) 4 6

Note: Tp = 1.05*TsTugas Anda:

Untuk kedua pipa di atas, hitung Allowable free span secaraa. Static danb. Dynamic (3 kondisi: hydrotest, operasi, instalasi)

15512006 REEZALI RAHARJAYA 1 of 84.

1 of 84.

NPS 60 --> 60 inch

REEZALI RAHARJAYA

15512006

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 2/84

Halaman 2 dari 2

BAGIAN B – STRESS ANALYSIS AND GLOBAL BUCKLING (BOBOT 100%)

Pipa bawah laut dengan NPS 20 Schedule 40 sepanjang 40 km, dengan material baja API 5L X52memiliki lapisan pelindung anti korosi tipe 3LPP (tebal 3 mm), lapisan pemberat beton dengan tebal1 in. Service berupa gas dengan densitas 80 pcf. Pipa didesain dengan tekanan desain 15 MPa dantemperature desain 100C ini berada di atas seabed   dengan kedalaman 30 meter. Dari hasil soil

investigation, diketahui tipe tanah dasar laut adalah  pasir  dengan sudut gesert tanah 35  dengan

densitas 18835.6 N/m3  dan undrained shear strength 14000 Pa. Kondisi perairan memilikitemperature ambient 25C. Diketahui factor friksi pipa dengan tanah sebesar 0.3. Koefisienekspansi thermal sebesar 1.1710-5 /C. Jarak antara ujung bebas 62 m.

Tugas Anda:

1. (40%)  Lakukan analisis upheaval buckling   mengikuti metode pada paper AC Palmer OTC

6335. Jika diketahui tinggi imperfection sebesar 1 meter,a. cek apakah diperlukan tambahan gravel dumping untuk mengubur pipa sebagai tambahan

pemberat untuk kestabilan;b. bandingkan regangan yang terjadi terhadap regangan izin berdasarkan kriteria strain based

design.

2. (40%)  Untuk pipa yang sama, jika diketahui batimetri dan profil temperature sebagaimanaGambar 1. Lakukan analisis expansi thermal. Kemudian hitunglah besar total ekspansi thermaldan virtual anchor length pada hot-end dan cold-end! 

Gambar 1 Profil kedalaman pipa (kiri) dan profil temperatur (kanan) sepanjang pipa

Catatan: Untuk data yang Anda anggap kurang, dapat digunakan asumsi namun ingat untuk mencantumkan sumbernya.

3. (15%)  Dengan kata-kata Anda sendiri, berikanlah penjelasan berikut sketsanya mengenai

perilaku global buckling   pada suatu potongan pipa dengan kapasitas buckling   yang beragamsepanjang pipa, hingga terjadi buckling   pertama dan kedua. Anda harus menjelaskanbagaimana prilaku sebelum buckling   dan mekanisme yang terjadi saat buckling pertama dankedua. Berikan sketsa yang jelas dan mudah dimengerti untuk setiap penjelasan Anda. Di akhirpenjelasan Anda, tambahkan pula penjelasan apa yang dimaksud dengan dengan globalbuckling sebagai fenomena beban, bukan fenomena kegagalan.

4. (5%)  Buatlah sebuah tabel yang memberikan perbedaan antara teori kegagalan : (1) vonmises, (2) tresca, dan (3) rankine. Penjelasan yang komprehensif berbobot lebih.

Catatan:

1.  Semua proses perhitungan tahap demi tahap beserta rumus dan keterangan rumus yang dipakai

WAJIB Anda tuliskan! TIDAK BOLEH hanya melampirkan angka-angka tanpa rumus yang dipakai atau

bahkan hanya hasil akhir saja! Pekerjaan Anda harus bisa ditelusuri dengan mudah. Sumber setiap

rumus yang dipakai harus dicantumkan. Misal: “Sumber: Equation 2.3 DnV RP E305 page 20”. Jangan

mencantumkan referensi misalnya:”Slide kuliah balapan atau contoh spreadsheet dst..”. Cek di

standar/codenya langsung.

2.  Perhitungan yang Anda lakukan untuk soal ini harus menggunakan EXCEL, Mathcad atau MATLAB.

Tidak boleh menggunakan tulis tangan.--Soal Selesai— 

“Perilaku Anti korupsi dimulai sejak dini.. Dilarang mencontek!”

0

50

100

150

0 10 20 30 40   T   e   m   p   e   r   a   t   u   r   e    (               C    )

KP

15512006 REEZALI RAHARJAYA 2 of 84.

2 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 3/84

BAGIAN A

Untuk pipa pertama:

NPS 60. Wall thickness= 1 in. Concrete thickness= 4.5 in (dibesarkan karena dengan tebal 3 inch, pipa

tidak stabil)

Dari perhitungan pada halaman selanjutnya ini, dapat disimpulkan panjang free span yang diijinkan:

Condition Allowable Free Span (ft)

Installation Hydrotest Operation

Static 437.992 306.759 355.971

Dynamic 372.89 343.262 333.69

Keterangan: Perhitungan On-Bottom Stability (OBS) dapat diperoleh di bagian lampiran.

15512006 REEZALI RAHARJAYA 3 of 84.

3 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 4/84

Free Span Analysis - Hydrotest NPS 60

1. INPUT PARAMETER  pcf lb ft

  3-:=   C K 

1.1 Pipeline Design Parameter

Outer Diameter   Ds   60in:=

Wall Thickness   ts   1in:=

Internal Diameter   ID Ds   2ts-:=

Concrete Coang   tcc   4.5in:=

Modulus Elascity   E 30000ksi:=

Design Pressure   Po   1845psi:=

Concrete Coang Density   ρcc   190pcf :=

Content Density   ρcont   62.4pcf :=

Seawater Density   ρsw   64pcf :=

Steel Density   ρs   490pcf :=

Design Temperature   Td   373K :=

Poisson Rao   υ   0.3:=

SMYS API 5L X-65   SMYS 65ksi:=

Corrosion Coang THK   tcorr    0in:=

Thermal Coe cient   α   1.17 10  5-

  1

K :=

Structural Damping   δ   0.126:= DNV RP F105 para. 6.2.11

Corrosion Coang Density   ρcorr    60pcf :=

Seabed Temperature   Tsw   296K :=

1.2 Environmental Parameter

Signi cant Wave Height   Hs   2m:=

15512006 REEZALI RAHARJAYA 4 of 84.

4 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 5/84

Signi cant Wave Period   Ts   4.2s:=   T p   1.05 Ts   4.41 s=:=

Water Depth   d 100m:=

Current 10% WD Above Seabed   Uc   0.51m s  1-:=   Zr    10m:=

Kinemac Viscosity of Seawater   ν   1.05 10  6-

  m2

s  1-

:=

1.3 Soil Parameter

Soil Type 1 = Sand, 2 = Clay   soil 2:=

From table A.1 DNV RP

E305Undrained Shear Strength   Su   2kPa:=   z0   5.21 10

  6-m:=

 2. CALCULATION

2.1 Submerged Weight Calculation

Outside Diameter   Dtot   Ds   2tcorr +   2tcc+:=   Dtot   1.753m=

Inera I  π

64Ds

4ID

4-:=   I 0.034m

4=

Elasc Modulus   EI E I:=   EI 6.946 109

  m

3kg

s2

=

Weight of Pipe

Steel Weight   Wstπ

4Ds

2ID

2-   ρs:=   Wst   938.612

 kg

m=

Corr. Coat. Weight   Wcorr π

4Ds   2tcorr +( )

2Ds

2-   ρcorr :=   Wcorr    0

 kg

m=

Concrete Weight   Wccπ

4Dtot

2Ds   2tcorr +( )

2-   ρcc:=   Wcc   1.79 10

3

  kg

m=

Content Weight   Wcontπ

4ID

2ρcont:=   Wcont   1.704 10

3

  kg

m=

Added Mass   Waddπ

4Dtot

2ρsw:=   Wadd   2.473 10

3

  kg

m=

Total E ecve Weight   Weff    Wst   Wcorr +   Wcont+   Wcc+   Wadd+:=   Weff    6.906 103

  kg

m=

External Pressure   Pe   ρsw g   d:=   Pe   1.005 10

6

  Pa=

15512006 REEZALI RAHARJAYA 5 of 84.

5 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 6/84

Pressure Di erence   ΔP Po   Pe-:=   ΔP 1.172 107

  Pa=

2.2 Wave Induced Velocity Calculation

Angle between wave direcon and pipeline direcon   ϕwave   90deg:=

 Calculaon of Wave Length

Lg T p

2

2π:=   L 30.354 m=

Wave Length

λ  L d,( )g T p

2

tanh  2π d

L  

  

:=

Given

λ  L d,( ) L=

L d( ) Find L( ):=

L d( ) 30.354m=

Horizontal Water Parcle Velovity

k d( )  2π

L d( ):=   k d( ) 0.207

 1

m=

Phase Angle Range:   i 0 90..:=   θi

  i deg:=

u d   θ,( )Hs

2

g

d

 

 

 

 d

L d( )

1

20<if 

π Hs

T p

ek d( ) Dtot   d-( )

d

L d( )

1

2

>if 

Hs

2

g T p

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

cos  θ( ):= Shallow approximaon

Deep approximaon

Intermediate depth

approximaon

uw   max u d   θ,( )( ):=   uw   2.097 10  9-

  m

s=

Reducon factor (direconality)   R wave   sin  ϕwave( ):=   R wave   1=

15512006 REEZALI RAHARJAYA 6 of 84.

6 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 7/84

Signi cant wave vel. perpendicular

to pipeUw d   θ,( ) uw R wave

ln0.5 Ds

z0

 

 

 

 

lnZr 

z0

 

 

 

 

:=

Horizontal Water Parcle Acceleraon

Uw d   θ,( ) 1.724 10  9-

  m

s=

Aw d   θ,( )Hs π

T p

g

d

 

 

 

 

d

L d( )

1

20<if 

2Hsπ

T p

 

 

 

 

2

  ek d( ) Dtot   d-( )

d

L d( )

1

2>if 

Hsg π

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

sin  θ( ):=

Aw max Aw d   θ,( )( ):=   Aw 2.988 10   9-   m

s2

=

Signi cant wave acceleraon

perpendicular to pipeAw d   θ,( ) Aw R  wave:=   Aw d   θ,( ) 2.988 10

  9-

  m

s2

=

 2.3 Free Span - Dynamic

Stability Number   K s

2 Weff    δ

ρsw Dtot2

:=   K s   0.553=

Formula from DNV 1981 paragraph A.2.1.4

Reduced Velocity   Vr    1.62:= From Fig A.3 DNV 1981

Note :

con1 "In-line Oscillation":=

con2 "Cross-flow Oscillation":=

Type of Oscillaon   Otype   con1 1 Vr <   3.5<   K s   1.8<if 

con2 otherwise

:=

Otype   "In-line Oscillation"=

Strouhal Number   St   0.24:= From Fig. A.2 DNV 1981

15512006 REEZALI RAHARJAYA 7 of 84.

7 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 8/84

Vortex Shedding Frequency   f v

St   Uw d   θ,( ) Uc+( )

Dtot

:=   f v   0.07 Hz=

Crical Pipespan   Lcr 9.87

EI

Weff    Wadd-

  DtotVr 

Uw d   θ,( ) Uc+

:=

Lcr    104.626 m=

 2.4 Free Span - Static

Yield requirement

i 0 200..:=   Li

  i m:=

Longitudinal Stress   σx L( )

Wst L2

  0.5   Ds g

10I

 

 

 

 

Ds   Po   Pe-( )

