61
HTc Josephson nano-junctions : physics and applications Collège de France 2008 Jérôme Lesueur Phasme team : www. lpem . espci . fr/phasme

HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

HTc Josephson nano-junctions :physics and applications

Collège de France 2008

Jérôme Lesueur

Phasme team : www.lpem.espci.fr/phasme

Page 2: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Nicolas Bergeal

Martin Sirena

Thomas Wolf

Giancarlo Faini

Rozenn Bernard, Javier Briatico, Denis Crété

Page 3: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Nicolas BergealMartin SirenaThomas WolfAlexandre Zimmers

Pascal Febvre

Denis Crété

Sophie Djordjevic

Robin Cantor

RSFQ

Etalon du Volt

THz

SQUID

Page 4: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Quantum circuits ?

No quantification of the EM field (cf M. Devoret’s lecture)

No quantum states manipulation (cf O. Buisson’s seminar)

1st

2d

!

| 0"+ | 1"

2

Page 5: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Phase properties and superconducting circuits

Phase rigidity of the condensate

!

" =0"

i#

e

!

V( t)dt0

T

" =0

#

!

d" = 0#

dx2−y2

++-

-kx

ky

Intrinsic phase structure in High Tc SC

Josephson nano-junctions

π-junctions

High speed applications

Analog to Digital converters

Communication systems

PetaFLOPS computer …

Page 6: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Superconductive electronics

Superconductors Semiconductors

CMOS transistorJosephson Junction

Aluminium

Aluminium

AlOxSiOx

Silicon1-2 nm

1-2 nm

Quantum circuit

Page 7: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Dream or reality ?

An example : a digital frequency divider

770 GHz ; 1.5 µWTechnology : Nb/Al/AlOx/Nb @4.2 K

Page 8: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Outline

1. Superconductive electronics

3. Physics of High Tc nanojunctions

Dynamics of Josephson Junctions

Rapid Single Flux Quanta logic

Actual RSFQ devices

Proximity effect

Quasi-classical diffusive approach

D-wave order parameter symmetry

π-junctions and RSFQ devices

4. Conclusions

2. High Tc Josephson nanoJunctionsIon irradiation of High Tc Superconductors

Making Nanojunctions

Major characteristics of the Nanojunctions

A few applications

Page 9: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Outline

1. Superconductive electronics

3. Physics of High Tc nanojunctions

Dynamics of Josephson Junctions

Rapid Single Flux Quanta logic

Actual RSFQ devices

Proximity effect

Quasi-classical diffusive approach

D-wave order parameter symmetry

π-junctions and RSFQ devices

4. Conclusions

2. High Tc Josephson nanoJunctionsIon irradiation of High Tc Superconductors

Making Nanojunctions

Major characteristics of the Nanojunctions

A few applications

Page 10: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Josephson Junctions

ψ2=|ψ2 | eiϕ2ψ1=|ψ1 | eiϕ1

SuperconductorSuperconductor Barrier

Josephson Junctions Josephson equations

!

I = Icsin(")

!

" ="1#"

2

Barrier : insulator, normal metal, constriction …

Applications : superconductive electronics

• Photon detection : 1 junction

• SQUID for magnetometry, voltmetry … : 2 junctions

• Rapid Single Flux Quantum (RSFQ) logic : from 10 to millions junctions !

483 597,9 GHz/V

Josephson Energy

!

JE = 0"

cI

2#(1$ cos(% ))

!

"#

"t=2eV

h=2$V

0%

Page 11: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Modeling a Josephson Junction

RC Shunted Junction Model

Josephson Junction : a non-linear inductance

!

I (t) =JI (t)+ RI (t)+ CI (t)

!

V( t) = 0"2#

$%( t)

$t

!

V( t) =JL"

JI ( t)

"t

!

JL = 0"

2#cI cos$( t)

!

I (t) =cI sin("( t))+

V(t)

JR+

JC#V( t)

#t

!

I( t)

cI= sin("(t))+ J0L

JR

#"(t)

#t+

J0L JC

2

# "(t)

#t

Page 12: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

The mechanical analogy

Normalized equation

!

J0E"

"#(1$ cos(# )$ i# )+

2

h

2e

%

& '

(

) * 1

JR

"#

"t+

2

h

2e

%

& '

(

) * JC

2

" #2

"t= 0

!

i( t) = I(t)

cI

!

"U +#$x

$t+M

2

$ x

2

$t= 0

!

JE =h

cI2e(1" cos(# ))

« Washboard » potential : phase difference motion

« damping » « mass»

Page 13: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Dynamics of a Josephson Junction

!

I( t)

cI= sin("(t))+ J0L

JR

#"(t)

#t+

J0L JC

2

# "(t)

#t

Characteristic times

!

p" = 02#$ JC

cI

!

LR" = 0#

2$cI JR

!