4ts

+

:=

0 200 400 600 800

0

5 104

1 105

1.5 105

σx L( )

 psi

L

ft

Liming Longitudinal Pressure   σxa L( ) 0.8SMYS:=   σxa L( ) 5.2 104

  psi=

15512006 REEZALI RAHARJAYA 8 of 84.

8 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 9/84

Lcrit L( ) L 0.5m

Lcrit   L

L L 1m+

σx L( )   σxa L( )<while

Lcrit

:=

Lcrit L( ) 93.5 m=

Longitudinal Stress   σx Lcrit L( )( )   5.197 104

  psi=

Hoop Stress   σh

Ds   Po   Pe-( )

2ts

5.098 104

  psi=:=

Von Mises Stress   σe   σx Lcrit L( )( )2 σh2+   7.28 104   psi=:=

0.9SMYS 5.85 104

  psi=

 3. SUMMARY RESULTS

Crical pipespan - Dynamic   Lcr    343.262 ft=

Crical pipespan - Stac   Lcrit L( ) 306.759 ft=

15512006 REEZALI RAHARJAYA 9 of 84.

9 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 10/84

Free Span Analysis - Instalasi NPS 60

1. INPUT PARAMETER  pcf lb ft

  3-:=   C K 

1.1 Pipeline Design Parameter

Outer Diameter   Ds   60in:=

Wall Thickness   ts   1in:=

Internal Diameter   ID Ds   2ts-:=

Concrete Coang   tcc   4.5in:=

Modulus Elascity   E 30000ksi:=

Design Pressure   Po   0psi:=

Concrete Coang Density   ρcc   190pcf :=

Content Density   ρcont   0pcf :=

Seawater Density   ρsw   64pcf :=

Steel Density   ρs   490pcf :=

Design Temperature   Td   373K :=

Poisson Rao   υ   0.3:=

SMYS API 5L X-65   SMYS 65ksi:=

Corrosion Coang THK   tcorr    0in:=

Thermal Coe cient   α   1.17 10  5-

  1

K :=

Structural Damping   δ   0.126:= DNV RP F105 para. 6.2.11

Corrosion Coang Density   ρcorr    60pcf :=

Seabed Temperature   Tsw   296K :=

1.2 Environmental Parameter

Signi cant Wave Height   Hs   2m:=

15512006 REEZALI RAHARJAYA 10 of 84.

10 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 11/84

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 12/84

Pressure Di erence   ΔP Po   Pe-:=   ΔP 1.005 106

  Pa=

2.2 Wave Induced Velocity Calculation

Angle between wave direcon and pipeline direcon   ϕwave   90deg:=

 Calculaon of Wave Length

Lg T p

2

2π:=   L 30.354 m=

Wave Length

λ  L d,( )g T p

2

tanh  2π d

L  

  

:=

Given

λ  L d,( ) L=

L d( ) Find L( ):=

L d( ) 30.354m=

Horizontal Water Parcle Velovity

k d( )  2π

L d( ):=   k d( ) 0.207

 1

m=

Phase Angle Range:   i 0 90..:=   θi

  i deg:=

u d   θ,( )Hs

2

g

d

 

 

 

 d

L d( )

1

20<if 

π Hs

T p

ek d( ) Dtot   d-( )

d

L d( )

1

2

>if 

Hs

2

g T p

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

cos  θ( ):= Shallow approximaon

Deep approximaon

Intermediate depth

approximaon

uw   max u d   θ,( )( ):=   uw   2.097 10  9-

  m

s=

Reducon factor (direconality)   R wave   sin  ϕwave( ):=   R wave   1=

15512006 REEZALI RAHARJAYA 12 of 84.

12 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 13/84

Signi cant wave vel. perpendicular

to pipeUw d   θ,( ) uw R wave

ln0.5 Ds

z0

 

 

 

 

lnZr 

z0

 

 

 

 

:=

Horizontal Water Parcle Acceleraon

Uw d   θ,( ) 1.724 10  9-

  m

s=

Aw d   θ,( )Hs π

T p

g

d

 

 

 

 

d

L d( )

1

20<if 

2Hsπ

T p

 

 

 

 

2

  ek d( ) Dtot   d-( )

d

L d( )

1

2>if 

Hsg π

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

sin  θ( ):=

Aw max Aw d   θ,( )( ):=   Aw 2.988 10   9-   m

s2

=

Signi cant wave acceleraon

perpendicular to pipeAw d   θ,( ) Aw R  wave:=   Aw d   θ,( ) 2.988 10

  9-

  m

s2

=

 2.3 Free Span - Dynamic

Stability Number   K s

2 Weff    δ

ρsw Dtot2

:=   K s   0.416=

Formula from DNV 1981 paragraph A.2.1.4

Reduced Velocity   Vr    1.5:= From Fig A.3 DNV 1981

Note :

con1 "In-line Oscillation":=

con2 "Cross-flow Oscillation":=

Type of Oscillaon   Otype   con1 1 Vr <   3.5<   K s   1.8<if 

con2 otherwise

:=

Otype   "In-line Oscillation"=

Strouhal Number   St   0.24:= From Fig. A.2 DNV 1981

15512006 REEZALI RAHARJAYA 13 of 84.

13 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 14/84

Vortex Shedding Frequency   f v

St   Uw d   θ,( ) Uc+( )

Dtot

:=   f v   0.07 Hz=

Crical Pipespan   Lcr 9.87

EI

Weff    Wadd-

  DtotVr 

Uw d   θ,( ) Uc+

:=

Lcr    113.657 m=

 2.4 Free Span - Static

Yield requirement

i 0 200..:=   Li

  i m:=

Longitudinal Stress   σx L( )

Wst L2

  0.5   Ds g

10I

 

 

 

 

Ds   Po   Pe-( )

4ts

+

:=

0 200 400 600 800

5-   104

0

5 104

1 105

1.5 105

σx L( )

 psi

L

ft

Liming Longitudinal Pressure   σxa L( ) 0.8SMYS:=   σxa L( ) 5.2 104

  psi=

15512006 REEZALI RAHARJAYA 14 of 84.

14 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 15/84

Lcrit L( ) L 0.5m

Lcrit   L

L L 1m+

σx L( )   σxa L( )<while

Lcrit

:=

Lcrit L( ) 133.5 m=

Longitudinal Stress   σx Lcrit L( )( )   5.18 104

  psi=

Hoop Stress   σh

Ds   Po   Pe-( )

2ts

4.374-   103

  psi=:=

Von Mises Stress   σe   σx Lcrit L( )( )2 σh2+   5.199 104   psi=:=

0.9SMYS 5.85 104

  psi=

 3. SUMMARY RESULTS

Crical pipespan - Dynamic   Lcr    372.89 ft=

Crical pipespan - Stac   Lcrit L( ) 437.992 ft=

15512006 REEZALI RAHARJAYA 15 of 84.

15 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 16/84

Free Span Analysis - Operaon NPS 60

1. INPUT PARAMETER  pcf lb ft

  3-:=   C K 

1.1 Pipeline Design Parameter

Outer Diameter   Ds   60in:=

Wall Thickness   ts   1in:=

Internal Diameter   ID Ds   2ts-:=

Concrete Coang   tcc   4.5in:=

Modulus Elascity   E 30000ksi:=

Design Pressure   Po   1230psi:=

Concrete Coang Density   ρcc   190pcf :=

Content Density   ρcont   2.185pcf :=

Seawater Density   ρsw   64pcf :=

Steel Density   ρs   490pcf :=

Design Temperature   Td   373K :=

Poisson Rao   υ   0.3:=

SMYS API 5L X-65   SMYS 65ksi:=

Corrosion Coang THK   tcorr    0in:=

Thermal Coe cient   α   1.17 10  5-

  1

K :=

Structural Damping   δ   0.126:= DNV RP F105 para. 6.2.11

Corrosion Coang Density   ρcorr    60pcf :=

Seabed Temperature   Tsw   296K :=

1.2 Environmental Parameter

Signi cant Wave Height   Hs   3.7m:=

15512006 REEZALI RAHARJAYA 16 of 84.

16 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 17/84

Signi cant Wave Period   Ts   5.5s:=   T p   1.05 Ts   5.775s=:=

Water Depth   d 100m:=

Current 10% WD Above Seabed   Uc   0.63m s  1-:=   Zr    10m:=

Kinemac Viscosity of Seawater   ν   1.05 10  6-

  m2

s  1-

:=

1.3 Soil Parameter

Soil Type 1 = Sand, 2 = Clay   soil 2:=

From table A.1 DNV RP

E305Undrained Shear Strength   Su   2kPa:=   z0   5.21 10

  6-m:=

 2. CALCULATION

2.1 Submerged Weight Calculation

Outside Diameter   Dtot   Ds   2tcorr +   2tcc+:=   Dtot   1.753m=

Inera I  π

64Ds

4ID

4-:=   I 0.034m

4=

Elasc Modulus   EI E I:=   EI 6.946 109

  m

3kg

s2

=

Weight of Pipe

Steel Weight   Wstπ

4Ds

2ID

2-   ρs:=   Wst   938.612

 kg

m=

Corr. Coat. Weight   Wcorr π

4Ds   2tcorr +( )

2Ds

2-   ρcorr :=   Wcorr    0

 kg

m=

Concrete Weight   Wccπ

4Dtot

2Ds   2tcorr +( )

2-   ρcc:=   Wcc   1.79 10

3

  kg

m=

Content Weight   Wcontπ

4ID

2ρcont:=   Wcont   59.66

 kg

m=

Added Mass   Waddπ

4Dtot

2ρsw:=   Wadd   2.473 10

3

  kg

m=

Total E ecve Weight   Weff    Wst   Wcorr +   Wcont+   Wcc+   Wadd+:=   Weff    5.262 103

  kg

m=

External Pressure   Pe   ρsw g   d:=   Pe   1.005 10

6

  Pa=

15512006 REEZALI RAHARJAYA 17 of 84.

17 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 18/84

Pressure Di erence   ΔP Po   Pe-:=   ΔP 7.475 106

  Pa=

2.2 Wave Induced Velocity Calculation

Angle between wave direcon and pipeline direcon   ϕwave   90deg:=

 Calculaon of Wave Length

Lg T p

2

2π:=   L 52.053 m=

Wave Length

λ  L d,( )g T p

2

tanh  2π d

L  

  

:=

Given

λ  L d,( ) L=

L d( ) Find L( ):=

L d( ) 52.053m=

Horizontal Water Parcle Velovity

k d( )  2π

L d( ):=   k d( ) 0.121

 1

m=

Phase Angle Range:   i 0 90..:=   θi

  i deg:=

u d   θ,( )Hs

2

g

d

 

 

 

 d

L d( )

1

20<if 

π Hs

T p

ek d( ) Dtot   d-( )

d

L d( )

1

2

>if 

Hs

2

g T p

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

cos  θ( ):= Shallow approximaon

Deep approximaon

Intermediate depth

approximaon

uw   max u d   θ,( )( ):=   uw   1.424 10  5-

  m

s=

Reducon factor (direconality)   R wave   sin  ϕwave( ):=   R wave   1=

15512006 REEZALI RAHARJAYA 18 of 84.

18 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 19/84

Signi cant wave vel. perpendicular

to pipeUw d   θ,( ) uw R wave

ln0.5 Ds

z0

 

 

 

 

lnZr 

z0

 

 

 

 

:=

Horizontal Water Parcle Acceleraon

Uw d   θ,( ) 1.17 10  5-

  m

s=

Aw d   θ,( )Hs π

T p

g

d

 

 

 

 

d

L d( )

1

20<if 

2Hsπ

T p

 

 

 

 

2

  ek d( ) Dtot   d-( )

d

L d( )

1

2>if 

Hsg π

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

sin  θ( ):=

Aw max Aw d   θ,( )( ):=   Aw 1.549 10   5-   m

s2

=

Signi cant wave acceleraon

perpendicular to pipeAw d   θ,( ) Aw R  wave:=   Aw d   θ,( ) 1.549 10

  5-

  m

s2

=

 2.3 Free Span - Dynamic

Stability Number   K s

2 Weff    δ

ρsw Dtot2

:=   K s   0.421=

Formula from DNV 1981 paragraph A.2.1.4

Reduced Velocity   Vr    1.5:= From Fig A.3 DNV 1981

Note :

con1 "In-line Oscillation":=

con2 "Cross-flow Oscillation":=

Type of Oscillaon   Otype   con1 1 Vr <   3.5<   K s   1.8<if 

con2 otherwise

:=

Otype   "In-line Oscillation"=

Strouhal Number   St   0.24:= From Fig. A.2 DNV 1981

15512006 REEZALI RAHARJAYA 19 of 84.

19 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 20/84

Vortex Shedding Frequency   f v

St   Uw d   θ,( ) Uc+( )

Dtot

:=   f v   0.086 Hz=

Crical Pipespan   Lcr 9.87

EI

Weff    Wadd-

  DtotVr 

Uw d   θ,( ) Uc+

:=

Lcr    101.709 m=

 2.4 Free Span - Static

Yield requirement

i 0 200..:=   Li

  i m:=

Longitudinal Stress   σx L( )

Wst L2

  0.5   Ds g

10I

 

 

 

 

Ds   Po   Pe-( )

4ts

+

:=

0 200 400 600 800

0

5 104

1 105

1.5 105

σx L( )

 psi

L

ft

Liming Longitudinal Pressure   σxa L( ) 0.8SMYS:=   σxa L( ) 5.2 104

  psi=

15512006 REEZALI RAHARJAYA 20 of 84.

20 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 21/84

Lcrit L( ) L 0.5m

Lcrit   L

L L 1m+

σx L( )   σxa L( )<while

Lcrit

:=

Lcrit L( ) 108.5 m=

Longitudinal Stress   σx Lcrit L( )( )   5.193 104

  psi=

Hoop Stress   σh

Ds   Po   Pe-( )

2ts

3.253 104

  psi=:=

Von Mises Stress   σe   σx Lcrit L( )( )2 σh2+   6.127 104   psi=:=

0.9SMYS 5.85 104

  psi=

 3. SUMMARY RESULTS

Crical pipespan - Dynamic   Lcr    333.69 ft=

Crical pipespan - Stac   Lcrit L( ) 355.971 ft=

15512006 REEZALI RAHARJAYA 21 of 84.

21 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 22/84

Untuk pipa kedua: 

NPS 16. Wall thicknes=0.5 in. Concrete Thickness=2 in

Dari perhitungan pada halaman selanjutnya ini, dapat disimpulkan panjang free span yang diijinkan:

Condition Allowable Free Span (ft)

Installation Hydrotest Operation

Static 106.616 102.981 96.254

Dynamic 218.176 185.367 198.491

Keterangan: Perhitungan On-Bottom Stability (OBS) dapat diperoleh di bagian lampiran.

15512006 REEZALI RAHARJAYA 22 of 84.

22 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 23/84

Free Span Analysis - Hydrotest NPS 16

1. INPUT PARAMETER  pcf lb ft

  3-:=   C K 

1.1 Pipeline Design Parameter

Outer Diameter   Ds   16in:=

Wall Thickness   ts   0.5in:=

Internal Diameter   ID Ds   2ts-:=

Concrete Coang   tcc   2in:=

Modulus Elascity   E 30000ksi:=

Design Pressure   Po   1845psi:=

Concrete Coang Density   ρcc   190pcf :=

Content Density   ρcont   62.4pcf :=

Seawater Density   ρsw   64pcf :=

Steel Density   ρs   490pcf :=

Design Temperature   Td   373K :=

Poisson Rao   υ   0.3:=

SMYS API 5L X-65   SMYS 65ksi:=

Corrosion Coang THK   tcorr    0in:=

Thermal Coe cient   α   1.17 10  5-

  1

K :=

Structural Damping   δ   0.126:= DNV RP F105 para. 6.2.11

Corrosion Coang Density   ρcorr    60pcf :=

Seabed Temperature   Tsw   296K :=

1.2 Environmental Parameter

Signi cant Wave Height   Hs   2m:=

15512006 REEZALI RAHARJAYA 23 of 84.

23 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 24/84

Signi cant Wave Period   Ts   4.2s:=   T p   1.05 Ts   4.41 s=:=

Water Depth   d 100m:=

Current 10% WD Above Seabed   Uc   0.51m s  1-:=   Zr    10m:=

Kinemac Viscosity of Seawater   ν   1.05 10  6-

  m2

s  1-

:=

1.3 Soil Parameter

Soil Type 1 = Sand, 2 = Clay   soil 2:=

From table A.1 DNV RP

E305Undrained Shear Strength   Su   2kPa:=   z0   5.21 10

  6-m:=

 2. CALCULATION

2.1 Submerged Weight Calculation

Outside Diameter   Dtot   Ds   2tcorr +   2tcc+:=   Dtot   0.508m=

Inera I  π

64Ds

4ID

4-:=   I 3.047 10

  4-   m

4=

Elasc Modulus   EI E I:=   EI 6.302 107

  kg m

3

s2

=

Weight of Pipe

Steel Weight   Wstπ

4Ds

2ID

2-   ρs:=   Wst   123.292

 kg

m=

Corr. Coat. Weight   Wcorr π

4Ds   2tcorr +( )

2Ds

2-   ρcorr :=   Wcorr    0

 kg

m=

Concrete Weight   Wccπ

4Dtot

2Ds   2tcorr +( )

2-   ρcc:=   Wcc   222.072

 kg

m=

Content Weight   Wcontπ

4ID

2ρcont:=   Wcont   113.958

 kg

m=

Added Mass   Waddπ

4Dtot

2ρsw:=   Wadd   207.787

 kg

m=

Total E ecve Weight   Weff    Wst   Wcorr +   Wcont+   Wcc+   Wadd+:=   Weff    667.11 kg

m=

External Pressure   Pe   ρsw g   d:=   Pe   1.005 10

6

  Pa=

15512006 REEZALI RAHARJAYA 24 of 84.

24 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 25/84

Pressure Di erence   ΔP Po   Pe-:=   ΔP 1.172 107

  Pa=

2.2 Wave Induced Velocity Calculation

Angle between wave direcon and pipeline direcon   ϕwave   90deg:=

 Calculaon of Wave Length

Lg T p

2

2π:=   L 30.354 m=

Wave Length

λ  L d,( )g T p

2

tanh  2π d

L  

  

:=

Given

λ  L d,( ) L=

L d( ) Find L( ):=

L d( ) 30.354m=

Horizontal Water Parcle Velovity

k d( )  2π

L d( ):=   k d( ) 0.207

 1

m=

Phase Angle Range:   i 0 90..:=   θi

  i deg:=

u d   θ,( )Hs

2

g

d

 

 

 

 d

L d( )

1

20<if 

π Hs

T p

ek d( ) Dtot   d-( )

d

L d( )

1

2

>if 

Hs

2

g T p

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

cos  θ( ):= Shallow approximaon

Deep approximaon

Intermediate depth

approximaon

uw   max u d   θ,( )( ):=   uw   1.621 10  9-

  m

s=

Reducon factor (direconality)   R wave   sin  ϕwave( ):=   R wave   1=

15512006 REEZALI RAHARJAYA 25 of 84.

25 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 26/84

Signi cant wave vel. perpendicular

to pipeUw d   θ,( ) uw R wave

ln0.5 Ds

z0

 

 

 

 

lnZr 

z0

 

 

 

 

:=

Horizontal Water Parcle Acceleraon

Uw d   θ,( ) 1.184 10  9-

  m

s=

Aw d   θ,( )Hs π

T p

g

d

 

 

 

 

d

L d( )

1

20<if 

2Hsπ

T p

 

 

 

 

2

  ek d( ) Dtot   d-( )

d

L d( )

1

2>if 

Hsg π

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

sin  θ( ):=

Aw max Aw d   θ,( )( ):=   Aw 2.309 10   9-   m

s2

=

Signi cant wave acceleraon

perpendicular to pipeAw d   θ,( ) Aw R  wave:=   Aw d   θ,( ) 2.309 10

  9-

  m

s2

=

 2.3 Free Span - Dynamic

Stability Number   K s

2 Weff    δ

ρsw Dtot2

:=   K s   0.635=

Formula from DNV 1981 paragraph A.2.1.4

Reduced Velocity   Vr    1.7:= From Fig A.3 DNV 1981

Note :

con1 "In-line Oscillation":=

con2 "Cross-flow Oscillation":=

Type of Oscillaon   Otype   con1 1 Vr <   3.5<   K s   1.8<if 

con2 otherwise

:=

Otype   "In-line Oscillation"=

Strouhal Number   St   0.24:= From Fig. A.2 DNV 1981

15512006 REEZALI RAHARJAYA 26 of 84.

26 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 27/84

Vortex Shedding Frequency   f v

St   Uw d   θ,( ) Uc+( )

Dtot

:=   f v   0.241 Hz=

Crical Pipespan   Lcr 9.87

EI

Weff    Wadd-

  DtotVr 

Uw d   θ,( ) Uc+

:=

Lcr    31.389 m=

 2.4 Free Span - Static

Yield requirement

i 0 200..:=   Li

  i m:=

Longitudinal Stress   σx L( )

Wst L2

  0.5   Ds g

10I

 

 

 

 

Ds   Po   Pe-( )

4ts

+

:=

0 200 400 600 800

0

1 105

2 105

3 105

4 105

5 105

σx L( )

 psi

L

ft

Liming Longitudinal Pressure   σxa L( ) 0.8SMYS:=   σxa L( ) 5.2 104

  psi=

15512006 REEZALI RAHARJAYA 27 of 84.

27 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 28/84

Lcrit L( ) L 0.5m

Lcrit   L

L L 1m+

σx L( )   σxa L( )<while

Lcrit

:=

Lcrit L( ) 56.5 m=

Longitudinal Stress   σx Lcrit L( )( )   5.093 104

  psi=

Hoop Stress   σh

Ds   Po   Pe-( )

2ts

2.719 104

  psi=:=

Von Mises Stress   σe   σx Lcrit L( )( )2 σh2+   5.773 104   psi=:=

0.9SMYS 5.85 104

  psi=

 3. SUMMARY RESULTS

Crical pipespan - Dynamic   Lcr    102.981 ft=

Crical pipespan - Stac   Lcrit L( ) 185.367 ft=

15512006 REEZALI RAHARJAYA 28 of 84.

28 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 29/84

Free Span Analysis - Instalasi NPS 16

1. INPUT PARAMETER  pcf lb ft

  3-:=   C K 

1.1 Pipeline Design Parameter

Outer Diameter   Ds   16in:=

Wall Thickness   ts   0.5in:=

Internal Diameter   ID Ds   2ts-:=

Concrete Coang   tcc   2in:=

Modulus Elascity   E 30000ksi:=

Design Pressure   Po   0psi:=

Concrete Coang Density   ρcc   190pcf :=

Content Density   ρcont   0pcf :=

Seawater Density   ρsw   64pcf :=

Steel Density   ρs   490pcf :=

Design Temperature   Td   373K :=

Poisson Rao   υ   0.3:=

SMYS API 5L X-65   SMYS 65ksi:=

Corrosion Coang THK   tcorr    0in:=

Thermal Coe cient   α   1.17 10  5-

  1

K :=

Structural Damping   δ   0.126:= DNV RP F105 para. 6.2.11

Corrosion Coang Density   ρcorr    60pcf :=

Seabed Temperature   Tsw   296K :=

1.2 Environmental Parameter

Signi cant Wave Height   Hs   2m:=

15512006 REEZALI RAHARJAYA 29 of 84.

29 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 30/84

Signi cant Wave Period   Ts   4.2s:=   T p   1.05 Ts   4.41 s=:=

Water Depth   d 100m:=

Current 10% WD Above Seabed   Uc   0.51m s  1-:=   Zr    10m:=

Kinemac Viscosity of Seawater   ν   1.05 10  6-

  m2

s  1-

:=

1.3 Soil Parameter

Soil Type 1 = Sand, 2 = Clay   soil 2:=

From table A.1 DNV RP

E305Undrained Shear Strength   Su   2kPa:=   z0   5.21 10

  6-m:=

 2. CALCULATION

2.1 Submerged Weight Calculation

Outside Diameter   Dtot   Ds   2tcorr +   2tcc+:=   Dtot   0.508m=

Inera I  π

64Ds

4ID

4-:=   I 3.047 10

  4-   m

4=

Elasc Modulus   EI E I:=   EI 6.302 107

  kg m

3

s2

=

Weight of Pipe

Steel Weight   Wstπ

4Ds

2ID

2-   ρs:=   Wst   123.292

 kg

m=

Corr. Coat. Weight   Wcorr π

4Ds   2tcorr +( )