RC" =JR JC

Mc Cumber parameter

!

C" = RC#

LR#=2$

CI JC2

JR

0%

!

sin"#i+$"

$%+

c&

2$ "

2$%

=0!

" =t

LR"

underdamped

overdamped

!

C" # 1

!

C" >>1

R & C smallNo tunnel

Page 14: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Voltage and current across a current biased JJ

Ibias Current biased overdamped Josephson Junction

!

LR" = 0#

2$cI JR

!

T =2"

LR#2

i $1τLR

!

V =1

TV(t)dt

0

T

" = 0#T

t/τLR0 5 10 15

0

1

2

3

4

5

V(t)

/IcR

J

Quantized pulses

Timescale τLR≈ps

Vmax≈2IcRJ ≈ mV

Energy≈IcΦ0 ≈ aJ

Page 15: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Rapid Single Flux Quanta logic

Likarev’s basic idea (1985) : dynamical logic

Transmission line Transmission line

State 0 State 1IcRJΦ0

Current biased overdamped JJ (Ib < Ic)

Josephson transmission line

Inductance (RF SQUID)

!

L" =

2LCI

0#

Page 16: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Dynamics of an RF SQUID

!

L" =

2LCI

0#

Fluxoid quantification

!

L" <<1

!

L" >>1

!

"

0"

= ext"

0"

# L$2%

sin 2%"

0"

&

'

( (

)

*

+ +

Non-hysteretic

Hysteretic

Page 17: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Storing a pulse

Storing and manipulating pulses

Φ0 < LIc < 2Φ0

Manipulating pulses

RSFQ circuits : JJ and inductances

Φ0 < LIc Φ0 > LIc

Page 18: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Advantages of RSFQ logic

Robust pulse along the way

IcRJΦ0

Φ0

Intrisinc speed : THz frequency

!

LR" = 0#

2$cI JR

Ic ≈ 0.1 - 1 mA

RJ ≈ 1 - 10 Ω1/τLR ≈ 1-10 THz

Low power consumption

Energy ≈ IcΦ0 f ≈ 0.1 - 1 THz P ≈ 0.1 - 1 nW

N ≈ 1O6 gates P ≈ 0.1 - 1 mW

Overdamped : no tunnel junctions

Page 19: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

A complete logic library

All logic elements possible

NOT

T-NOR

T-AND

Low Tc Micro processor (ISTEC Japan)

• Technology : Nb/Al/AlOx/Nb @4.2 K

• 8000 to 30000 junctions

• Max speed : 770 GHz, sampler

15.5 GHz 1.6 mW

Page 20: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Superconductive electronics : the Holy Graal ?

Important parameters

!

LR" = 0#

2$cI JR

!

C" = RC#

LR#=2$

CI JC2

JR

0%

unity

!

LR" # JC

CI

Robust against thermal fluctuations

!

CI > Bk T

0"

Increasing current density jC

Increasing superconducting gap IcRN

Decreasing the JJ characteristic spread

Today Low Tc

• Temperature 4.2 K

• Current density 1-3 kA/cm2

• SC gap 1 mV

• 5 to 10% spread

• 30000 JJ

Tomorrow High Tc

100 K

20-30 mV

>>10 kA/cm2

?????

Page 21: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

High Tc Superconductive electronics … today

HTSc Josephson Junctions technology :

reliability, ageing, integration, cost effective

Complex materials

Multi-component oxides (YBa2Cu3O7)

High temperature processing (700-800°C)

Very sensitive to disorder …

High Tc A/D convertor (ISTEC Japan)

• Technology : YBCO @77.7 K

• 10 to 15 junctions

Page 22: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Outline

1. Superconductive electronics

3. Physics of High Tc nanojunctions

Dynamics of Josephson Junctions

Rapid Single Flux Quanta logic

Actual RSFQ devices

Proximity effect

Quasi-classical diffusive approach

D-wave order parameter symmetry

π-junctions and RSFQ devices

4. Conclusions

2. High Tc Josephson nanoJunctionsIon irradiation of High Tc Superconductors

Making Nanojunctions

Major characteristics of the Nanojunctions

A few applications

Page 23: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

« Standard » High Tc Josephson junctions

Complex materials …

Grain boundary junctions

Alternative technology Ion irradiation

Ramp junctions

Special substrates

Design constraints

Lack of reproducibility

Kahlmann et al & Katz et al APL’98

Page 24: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

High Tc cuprate superconductors

Y

Cu

Ba

O

O

bc

High Tc superconductors

Hole-doped in the Cu02 plane

YBa2Cu3O6+x

Tc=90K Order parameter symmetry : dx2-y2

++

-

-kx

ky

kX

ky

Anistropic 2D Fermi Surface

Page 25: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Disorder in High Tc Superconductors

Defect in dx2-y2 superconductor depairing

Abrikosov-Gorkov

YBa2Cu3O7

dx2 −y2

++

-

-

k

k’

kx

ky

Local control of the disorder

Nanoscale engineering (ξN)

30K<T<90K Super/Normal/Super Josephson junction

Substrate

YBCO Tc=90K30K

Page 26: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Proximity effect based Josephson Junctions

SC Normal SC

Phase coherence through normal metal : Josephson coupling

Diffusive case

!