2Ds

2-   ρcorr :=   Wcorr    0

 kg

m=

Concrete Weight   Wccπ

4Dtot

2Ds   2tcorr +( )

2-   ρcc:=   Wcc   222.072

 kg

m=

Content Weight   Wcontπ

4ID

2ρcont:=   Wcont   0=

Added Mass   Waddπ

4Dtot

2ρsw:=   Wadd   207.787

 kg

m=

Total E ecve Weight   Weff    Wst   Wcorr +   Wcont+   Wcc+   Wadd+:=   Weff    553.151 kg

m=

External Pressure   Pe   ρsw g   d:=   Pe   1.005 10

6

  Pa=

15512006 REEZALI RAHARJAYA 30 of 84.

30 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 31/84

Pressure Di erence   ΔP Po   Pe-:=   ΔP 1.005 106

  Pa=

2.2 Wave Induced Velocity Calculation

Angle between wave direcon and pipeline direcon   ϕwave   90deg:=

 Calculaon of Wave Length

Lg T p

2

2π:=   L 30.354 m=

Wave Length

λ  L d,( )g T p

2

tanh  2π d

L  

  

:=

Given

λ  L d,( ) L=

L d( ) Find L( ):=

L d( ) 30.354m=

Horizontal Water Parcle Velovity

k d( )  2π

L d( ):=   k d( ) 0.207

 1

m=

Phase Angle Range:   i 0 90..:=   θi

  i deg:=

u d   θ,( )Hs

2

g

d

 

 

 

 d

L d( )

1

20<if 

π Hs

T p

ek d( ) Dtot   d-( )

d

L d( )

1

2

>if 

Hs

2

g T p

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

cos  θ( ):= Shallow approximaon

Deep approximaon

Intermediate depth

approximaon

uw   max u d   θ,( )( ):=   uw   1.621 10  9-

  m

s=

Reducon factor (direconality)   R wave   sin  ϕwave( ):=   R wave   1=

15512006 REEZALI RAHARJAYA 31 of 84.

31 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 32/84

Signi cant wave vel. perpendicular

to pipeUw d   θ,( ) uw R wave

ln0.5 Ds

z0

 

 

 

 

lnZr 

z0

 

 

 

 

:=

Horizontal Water Parcle Acceleraon

Uw d   θ,( ) 1.184 10  9-

  m

s=

Aw d   θ,( )Hs π

T p

g

d

 

 

 

 

d

L d( )

1

20<if 

2Hsπ

T p

 

 

 

 

2

  ek d( ) Dtot   d-( )

d

L d( )

1

2>if 

Hsg π

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

sin  θ( ):=

Aw max Aw d   θ,( )( ):=   Aw 2.309 10   9-   m

s2

=

Signi cant wave acceleraon

perpendicular to pipeAw d   θ,( ) Aw R  wave:=   Aw d   θ,( ) 2.309 10

  9-

  m

s2

=

 2.3 Free Span - Dynamic

Stability Number   K s

2 Weff    δ

ρsw Dtot2

:=   K s   0.527=

Formula from DNV 1981 paragraph A.2.1.4

Reduced Velocity   Vr    1.58:= From Fig A.3 DNV 1981

Note :

con1 "In-line Oscillation":=

con2 "Cross-flow Oscillation":=

Type of Oscillaon   Otype   con1 1 Vr <   3.5<   K s   1.8<if 

con2 otherwise

:=

Otype   "In-line Oscillation"=

Strouhal Number   St   0.24:= From Fig. A.2 DNV 1981

15512006 REEZALI RAHARJAYA 32 of 84.

32 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 33/84

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 34/84

Lcrit L( ) L 0.5m

Lcrit   L

L L 1m+

σx L( )   σxa L( )<while

Lcrit

:=

Lcrit L( ) 66.5 m=

Longitudinal Stress   σx Lcrit L( )( )   5.056 104

  psi=

Hoop Stress   σh

Ds   Po   Pe-( )

2ts

2.333-   103

  psi=:=

Von Mises Stress   σe   σx Lcrit L( )( )2 σh2+   5.061 104   psi=:=

0.9SMYS 5.85 104

  psi=

 3. SUMMARY RESULTS

Crical pipespan - Dynamic   Lcr    106.616 ft=

Crical pipespan - Stac   Lcrit L( ) 218.176 ft=

15512006 REEZALI RAHARJAYA 34 of 84.

34 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 35/84

Free Span Analysis - Operaon NPS 16

1. INPUT PARAMETER  pcf lb ft

  3-:=   C K 

1.1 Pipeline Design Parameter

Outer Diameter   Ds   16in:=

Wall Thickness   ts   0.5in:=

Internal Diameter   ID Ds   2ts-:=

Concrete Coang   tcc   2in:=

Modulus Elascity   E 30000ksi:=

Design Pressure   Po   1230psi:=

Concrete Coang Density   ρcc   190pcf :=

Content Density   ρcont   2.185pcf :=

Seawater Density   ρsw   64pcf :=

Steel Density   ρs   490pcf :=

Design Temperature   Td   373K :=

Poisson Rao   υ   0.3:=

SMYS API 5L X-65   SMYS 65ksi:=

Corrosion Coang THK   tcorr    0in:=

Thermal Coe cient   α   1.17 10  5-

  1

K :=

Structural Damping   δ   0.126:= DNV RP F105 para. 6.2.11

Corrosion Coang Density   ρcorr    60pcf :=

Seabed Temperature   Tsw   296K :=

1.2 Environmental Parameter

Signi cant Wave Height   Hs   3.7m:=

15512006 REEZALI RAHARJAYA 35 of 84.

35 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 36/84

Signi cant Wave Period   Ts   5.5s:=   T p   1.05 Ts   5.775s=:=

Water Depth   d 100m:=

Current 10% WD Above Seabed   Uc   0.63m s  1-:=   Zr    10m:=

Kinemac Viscosity of Seawater   ν   1.05 10  6-

  m2

s  1-

:=

1.3 Soil Parameter

Soil Type 1 = Sand, 2 = Clay   soil 2:=

From table A.1 DNV RP

E305Undrained Shear Strength   Su   2kPa:=   z0   5.21 10

  6-m:=

 2. CALCULATION

2.1 Submerged Weight Calculation

Outside Diameter   Dtot   Ds   2tcorr +   2tcc+:=   Dtot   0.508m=

Inera I  π

64Ds

4ID

4-:=   I 3.047 10

  4-   m

4=

Elasc Modulus   EI E I:=   EI 6.302 107

  kg m

3

s2

=

Weight of Pipe

Steel Weight   Wstπ

4Ds

2ID

2-   ρs:=   Wst   123.292

 kg

m=

Corr. Coat. Weight   Wcorr π

4Ds   2tcorr +( )

2Ds

2-   ρcorr :=   Wcorr    0

 kg

m=

Concrete Weight   Wccπ

4Dtot

2Ds   2tcorr +( )

2-   ρcc:=   Wcc   222.072

 kg

m=

Content Weight   Wcontπ

4ID

2ρcont:=   Wcont   3.99

 kg

m=

Added Mass   Waddπ

4Dtot

2ρsw:=   Wadd   207.787

 kg

m=

Total E ecve Weight   Weff    Wst   Wcorr +   Wcont+   Wcc+   Wadd+:=   Weff    557.142 kg

m=

External Pressure   Pe   ρsw g   d:=   Pe   1.005 10

6

  Pa=

15512006 REEZALI RAHARJAYA 36 of 84.

36 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 37/84

Pressure Di erence   ΔP Po   Pe-:=   ΔP 7.475 106

  Pa=

2.2 Wave Induced Velocity Calculation

Angle between wave direcon and pipeline direcon   ϕwave   90deg:=

 Calculaon of Wave Length

Lg T p

2

2π:=   L 52.053 m=

Wave Length

λ  L d,( )g T p

2

tanh  2π d

L  

  

:=

Given

λ  L d,( ) L=

L d( ) Find L( ):=

L d( ) 52.053m=

Horizontal Water Parcle Velovity

k d( )  2π

L d( ):=   k d( ) 0.121

 1

m=

Phase Angle Range:   i 0 90..:=   θi

  i deg:=

u d   θ,( )Hs

2

g

d

 

 

 

 d

L d( )

1

20<if 

π Hs

T p

ek d( ) Dtot   d-( )

d

L d( )

1

2

>if 

Hs

2

g T p

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

cos  θ( ):= Shallow approximaon

Deep approximaon

Intermediate depth

approximaon

uw   max u d   θ,( )( ):=   uw   1.225 10  5-

  m

s=

Reducon factor (direconality)   R wave   sin  ϕwave( ):=   R wave   1=

15512006 REEZALI RAHARJAYA 37 of 84.

37 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 38/84

Signi cant wave vel. perpendicular

to pipeUw d   θ,( ) uw R wave

ln0.5 Ds

z0

 

 

 

 

lnZr 

z0

 

 

 

 

:=

Horizontal Water Parcle Acceleraon

Uw d   θ,( ) 8.952 10  6-

  m

s=

Aw d   θ,( )Hs π

T p

g

d

 

 

 

 

d

L d( )

1

20<if 

2Hsπ

T p

 

 

 

 

2

  ek d( ) Dtot   d-( )

d

L d( )

1

2>if 

Hsg π

L d( )

cosh k d( ) Dtot( )cosh k d( ) d( )

 

 

 

   otherwise

sin  θ( ):=

Aw max Aw d   θ,( )( ):=   Aw 1.333 10   5-   m

s2

=

Signi cant wave acceleraon

perpendicular to pipeAw d   θ,( ) Aw R  wave:=   Aw d   θ,( ) 1.333 10

  5-

  m

s2

=

 2.3 Free Span - Dynamic

Stability Number   K s

2 Weff    δ

ρsw Dtot2

:=   K s   0.531=

Formula from DNV 1981 paragraph A.2.1.4

Reduced Velocity   Vr    1.6:= From Fig A.3 DNV 1981

Note :

con1 "In-line Oscillation":=

con2 "Cross-flow Oscillation":=

Type of Oscillaon   Otype   con1 1 Vr <   3.5<   K s   1.8<if 

con2 otherwise

:=

Otype   "In-line Oscillation"=

Strouhal Number   St   0.24:= From Fig. A.2 DNV 1981

15512006 REEZALI RAHARJAYA 38 of 84.

38 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 39/84

Vortex Shedding Frequency   f v

St   Uw d   θ,( ) Uc+( )

Dtot

:=   f v   0.298 Hz=

Crical Pipespan   Lcr 9.87

EI

Weff    Wadd-

  DtotVr 

Uw d   θ,( ) Uc+

:=

Lcr    29.338 m=

 2.4 Free Span - Static

Yield requirement

i 0 200..:=   Li

  i m:=

Longitudinal Stress   σx L( )

Wst L2

  0.5   Ds g

10I

 

 

 

 

Ds   Po   Pe-( )

4ts

+

:=

0 200 400 600 800

0

1 105

2 105

3 105

4 105

5 105

σx L( )

 psi

L

ft

Liming Longitudinal Pressure   σxa L( ) 0.8SMYS:=   σxa L( ) 5.2 104

  psi=

15512006 REEZALI RAHARJAYA 39 of 84.

39 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 40/84

Lcrit L( ) L 0.5m

Lcrit   L

L L 1m+

σx L( )   σxa L( )<while

Lcrit

:=

Lcrit L( ) 60.5 m=

Longitudinal Stress   σx Lcrit L( )( )   5.148 104

  psi=

Hoop Stress   σh

Ds   Po   Pe-( )

2ts

1.735 104

  psi=:=

Von Mises Stress   σe   σx Lcrit L( )( )2 σh2+   5.433 104   psi=:=

0.9SMYS 5.85 104

  psi=

 3. SUMMARY RESULTS

Crical pipespan - Dynamic   Lcr    96.254 ft=

Crical pipespan - Stac   Lcrit L( ) 198.491 ft=

15512006 REEZALI RAHARJAYA 40 of 84.

40 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 41/84

BAGIAN B

JAWABAN NO 1 – UPHEAVEL BUCKLING ANALYSIS

a) 

Tidak diperlukan tambahan gravel dumping, karena dari hasil perhitungan pada halaman berikut

ini diperoleh bahwa

b) 

Allowable bending strain pada kasus ini adalah  = 1 .73 × 10− 

Namun, bending strain yang terjadi adalah = 9.212 × 10−4 

Dari hasil di atas, bending strain yang terjadi masih diperbolehkan (aman).

15512006 REEZALI RAHARJAYA 41 of 84.

41 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 42/84

Upheavel Buckling Analysis1. Input Parameter 

 pcf    lb

ft3

 1.1 Pipeline Data

Outside diameter    OD 20in:=

Wall thickness   WT 0.594in:= Schedule 40

Corrosion allowance   CA   0in:=

Steel density   ρs   490lb ft  3-

:=

Corrosion coating thickness   tcorr    3mm:=

Concrete coating thickness   tcc   1 in:=

Corrosion coating density   ρcorr    60lb ft  3-

:= density of 3LPP

Product density   ρcont   80lb ft  3-

:=

Modulus Young   E 207GPa 3.002 107

  psi=:=

Poisson ratio   v 0.3:=

Coeff. of linear expansion   α   1.17 10

  5-

1 °C:=

Imperfection Height   δ   1 m=

 1.2 Operating Data

Max. operating pressure   Po   15MPa:=

Max. operating temp.   To   100 °C:=

Installation temp.   Ti   25°C:=

 1.3 Soil Data

Soil type Sand (Pasir) soilt   "Sand":=

Soil specific weight   γs   18835.6N m  3-

:=

Undrained shear strength   Su   14000Pa:=

Distance between free end   Lf    62m:=

15512006 REEZALI RAHARJAYA 42 of 84.

42 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 43/84

Soil friction   f r    0.3:=

Internal friction angle of soil   ϕ   35deg:=

Coef. of lateral soil stress rest   K o   1 sin  ϕ( )-:=   K o   0.426=

2. Calculation

2.1 Pipe Properties

Total outside diameter    Dtot   OD 2 tcc+   2 tcorr +:=   Dtot   0.565m=

Internal diameter of pipe   ID OD 2 WT-:=   ID 0.478m=

Moment of inertia   I  π

64

OD4

ID4

-( ):=   I 7.102 10  4-

  m4

=

Weight of steel pipe   Wstπ

4OD

2ID

2-( )   ρs   g:=   Wst   1.798 10

3

  N

m=

Steel pipe cross section area   Asπ

4OD

2ID

2-( ):=   As   0.023m

2=

 Corroded Condition

Internal diameter corroded   IDc   OD 2 WT 0.5 CA-( )-:=   IDc   0.478m=

Moment of inertia corroded  Ic

π

64 OD

4

IDc

4

-:=   Ic   7.102 10

  4-

  m

4

=

Weight of steel pipe   Wstcπ

4OD

2IDc

2-   ρs   g:=   Wstc   1.798 10

3

  N

m=

Internal cross section area   Aicπ

4IDc

2:=   Aic   0.179m

2=

Steel pipe cross section area   Ascπ

4OD

2IDc

2-:=   Asc   0.023m

2=

Weight of corrosion coating   Wcorr 

π

4 OD 2 tcorr +( )2

OD

2

-   ρcorr    g:=

Wcorr    45.393 N

m=

Weight of internal content   Wcontπ

4ID

2ρcont   g:=   Wcont   2.254 10

3

  N

m=

Operating condition weight   Wsop   Wst   Wcont+   Wcorr +:=

Wsop   4.097 103

  N

m=

15512006 REEZALI RAHARJAYA 43 of 84.

43 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 44/84

Installation condition weight   Win   Wsop   Wcont-:=   Win   1.844 103

  N

m=

Cover Depth   H 30m Dtot-   29.435m=:= distance of top of pipe to

water surface Axial Load

Hoop stress   σy

Po OD

2 WT:=   σy   3.663 10

4   psi=

Compression force due to

temperatureσT   α E   To   Ti-( )   Asc:=   σT   1.548 10

4   N=

Tension due to poisson's

effectσv   v-

Po   OD 2 WT-( )

2WT

  Asc:=

σv   1.665-   106

  N=

Compression force due to

end cap effectσe

Po OD   Asc

4 WT:=   σe   2.95 10

6   N=

Total axial force   Fax   σT   σv+   σe+:=   Fax   1.301 106

  N=

Friction force

f f r   π γs  OD

2   H

  OD

2+ 

   

  1 K o+( )  4

32 K o+( )

Wsop

π

 

 

 

 +  4

32 K o+( )   γs

  OD

2

  

  

2

-

:=

f 1.91 10

5

  N

m=

 Axial load   p min f  Lf 

2   Fax,

 

 

 

 :=   p 1.301 10

6   N=

Required downward force for pipe stability

Wreq   0.0646  δ p

2

E I

 

 

 

   δ

4.494

E   I   Win

72 p2

<if 

0.67 p

δ W

in

E I   1.23 Win- 

 

 

 

4.494

E   I   W

in

72 p2

δ<

8.064

E   I   W

in

72 p2

<if 

1.16pδ Win

E I   4.76 Win-

 

 

 

   otherwise

:=

Wreq   818.108  N

m=

Uplift resistance of soil, q

15512006 REEZALI RAHARJAYA 44 of 84.

44 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 45/84

q Su Dtot   min 3  H

Dtot

 

 

  

 

 

 soilt   1=if 

γs H   Dtot   1 0.01  H

Dtot

 

 

 

 

+

otherwise

:=

q 4.763 105

  N

m=

3. Check for Upheaval Buckling

Imperfection height   δ   1m:=   q Wsop+   4.804 105

  N m  1-

=

q Wsop+   Wreq>   Wreq   818.108 N m  1-

=

Extra weight   Wanc   Wreq   q Wsop+( )-   q Wsop+   Wreq<if 

0 N

m

  

  

  otherwise

:=

Wanc 12.2   m 0 N=

 Allowable imperfection length,

relevant to span lengthLrel

72E I   δ

W

in

 

 

 

 

1

4

:=   Lrel   48.95m=

Pipe strain   P buckleπ

2E   I

Lrel2

6.056 105

  N=:=

ΔL p P buckle-( ) 2   Lrel

Asc E  2

 p P buckle-( )2

2 Asc   E   f +:=

ΔL 0.015m=

Total uplift buckle amplitude   a   δΔL 2   Lrel

π2

4

+:=

a 1.761m=

Total pipe strain   ε  OD π

2   a

2 Lrel( )2

:=   ε   9.212 10  4-

=

 Allowable bending strain

εallow

εallow   1.73 10  3-

:=

4. Executive Summary

15512006 REEZALI RAHARJAYA 45 of 84.

45 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 46/84

Imperfection height   δ   1m

Required downward load   Wreq   818.108  N

m=

Uplift soil resistance   q 4.763 105

  N

m=

Operation weight   Wsop   4.097 103

  N

m=

 Actual downward force   Wactual   Wsop   q+   4.804 105

  N

m=:=

 Check for stability

if q Wsop+   Wreq<   "Not OK", "OK",( )   "OK"= if it is OK, no required

extra weight needed

Safety factor q Wsop+

Wreq

587.253=

Extra weight needed per joint   Wanc 12.2   m 0 N=

 Allowable bending strain, allow

if Re  ε( )   εallow<   "OK", "Not OK",( )   "OK"=

15512006 REEZALI RAHARJAYA 46 of 84.

46 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 47/84

JAWABAN NO 2 – EXPANSION OPERATION

Dari hasil perhitungan pada halaman selanjutnya ini diperloeh hasil sebagai berikut

15512006 REEZALI RAHARJAYA 47 of 84.

47 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 48/84

Thermal Expansion

Loadcase : Operation - Unburied

K C   kN 1000N   bar 105Pa   MPa 106Pa   ksi 103 psi   pcf lb ft   3-

1. INPUT DATA

1.1 Design Data

 Pipeline Parameters Environmental Parameters

External pipeline diameter    De 20in:= Density of sea water    ρsw   1025  kg

m3

:=

Specified Minumum Yield

StrengthSMYS 52000psi:=

Installation temperature   To   25C:=

Corrosion allowance being

used upTc 0.125in:=

Marine growth   tmar 0m:=

Young's Modulus of pipe

materialE 207000MPa:=

Marine growth density   ρmar 0  kg

m3

:=

Steel density   ρst   490pcf := Axial friction

factor(?)  ax 0.1:=

Wall thicknessWT

  15MPa De

2 SMYS   1( )   1( ) 0.72( ):=

Residual lay tension   Nlay   0kN:=

Coefficient of thermal

expansionα   1.17 10

  5-   C

  1-:=

Poisson's ratio   ν   0.3:=

 Coating Parameters Operating Parameters

Corrosion coating density   ρcor    900kg m  3-

:= Content density   ρcont   80pcf :=

Concrete coating density   ρcc   190pcf := Design pressure   Pin   15MPa:=

Corrosion coating thickness   tcor    3mm:= Inlet reference elevation   Elv   0:=

Concrete coating thickness   tcc   1in:= Thermal insulation density   ρth   0pcf :=

Soil parameter

μlong   0.3:=Longitudinal friction factor 

1.2 Input Data Variables with KP 

15512006 REEZALI RAHARJAYA 48 of 84.

48 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 49/84

Input KP step size   KPstep   1km:=

Input temperature profile Number of temperature input point   n 5:=

Product temperature Corresponding KP point   i 0 n 1-..:=

Ti

100C

90C

80C

70C

60C

:=   KPi

0km

10km

20km

30km

40km

:=

0 2 104

  4 104

60

70

80

90

100

Ti

KPi

ΔTi

  Ti

  To-:=

Temp   ΔT:=

Temp 126.984 C=

15512006 REEZALI RAHARJAYA 49 of 84.

49 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 50/84

Input water depth profile (LAT)