"N(x) #"

N(0

+)e

$x

%N

De Gennes : Rev Mod Physics 1964

!

Ic

= I0 1"T

Tc

#

$ %

&

' (

2

l /)N

sinh(l /)N)

!

"N

=hD

2#kBT

usiv

A few 10 nm

Page 27: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Towards the insulator

Defect in dx2-y2 superconductor depairing

Low defect concentration : Tc decreases

Lesueur et al (1995)

Abrikosov-Gorkov

YBa2Cu3O7

dx2−y2

++

-

-

k

k’

kx

ky

High dose : towards the insulator

YCu

BaO

O

bc

Page 28: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Fabrication of High Tc nano-Junctions

Control the defect density through ion irradiation two-steps strategy :

Abrikosov-Gorkov

YBa2Cu3O7

J. Lesueur et al (1995)

# 1

# 1 : drawing channels : (1015 at/cm2)

# 2

# 2 : creating nanoJunctions : (1013 at/cm2)

Substrate

Film SCInsulator SC channel

Junction

Resist

Au

Oxygen 100 keV

Page 29: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Tailoring at a nanoscale

First step : channel in a YBa2Cu3O7 film (thickness = 1500Å)

Channel

Embedded

Oxygen 100 keV

Second step : nanojunction through a 20 nm slit

30K<T<90K jonction Super/Normal/Super

Oxygen 100 keV

Substrate

Superconductor

Resist

Substrate

SubstrateSubstrateSubstrate

Superconductor

Au

Ins.

Page 30: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Fabrication of nanojunctions

20nm slit

Hall cross

Width 1 to 5µm

Irradiationthrough Au mask

Au IBE removed Irradiationthrough Resist mask

N. Bergeal et al, APL 2005

JAP 2007

Page 31: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

R(T) measurements

25

20

15

10

5

0

R (!

)

10090807060504030

Température (K)

Tc

Tc’ Tj

Josephson

regime

L=5µm, E=100keV Φ=6.1013at/cm2

L=5µm, E=100keV

Φ=1.5, 3, 4.5, 6.1013at/cm2

ψ2=|ψ2 | eiϕ2ψ1=|ψ1 | eiϕ1

SupraSupra

3.0

2.5

2.0

1.5

1.0

0.5

0.0

R(!

)

908070605040

Température (K)

Tc’<T<Tj Josephson regime

T<Tc’ <Tj Flux flow regime

Extension of the Josephson regime

ΔT=7K → ΔT=20K

High operating T

Page 32: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

I(V) characteristics

Φ=3.1013at/cm2

RSJ behavior

Resistance Rn ranging from 200mΩ to a few Ω

Flux flow behavior

T < Tc’TJ > T > Tc’

70 K72.5 K

Overdamped JJ

Page 33: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Fraunhofer pattern Ic(B)

Phase control by the vector potential

30

25

20

15

10

5

0

Ic (µA

)

-15 -10 -5 0 5 10 15B (Gauss)

73,35 K

Sinc fit

!

Ic

= I0sin("# #0)

"# #0

Φ0

Josephson length λJ

w = 5 µm

λJ = 2 µmλJ = 3 µmλJ = 4 µm

!

I = Icsin(")

!

" ="1#"

2

∇ϕ = Cste JS + 2πφ0-1 A

Page 34: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Shapiro Steps

Phase controlled by microwaves

Almost ideal Bessel functions

N. Bergeal, JAP 2007

!

"#

"t=2eV

h

483 597,9 GHz/V

Page 35: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

2000

1500

1000

500

0

Ic (µA

)

7876747270

T (K)

3 1013

at/cm2

500

400

300

200

100

0

Ic (µA

)

85.084.584.083.583.082.5

T (K)

1.5 1013

at/cm2

2000

1500

1000

500

0

Ic (µA

)

72686460

T (K)

4.5 1013

at/cm2

1400

1200

1000

800

600

400

200

0

Ic (µA

)

5550454035

T (K)

6 1013

at/cm2

Ic(T) measurements

!