Number of Input points

Input corrosion coating thickness/density with KP

nw 31:= Number of Points   ncr 2:=

iw 0 nw 1-..:=icr 0 ncr 1-..:=

Water Depth Corresponding

KP Point Thickness Density KP Points

WDiw

0m

1-   m

2-   m

3-   m

4.01-   m

5.01-   m

6-   m7-   m

8-   m

9.01-   m

10-   m

12-   m

13-   m

14.7-   m

20-   m

23-   m

22.3-   m

13.5-   m

13-   m

12-   m

10-   m

9.01-   m

8-   m

7-   m

6-   m

5-   m

4-   m

3-   m

2-   m

1-   m

0m

:=   KPdiw

0km

1.49km

1.6km

1.91km

2.52km

3.12km

3.48km3.88km

4.19km

4.59km

5.07km

5.29km

6.18km

6.73km

8km

13.44km

19.5km

22.5km

32.18km

32.38km

33.07km

33.76km

34.03km

34.36km

34.67km

34.97km

35.3km

35.82km

36.32km

36.86km

36.96km

:=Tcor 

icr 

tcor 

tcor 

:=   ρcor icr 

ρcor 

ρcor 

:=   KPcr icr 

0km

KPn 1-

:=

0 1 104

  2 104

  3 104

  4 104

30-

20-

10-

0

WDiw

KPdiw

15512006 REEZALI RAHARJAYA 50 of 84.

50 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 51/84

Wall thickness and OD profi le with KP Marine growth thickness

Number of Points   nwt 2:= Number of points   nm 2:=

iwt 0 nwt 1-..:=   im 0 nm 1-..:=

Wall Thickness Corresponding KP Marine Growth Corresponding KP Points

WTiwt

WT 10% Tc( )-

WT 10% Tc( )-

:=   KPwtiwt

0km

KPn 1-

:=   Tmar im

tmar 

tmar 

:=   KPmim

0km

KPn 1-

:=

 Input concrete coating thickness with KP Input concrete coating thickness with KP

Number of points ncc 2:= Number of points nlf 11:=

icc 0 ncc 1-..:=   ilf 0 nlf 1-..:=

Concrete

Thickness

Corresponding

Kp Points

KPcf ilf 

0km

1.91km

5.07km

6.78km

8km

13.44km

19.5km

22.5km32km

34.97km

36.96km

:=μlong

ilf 

μlong

μlong

μlong

μlong

μlong

μlong

μlong

μlong

μlong

μlong

μlong

:=

Tconicc

tcc

tcc

:=   KPccicc

0km

KPn 1-( )

:=

Thermal Insulation with KP

Number of Points   nti 2:= Corroded WT with KP

Number of Points   nwtc 2:=iti 0 nti 1-..:=

iwtc 0 nwtc 1-..:=

 Additional Weight Corresponding KP Corresponding KPCorroded WT

Tthiti

0in

0in

:=   KPthiti

0km

KPn 1-

:=WTc

iwtc  WT

iwtc  Tc-:=   KP

iwtc

0km

KPn 1-

:=

15512006 REEZALI RAHARJAYA 51 of 84.

51 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 52/84

Jacket Material with KP

Number of Points   nti 2:=

iti 0 nti 1-..:=

 Additional Weight Corresponding KP

Tjiti

0in

0in

:=   KPthiti

KP0

KPn 1-

:=

2.0 Calculation

2.1 Calculated parameters constant with KP 

Define range of KP variable   x KP0

  KPstep, KPn 1-

..:=

Total outside diameter    Do De 2. Tcor Tth+   Tj+   Tcon+   Tmar +( )+:=

Internal diameter    Di De 2WT-:=

Corroded Internal diameter    Dic Di 2 10   % Tc+:=

Nominal Steel Area   Ast  π

4De

2Di

2-( ):=

Astc  π

4De

2Dic

2-( ):=

Corroded steel area

Mst   Astc ρst:=Steel mass

Acorr   π

4De 2 Tcor  +( )

2De

2-:=

Corrosion coating area

Mcorr    Acorr ρcor :=Corrosion coating mass

Ath  π

4De 2 Tcor  +   2Tth+( )

2De 2 Tcor  +( )

2-:=

Thermal Insulation area

Mth   Ath  ρth:=Thermal Insulation mass

Aj  π

4De 2 Tcor  +   2Tth+   2.Tj+( )

2De 2 Tcor  +   2Tth+( )( )

2-:=

Jacket area

Jacket mass   M j   Aj ρst:=

Concrete coating area   Acc  π

4Do 2 Tmar  +( )

2

De 2 Tcor Tth+   Tj+( )+[ ]2

-+

...

:=

Concrete coating   Mcc   Acc ρcc:=

15512006 REEZALI RAHARJAYA 52 of 84.

52 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 53/84

Marine growth areaAmar 

π

4Do( )

2De 2 Tcor Tth+   Tj+   Tcon+( )+[ ][ ]

2-:=

Marine growth mass   Mmar    Amar ρmar :=

Content mass   Mcontπ

4Dic

2   ρcont:=

Buoyancy force   Fbπ

4ρsw   Do

2   g:=

Submerged Weight   Ws Mst   Mcorr +   Mth+

M j   Mcc+   Mmar +   Mcont+( )-+

...

g   Fb-:=

Dry Weight   Wdry   Ws Fb+:=

0 1 104

  2 104

  3 104

  4 104

6-   103

4-   103

2-   103

0

2 103

4 103

Wdry

Ws

Fb

KP

2.2 Effective Axial Force Derivation - Restrained Pipeline

Define function with KP   x KP0

  KPstep, KPn 1-

..:=

Define External pressure with KP   Po   ρsw g   WD-:=

Define internal pressure with KP   Pin Pin   ρcont g   WD-+:=

Define Pressure difference with KP   ΔP Pin Po-:=

Thermal expansion force with KP   Ft E-   Astc   α   Temp:=

Poissons Force with KP   Fp   ν ΔP   Astc  De 2 WTc-

2WTc:=

Feπ

4Pin Dic( )

2Po De

2-:=

 Apparent Force with KP

Fully restrained axial force with KP   Pr Fe-   Fp+   Ft+   Nlay+:=

15512006 REEZALI RAHARJAYA 53 of 84.

53 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 54/84

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 55/84

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 56/84

Summary of Results

 At cold end Total Pipeline Expansion   Expand1 0.106=

 Anchor Length   Lanchor1 1.98 104

  m=

 At hot end Total Pipeline Expension   Expand2 0.106=

 Anchor Length   Lanchor2 1.98 104

  m=

15512006 REEZALI RAHARJAYA 56 of 84.

56 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 57/84

JAWABAN NO 3 – GLOBAL BUCKLING 

  Perilaku pipeline sebelum terjadi buckling dan mekanisme buckling saat buckling pertama dan

kedua

Efek temperature dan tekanan menghasilkan gaya ekspansi (expansion effective forces), yang

merupakan kombinasi pipe wall force (N) dan tekanan internal dan eksternal, memberikanpotensi untuk terjadinya global buckling.

Garis titik-titik biru menunjukkan kapasitas bucklingpada bagian pipa tertentu.

a. 

Buckling capacity along the pipeline

Sepanjang pipa yang terinstall akan memiliki

kapasitas buckling yang berbeda-beda pada tiap

bagian-bagiannya.

Dari gambar di samping, ditunjukkan bahwa pipa

tersebut memiliki imperfection. Pada titik ini

kapasitas global buckling, Sinit adalah di titik

terendahnya.

b. 

Sebelum terjadi global buckling

Meningkatnya temperature dan tekanan juga akan

meningkatkan compressive effective force kepada

nilai maksimum S0.

c. 

First buckle

Ketika effective axial force S0 mencapai kapasitas

global buckling pipa, Sinit, pipeline akan mengalami

buckle (tekuk) dan effective axial force pada puncak

akan turun pada Spost. Nilai maksimum akan

berubah sebanding dengan gaya tahan antara pipa

dengan tanah, memberikan lembah pada diagram

efektif. Effective axial force direpresentasikan

dalam garis solid. Buckle yang terjadi akan

sebanding dengan area yang diarsir antara garis

solid dan garis potential effective force.

d. 

Second buckle

Jika tekanan dan temperature terus menaik,imperfection sekitarnya bisa mengalami buckle dan

mengubah diagram gaya. Pada titik ini gaya akan

tetap konstan tapi tekuk akan bertambah,

sebanding dengan area yang diarsir. Lembah yang

diarsir menunjukkan kea rah mana pipa bergerak

dan tekuk seperti apa yang terjadi.

15512006 REEZALI RAHARJAYA 57 of 84.

57 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 58/84

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 59/84

JAWABAN NO 4 – TEORI KEGAGALAN

Teori Kegagalan Konsep Dasar Kondisi Kegagalan Sifat Teori Failure Criteria

Relationship

Von Mises Energi distorsi Kegagalan diprediksi terjadi

pada keadaan tegangan

multiaksial jika energydistorsi per satuan volume

sama atau lebih besar

dibandingkan energy

distorsi per satuan volume

pada saat terjadinya

kegagalan dalam pengujian

tegangan uniaksial.

The most

representative

for ductilematerials

 =  

Tresca Tegangan geser

maksimum

Kegagalan terjadi jika

tegangan geser maksimum

pada suatu titik di pipa

sama atau lebih besar daritegangan geser maksimum

pada saat material leleh

(yield) pada tes beban Tarik

uniaksial.

The most

conservative for

all materials

 = 0.5 

Rankine Tegangan

normal

maksimum

Kegagalan terjadi jika

tegangan Tarik maksimum

pada suatu titik di pipa

sama atau lebih besar dari

tegangan Tarik maksimum

pada saat material leleh

(yield) pada tes beban tarik

uniaksial.

The best fit for

brittle materials

 = 0.577 

15512006 REEZALI RAHARJAYA 59 of 84.

59 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 60/84

 

LAMPIRAN

15512006 REEZALI RAHARJAYA 60 of 84.

60 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 61/84

DNV RP305 (Installation) OBS - NPS 16

1. Input Parameter 

1.1 Pipeline Design Parameter Outer Diameter    D_s 16in 0.406m=:=

Pipe Wall Thickness   t_s 0.5 in:=   ID D_s 2 t_s-   0.381m=:=

Corrosion Coating Thickness   t_corr 0mm 0 in=:=

Concrete Thickness   t_cc 2in 0.051m=:=

Pipe Joint Length   L 12.2m:=

Steel Pipe Density   ρs 490  lb

ft3

:=

Concrete Coating Density   ρcc 190  lb

ft3

:=

Corrosion Coating Density   ρcorr 940 kg

m3

58.682  lb

ft3

=:=

Density of Sea Water    ρsw 1025 kg

m3

63.989  lb

ft3

=:=

Density of Pipeline Content   ρcont 0 kg

m3

:=

1.2 Environmental Parameter 

Significant Wave Height   Hs 2m 6.562 ft=:=

Significant Wave Period   Ts 4.2s:=

Spectral Peak Period   Tp 1.05 Ts   4.41 s=:=

Water Depth   d 100m 328.084 ft=:=

Current velocity   Ur 0.51 m

s1.673

 ft

s=:=   Zr 10m:=

Kinematic Viscosity of Seawater    υ   1.076 10  5-

  ft

2

s:=

Corrosion Allowance   ca 3mm:=

Marine Growth Thickness   t_mg 0mm:=

Marine Growth Density   ρmg 1400 kg

m3

:=

15512006 REEZALI RAHARJAYA 61 of 84.

61 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 62/84

1.3 Soil Parameter 

Soil Type [1 = sand, 2 = clay]   soil 2:=   ρsoil 326.309 kg

m3

:=

Undrained Shear Stress   Su 2kPa:=

2. Calculation2.1 Vertical Stability 2.1.1 Submerged Weight CalculationTotal Outer Diameter    D_out D_s 2t_corr +   2 t_mg+   2 t_cc+   0.508m=:=

Internal Diameter    D_in D_s 2t_s-   0.381m=:=

D_corr D_s 2 t_corr +   0.406m=:=   D_mg D_s 2 t_mg+   0.406m=:=

Ws   π4

D_s2 ID2-( )  ρs   D_corr 2 D_s2-( )  ρcorr +   D_out2 D_corr 2-( )ρcc+

D_in2

ρcont D_out2

ρsw-+

...

:=

Ws 137.614  kg

m=

Buoyancy B  π

4D_out

2ρsw 207.75

 kg

m=:=

2.1.2 Determining Stability

Specific Gravity   SG  Ws B+

B1.662=:=

if SG 1.1   "UNSTABLE", "STABLE",( ) "STABLE"=

Specific Gravity of Product   SG_prod  ρcont

ρsw0=:=

Specific Gravity of Soil   SG_soil  ρsoil

ρsw0.318=:=

2.2 Lateral Stablity 2.2.1 Water Particle Velocities

Tn  d

g3.193s=:=

Tn

Tp0.724=

ϕ  Tp

Hs3.118

  s

m=:=

15512006 REEZALI RAHARJAYA 62 of 84.

62 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 63/84

Peakedness Parameter    γ   5   ϕ   3.6  s

mif 

1   ϕ   5  s

m

if 

3.3 otherwise

5=:=

From Fig. 2-1 DNV RP E305

Tn

Tp0.724=

Us  0.000001 Hs

Tn6.263 10

  7-

  m

s=:= Us:kecepatan partikel air signifikan akibat gelombang

15512006 REEZALI RAHARJAYA 63 of 84.

63 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 64/84

From Fig. 2-1 DNV RP E305

Zero Up-Crossing Period   Tu 1.4 Tp   6.174s=:=

Table A.1 Soil parameter can be found as

Grain Size   d50 0.125mm:=

Roughness Zo 1.04 10

  5-m:=

Nikuradse's equivalent sand roughness parameter 

Kb 2.5 d50   0.313 mm=:=

Zob  Kb

301.042 10

  5-   m=:=

Using Graph, Fig. 2.2

D_out

Zo4.885 10

4=

Zr Zo

9.615 105=

Ratio average velocity to reference velocity

U_D  1

ln  Zr 

Zo1+ 

   

1  Zo

D_out+ 

   

 ln  D_out

Zo1+ 

   

  1-

Ur    0.363 m

s=:=

2.2.2 Hydrodinamic Coefficient

15512006 REEZALI RAHARJAYA 64 of 84.

64 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 65/84

Wave Particle Acceleration   As 2  π  Us

Tu6.374 10

  7-

  m

s2

=:=

Current to Wave Velocity   M  U_D

Us5.791 10

5=:=

KC Number    K   Us Tu

D_out7.612 10

  6-=:=

Reynold's Number    Re  U_D Us+( ) D_out

υ1.843 10

5=:=

Hydrodynamics Coefficient

Cd 1.2 Re 3 105

<   M 0.8if 

0.7 otherwise

1.2=:=

CL 0.9:=

CM 3.29:=

Soil Coefficient

Clay Soil

Ratio = 1/S   Ratio  D_out Su

Ws g  0.753=:=

From Figure 5.11 (Friction Factor = μc)

μc 0.24:=

Sand Soil

μs 0:=

Friction Factor Coefficient

μ μs soil 1=if 

μc otherwise

:=

μ   0.24=

Calibration Factor 

M 5.791 105

=

K 7.612 10  6-

=

Fw 1:=From Fig. 5.12

2.2.3 Lateral Stability Calculation

 Hydrodynamic Forces and Required Submerged Weight

15512006 REEZALI RAHARJAYA 65 of 84.

65 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 66/84

Phase Angle Range   i 0 360..:=   θi

  i deg:=

Lift Force   FL  1

2

ρsw

g   D_out   CL   Us cos  θ( )   U_D+( )

2:=

Drag Force   FD  1

2

ρsw

g   D_out Cd   Us cos  θ( )   U_D+( )

2:=

Inertia Force   FI  π D_out

2

4

ρsw

g   CM   As   sin   θ( ):=

Required Submerged Weight   W_s  FD FI+   μ FL+

μ

  

  

  

  

Fw:=

Result of Calculation

0 100 200 300 40020.6023

20.6024

20.6025

20.6026

20.6027

20.6028

W_s

θ

deg

Change the concrete thickness until its ok.

Concrete thickness   t_cc 50.8 mm=

Wso Ws g   1.35 103

  N

m=:=

Wreq max W_s( ) 20.603 kg

m

=:=   Ws 137.614 kg

m

=

if Ws Wreq   "Change Concrete Thickness", "OK",( ) "OK"=

Safety Factor for submerged weight due to requirement weight   SFw  Ws

Wreq6.679=:=

Specific Gravity   SG 1.662=

Submerged Weight   Ws 137.614 kg

m=

15512006 REEZALI RAHARJAYA 66 of 84.

66 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 67/84

DNV RP305 (Operation) OBS - NPS 16

1. Input Parameter 

1.1 Pipeline Design Parameter Outer Diameter    D_s 16in 0.406m=:=

Pipe Wall Thickness   t_s 0.5 in:=   ID D_s 2 t_s-   0.381m=:=

Corrosion Coating Thickness   t_corr 0mm 0 in=:=

Concrete Thickness   t_cc 2in 0.051m=:=

Pipe Joint Length   L 12.2m:=

Steel Pipe Density   ρs 490  lb

ft3

:=

Concrete Coating Density   ρcc 190  lb

ft3

:=

Corrosion Coating Density   ρcorr 940 kg

m3

58.682  lb

ft3

=:=

Density of Sea Water    ρsw 1025 kg

m3

63.989  lb

ft3

=:=

Density of Pipeline Content   ρcont 35 kg

m3

:=

1.2 Environmental Parameter 

Significant Wave Height   Hs 3.7m 12.139 ft=:=

Significant Wave Period   Ts 5.5s:=

Spectral Peak Period   Tp 1.05 Ts   5.775s=:=

Water Depth   d 100m 328.084 ft=:=

Current velocity   Ur 0.63 m

s2.067

 ft

s=:=   Zr 10m:=

Kinematic Viscosity of Seawater    υ   1.076 10  5-

  ft

2

s:=

Corrosion Allowance   ca 3mm:=

Marine Growth Thickness   t_mg 0mm:=

Marine Growth Density   ρmg 1400 kg

m3

:=

15512006 REEZALI RAHARJAYA 67 of 84.

67 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 68/84

1.3 Soil Parameter 

Soil Type [1 = sand, 2 = clay]   soil 2:=   ρsoil 326.309 kg

m3

:=

Undrained Shear Stress   Su 2kPa:=

2. Calculation2.1 Vertical Stability 2.1.1 Submerged Weight CalculationTotal Outer Diameter    D_out D_s 2t_corr +   2 t_mg+   2 t_cc+   0.508m=:=

Internal Diameter    D_in D_s 2t_s-   0.381m=:=

D_corr D_s 2 t_corr +   0.406m=:=   D_mg D_s 2 t_mg+   0.406m=:=

Ws   π4

D_s2 ID2-( )  ρs   D_corr 2 D_s2-( )  ρcorr +   D_out2 D_corr 2-( )ρcc+

D_in2

ρcont D_out2

ρsw-+

...

:=

Ws 141.605  kg

m=

Buoyancy B  π

4D_out

2ρsw 207.75

 kg

m=:=

2.1.2 Determining Stability

Specific Gravity   SG  Ws B+

B1.682=:=

if SG 1.1   "UNSTABLE", "STABLE",( ) "STABLE"=

Specific Gravity of Product   SG_prod  ρcont

ρsw0.034=:=

Specific Gravity of Soil   SG_soil  ρsoil

ρsw0.318=:=

2.2 Lateral Stablity 2.2.1 Water Particle Velocities

Tn  d

g3.193s=:=

Tn

Tp0.553=

ϕ  Tp

Hs3.002

  s

m=:=

15512006 REEZALI RAHARJAYA 68 of 84.

68 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 69/84

Peakedness Parameter    γ   5   ϕ   3.6  s

mif 

1   ϕ   5  s

m

if 

3.3 otherwise

5=:=

From Fig. 2-1 DNV RP E305

Tn

Tp0.553=

Us  0.000001 Hs

Tn1.159 10

  6-

  m

s=:= Us:kecepatan partikel air signifikan akibat gelombang

15512006 REEZALI RAHARJAYA 69 of 84.

69 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 70/84

From Fig. 2-1 DNV RP E305

Zero Up-Crossing Period   Tu 1.4 Tp   8.085s=:=

Table A.1 Soil parameter can be found as

Grain Size   d50 0.125mm:=

Roughness Zo 1.04 10

  5-m:=

Nikuradse's equivalent sand roughness parameter 

Kb 2.5 d50   0.313 mm=:=

Zob  Kb

301.042 10

  5-   m=:=

Using Graph, Fig. 2.2

D_out

Zo4.885 10

4=

Zr Zo

9.615 105=

Ratio average velocity to reference velocity

U_D  1

ln  Zr 

Zo1+ 

   

1  Zo

D_out+ 

   

 ln  D_out

Zo1+ 

   

  1-

Ur    0.448 m

s=:=

2.2.2 Hydrodinamic Coefficient

15512006 REEZALI RAHARJAYA 70 of 84.

70 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 71/84

Wave Particle Acceleration   As 2  π  Us

Tu9.005 10

  7-

  m

s2

=:=

Current to Wave Velocity   M  U_D

Us3.867 10

5=:=

KC Number    K   Us Tu

D_out1.844 10

  5-=:=

Reynold's Number    Re  U_D Us+( ) D_out

υ2.277 10

5=:=

Hydrodynamics Coefficient

Cd 1.2 Re 3 105

<   M 0.8if 

0.7 otherwise

1.2=:=

CL 0.9:=

CM 3.29:=

Soil Coefficient

Clay Soil

Ratio = 1/S   Ratio  D_out Su

Ws g  0.732=:=

From Figure 5.11 (Friction Factor = μc)

μc 0.24:=

Sand Soil

μs 0:=

Friction Factor Coefficient

μ μs soil 1=if 

μc otherwise

:=

μ   0.24=

Calibration Factor 

M 3.867 105

=

K 1.844 10  5-

=

Fw 1:=From Fig. 5.12

2.2.3 Lateral Stability Calculation

 Hydrodynamic Forces and Required Submerged Weight

15512006 REEZALI RAHARJAYA 71 of 84.

71 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 72/84

Phase Angle Range   i 0 360..:=   θi

  i deg:=

Lift Force   FL  1

2

ρsw

g   D_out   CL   Us cos  θ( )   U_D+( )

2:=

Drag Force   FD  1

2

ρsw

g   D_out Cd   Us cos  θ( )   U_D+( )

2:=

Inertia Force   FI  π D_out

2

4

ρsw

g   CM   As   sin   θ( ):=

Required Submerged Weight   W_s  FD FI+   μ FL+

μ

  

  

  

  

Fw:=

Result of Calculation

0 100 200 300 40031.4382

31.4384

31.4386

31.4388

31.439

W_s

θ

deg

Change the concrete thickness until its ok.

Concrete thickness   t_cc 50.8 mm=

Wso Ws g   1.389 103

  N

m=:=

Wreq max W_s( ) 31.439 kg

m

=:=   Ws 141.605 kg

m

=

if Ws Wreq   "Change Concrete Thickness", "OK",( ) "OK"=

Safety Factor for submerged weight due to requirement weight   SFw  Ws

Wreq4.504=:=

Specific Gravity   SG 1.682=

Submerged Weight   Ws 141.605 kg

m=

15512006 REEZALI RAHARJAYA 72 of 84.

72 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 73/84

DNV RP305 (Installation) OBS - NPS 60

1. Input Parameter 

1.1 Pipeline Design Parameter Outer Diameter    D_s 60in 1.524m=:=

Pipe Wall Thickness   t_s 1 in:=   ID D_s 2 t_s-   1.473m=:=

Corrosion Coating Thickness   t_corr 0mm 0 in=:=

Concrete Thickness   t_cc 4.5in 0.114m=:=

Pipe Joint Length   L 12.2m:=

Steel Pipe Density   ρs 490  lb

ft3

:=

Concrete Coating Density   ρcc 190  lb

ft3

:=

Corrosion Coating Density   ρcorr 940 kg

m3

58.682  lb

ft3

=:=

Density of Sea Water    ρsw 1025 kg

m3

63.989  lb

ft3

=:=

Density of Pipeline Content   ρcont 0 kg

m3

:=

1.2 Environmental Parameter 

Significant Wave Height   Hs 2m 6.562 ft=:=

Significant Wave Period   Ts 4.2s:=

Spectral Peak Period   Tp 1.05 Ts   4.41 s=:=

Water Depth   d 100m 328.084 ft=:=

Current velocity   Ur 0.51 m

s1.673

 ft

s=:=   Zr 10m:=

Kinematic Viscosity of Seawater    υ   1.076 10  5-

  ft

2

s:=

Corrosion Allowance   ca 3mm:=

Marine Growth Thickness   t_mg 0mm:=

Marine Growth Density   ρmg 1400 kg

m3

:=

15512006 REEZALI RAHARJAYA 73 of 84.

73 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 74/84

1.3 Soil Parameter 

Soil Type [1 = sand, 2 = clay]   soil 2:=   ρsoil 326.309 kg

m3

:=

Undrained Shear Stress   Su 2kPa:=

2. Calculation2.1 Vertical Stability 2.1.1 Submerged Weight CalculationTotal Outer Diameter    D_out D_s 2t_corr +   2 t_mg+   2 t_cc+   1.753m=:=

Internal Diameter    D_in D_s 2t_s-   1.473m=:=

D_corr D_s 2 t_corr +   1.524m=:=   D_mg D_s 2 t_mg+   1.524m=:=

Ws   π4

D_s2 ID2-( )  ρs   D_corr 2 D_s2-( )  ρcorr +   D_out2 D_corr 2-( )ρcc+

D_in2ρcont D_out

2ρsw-+

...

:=

Ws 256.325  kg

m=

Buoyancy B  π

4D_out

2ρsw 2.473 10

3

  kg

m=:=

2.1.2 Determining Stability

Specific Gravity   SG  Ws B+

B1.104=:=

if SG 1.1   "UNSTABLE", "STABLE",( ) "STABLE"=

Specific Gravity of Product   SG_prod  ρcont

ρsw0=:=

Specific Gravity of Soil   SG_soil  ρsoil

ρsw0.318=:=

2.2 Lateral Stablity 2.2.1 Water Particle Velocities

Tn  d

g3.193s=:=

Tn

Tp0.724=

ϕ  Tp

Hs3.118

  s

m=:=

15512006 REEZALI RAHARJAYA 74 of 84.

74 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 75/84

Peakedness Parameter    γ   5   ϕ   3.6  s

mif 

1   ϕ   5  s

m

if 

3.3 otherwise

5=:=

From Fig. 2-1 DNV RP E305

Tn

Tp0.724=

Us  0.000001 Hs

Tn6.263 10

  7-

  m

s=:= Us:kecepatan partikel air signifikan akibat gelombang

15512006 REEZALI RAHARJAYA 75 of 84.

75 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 76/84

From Fig. 2-1 DNV RP E305

Zero Up-Crossing Period   Tu 1.4 Tp   6.174s=:=

Table A.1 Soil parameter can be found as

Grain Size   d50 0.125mm:=

Roughness Zo 1.04 10

  5-m:=

Nikuradse's equivalent sand roughness parameter 

Kb 2.5 d50   0.313 mm=:=

Zob  Kb

301.042 10

  5-   m=:=

Using Graph, Fig. 2.2

D_out

Zo1.685 10

5=

Zr Zo

9.615 105=

Ratio average velocity to reference velocity

U_D  1

ln  Zr 

Zo1+ 

   

1  Zo

D_out+ 

   

 ln  D_out

Zo1+ 

   

  1-

Ur    0.409 m

s=:=

2.2.2 Hydrodinamic Coefficient

15512006 REEZALI RAHARJAYA 76 of 84.

76 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 77/84

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 78/84

Phase Angle Range   i 0 360..:=   θi

  i deg:=

Lift Force   FL  1

2

ρsw

g   D_out   CL   Us cos  θ( )   U_D+( )

2:=

Drag Force   FD  1

2

ρsw

g   D_out Cd   Us cos  θ( )   U_D+( )

2:=

Inertia Force   FI  πD_out

2

4

ρsw

g   CM   As   sin  θ( ):=

Required Submerged Weight   W_s  FD FI+   μ FL+

μ

  

  

  

  

Fw:=

Result of Calculation

0 100 200 300 40058.335

58.336

58.337

58.338

58.339

58.34

58.341

W_s

θ

deg

Change the concrete thickness until its ok.

Concrete thickness   t_cc 114.3 mm=

Wso Ws g   2.514 103

  N

m=:=

Wreq max W_s( ) 58.34 kg

m

=:=   Ws 256.325 kg

m

=

if Ws Wreq   "Change Concrete Thickness", "OK",( ) "OK"=

Safety Factor for submerged weight due to requirement weight   SFw  Ws

Wreq4.394=:=

Specific Gravity   SG 1.104=

Submerged Weight   Ws 256.325 kg

m=

15512006 REEZALI RAHARJAYA 78 of 84.

78 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 79/84

DNV RP305 (Operation) OBS - NPS 60

1. Input Parameter 

1.1 Pipeline Design Parameter Outer Diameter    D_s 60in 1.524m=:=

Pipe Wall Thickness   t_s 1 in:=   ID D_s 2 t_s-   1.473m=:=

Corrosion Coating Thickness   t_corr 0mm 0 in=:=

Concrete Thickness   t_cc 4.5in 0.114m=:=

Pipe Joint Length   L 12.2m:=

Steel Pipe Density   ρs 490  lb

ft3

:=

Concrete Coating Density   ρcc 190  lb

ft3

:=

Corrosion Coating Density   ρcorr 940 kg

m3

58.682  lb

ft3

=:=

Density of Sea Water    ρsw 1025 kg

m3

63.989  lb

ft3

=:=

Density of Pipeline Content   ρcont 35 kg

m3

:=

1.2 Environmental Parameter 

Significant Wave Height   Hs 3.7m 12.139 ft=:=

Significant Wave Period   Ts 5.5s:=

Spectral Peak Period   Tp 1.05 Ts   5.775s=:=

Water Depth   d 100m 328.084 ft=:=

Current velocity   Ur 0.63 m

s2.067

 ft

s=:=   Zr 10m:=

Kinematic Viscosity of Seawater    υ   1.076 10  5-

  ft

2

s:=

Corrosion Allowance   ca 3mm:=

Marine Growth Thickness   t_mg 0mm:=

Marine Growth Density   ρmg 1400 kg

m3

:=

15512006 REEZALI RAHARJAYA 79 of 84.

79 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 80/84

1.3 Soil Parameter 

Soil Type [1 = sand, 2 = clay]   soil 2:=   ρsoil 326.309 kg

m3

:=

Undrained Shear Stress   Su 2kPa:=

2. Calculation2.1 Vertical Stability 2.1.1 Submerged Weight CalculationTotal Outer Diameter    D_out D_s 2t_corr +   2 t_mg+   2 t_cc+   1.753m=:=

Internal Diameter    D_in D_s 2t_s-   1.473m=:=

D_corr D_s 2 t_corr +   1.524m=:=   D_mg D_s 2 t_mg+   1.524m=:=

Ws   π4

D_s2 ID2-( )  ρs   D_corr 2 D_s2-( )  ρcorr +   D_out2 D_corr 2-( )ρcc+

D_in2

ρcont D_out2

ρsw-+

...

:=

Ws 315.984  kg

m=

Buoyancy B  π

4D_out

2ρsw 2.473 10

3

  kg

m=:=

2.1.2 Determining Stability

Specific Gravity   SG  Ws B+

B1.128=:=

if SG 1.1   "UNSTABLE", "STABLE",( ) "STABLE"=

Specific Gravity of Product   SG_prod  ρcont

ρsw0.034=:=

Specific Gravity of Soil   SG_soil  ρsoil

ρsw0.318=:=

2.2 Lateral Stablity 2.2.1 Water Particle Velocities

Tn  d

g3.193s=:=

Tn

Tp0.553=

ϕ  Tp

Hs3.002

  s

m=:=

15512006 REEZALI RAHARJAYA 80 of 84.

80 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 81/84

Peakedness Parameter    γ   5   ϕ   3.6  s

mif 

1   ϕ   5  s

m

if 

3.3 otherwise

5=:=

From Fig. 2-1 DNV RP E305

Tn

Tp0.553=

Us  0.000001 Hs

Tn1.159 10

  6-

  m

s=:= Us:kecepatan partikel air signifikan akibat gelombang

15512006 REEZALI RAHARJAYA 81 of 84.

81 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 82/84

From Fig. 2-1 DNV RP E305

Zero Up-Crossing Period   Tu 1.4 Tp   8.085s=:=

Table A.1 Soil parameter can be found as

Grain Size   d50 0.125mm:=

Roughness Zo 1.04 10

  5-m:=

Nikuradse's equivalent sand roughness parameter 

Kb 2.5 d50   0.313 mm=:=

Zob  Kb

301.042 10

  5-   m=:=

Using Graph, Fig. 2.2

D_out

Zo1.685 10

5=

Zr Zo

9.615 105=

Ratio average velocity to reference velocity

U_D  1

ln  Zr 

Zo1+ 

   

1  Zo

D_out+ 

   

 ln  D_out

Zo1+ 

   

  1-

Ur    0.505 m

s=:=

2.2.2 Hydrodinamic Coefficient

15512006 REEZALI RAHARJAYA 82 of 84.

82 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 83/84

Wave Particle Acceleration   As 2  π  Us

Tu9.005 10

  7-

  m

s2

=:=

Current to Wave Velocity   M  U_D

Us4.355 10

5=:=

KC Number    K   Us Tu

D_out5.345 10

  6-=:=

Reynold's Number    Re  U_D Us+( ) D_out

υ8.847 10

5=:=

Hydrodynamics Coefficient

Cd 1.2 Re 3 105

<   M 0.8if 

0.7 otherwise

0.7=:=

CL 0.9:=

CM 3.29:=

Soil Coefficient

Clay Soil

Ratio = 1/S   Ratio  D_out Su

Ws g  1.131=:=

From Figure 5.11 (Friction Factor = μc)

μc 0.24:=

Sand Soil

μs 0:=

Friction Factor Coefficient

μ μs soil 1=if 

μc otherwise

:=

μ   0.24=

Calibration Factor 

M 4.355 105

=

K 5.345 10  6-

=

Fw 1:=From Fig. 5.12

2.2.3 Lateral Stability Calculation

 Hydrodynamic Forces and Required Submerged Weight

15512006 REEZALI RAHARJAYA 83 of 84.

83 of 84.

8/15/2019 HW5 2016 15512006

http://slidepdf.com/reader/full/hw5-2016-15512006 84/84

Phase Angle Range   i 0 360..:=   θi

  i deg:=

Lift Force   FL  1

2

ρsw

g   D_out   CL   Us cos  θ( )   U_D+( )

2:=

Drag Force   FD  1

2

ρsw

g   D_out Cd   Us cos  θ( )   U_D+( )

2:=

Inertia Force   FI  π D_out

2

4

ρsw

g   CM   As   sin   θ( ):=

Required Submerged Weight   W_s  FD FI+   μ FL+

μ

  

  

  

  

Fw:=

Result of Calculation

0 100 200 300 40089.016

89.018

89.02

89.022

89.024

89.026

W_s

θ

deg

Change the concrete thickness until its ok.

Concrete thickness   t_cc 114.3 mm=

Wso Ws g   3.099 103

  N

m=:=

Wreq max W_s( ) 89.024 kg

m

=:=   Ws 315.984 kg

m

=

if Ws Wreq "Change Concrete Thickness" "OK"( ) "OK"

15512006 REEZALI RAHARJAYA 84 of 84.