Ic = I0 1"T

Tj

#

$ % %

&

' ( (

2

l /)Nsinh(l /)N )

De Gennes-Werthamermodel of proximity effect

1.5 1013 at/cm23 1013 at/cm2

6 1013 at/cm24.5 1013 at/cm2

IcRn ~ a few 100 µV

Page 36: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Major characteristics and reproducibility

N. Bergeal, APL 2005,JAP 2007

High Jc

Reproducible JJ

Page 37: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Clues for reproducibility and reliability

Embedded junctions

No annealing of the junctions

In-situ Gold protected YBCO films

All dry process

Low dispersion in IcRn (<10%)

Self-shunted junctions

High values of Jc ( a few 104 A/cm2)

Excellent thermal cycling and aging

N. Bergeal et al, APL 2005

THz detectors

Voltage standard

SQUIDs

RSFQ : T flip-flop

Page 38: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

DC SQUIDs with nanojunctions

10µm* 10µm

W ~ 5µm

L = 32 pH

ϕ0 forB~0.08 G

Geometry #1

40

35

30

25

20

15

I c(µA

)

0.20.10.0-0.1-0.2

B (Gaus)

expérience

I=IcIcos(2!"/"

0)I +C

Ic(B) modulation

Cosinus fit with a period 0.08 G

Geometry #2

6µm* 6µm

W ~ 2µm

L = 17 pH

ϕ0 forB~0.3 G

N. Bergeal et al, APL 2006

Page 39: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

SQUID modulations

20

15

10

5

0

V(µV)

-0.2 0.0 0.2

B(Gauss)

I=25µA

I=20µA

I=30µA

I=35µA

50

40

30

20

10

V(µ

V)

-1.0 -0.5 0.0 0.5 1.0

B (Gauss)

I=18µA

I=25µA

I=30µA

Modulation of I -> modulation of V

Sensitivity : dV/dΦ = 60 µV/Φ0

Temperature = 77.7 K

Geometry #1 Geometry #2

Page 40: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

SQUID characteristics

3 1013 at/cm2

T= 77 K

6 1013 at/cm2

T= 51 K

Fraunhofer + SQUID modulation

Noise < 100pV/√Hz (at 100 Hz)

Sensitivity ≈ qq 10-4 Φ0

Excellent cycling and aging

Networks

N. Bergeal, APL 2006 ; APL 2007

Page 41: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

SQUID for « Mr SQUID »

Page 42: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

RSFQ T Flip-Flop

Design D. Crété (Thales)

Kim et al (2002) 100 GHz @ 12K

f

f/2

IN

0.24m

A

1.2pH

0.9pH

0.15mA

IC = 150u

0.9pH

Ic=

150u

2.1pH

IC = 300u4.3pH

7.1pH

IC=350uA

IC = 300u

0.27mA

Ic=250u

A

1.0pH

OUT

JTL BIAS

Ib1 = 0.25 mA

JTL

TFF BIAS

Ic3 =Ic4 0.38 mA

=

Ib3= 0.28 mA

Ic7 = Ic6 = 0.32 mA

Ic1=Ic20.18 mA

=

Ib4 = 0.12 mA

Ib2 = 0.22 mA

L = 7.1pH

GND

OUT

IN

A

IC=350uA

GND

A

A

f/2

Page 43: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Outline

1. Superconductive electronics

3. Physics of High Tc nanojunctions

Dynamics of Josephson Junctions

Rapid Single Flux Quanta logic

Actual RSFQ devices

Proximity effect

Quasi-classical diffusive approach

D-wave order parameter symmetry

π-junctions and RSFQ devices

4. Conclusions

2. High Tc Josephson nanoJunctionsIon irradiation of High Tc Superconductors

Making Nanojunctions

Major characteristics of the Nanojunctions

A few applications

Page 44: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

A bit of physics …

Tc , resistivity r(T) vs defects

Damage profile (SRIM)

?

Reduced size ?

Page 45: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

« No-interface » Josephson Junctions

SC Normal SC

!

"N

=hD

2#kBT

Strength of the coupling

Low interface resistance

Fermi Velocities match

Beyond De Gennes’s approximation

No true interface

Self-consistent calculation of the local gap

Calculating the Josephson critical temperature

Calculating Ic(T) for all temperatures

Page 46: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Quasi-classical approach of the proximity effect

ωn=πkBT(2n+1) Matsubara frequencies

!

"(x) = #S2$K

BT sin%

n

&n

'!

tan"N

=#

$N

Usadel equations parametrized in θ

!

hD(x)

2

" 2#n

"x 2$%

nsin#

n+ &(x)cos#

n$'

AB(x)sin#

ncos#

n= 0

Self-consistant gap equation

Homogeneous SC

G=cosθ

F=sinθ

Limits conditions

Pairs

Quasiparticles

Depairing ΓAB

Δ(x) profil along the junctionIn the limit of vanishing current

Page 47: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Computing the Josephson coupling temperature

80

60

40

20

0

T (

K)

86420

dose* 1013

at/cm2

Régime normal

Tj

T'c

Régime Josephson

Régime flux-flow

Flux-flowregime

Normalregime

JosephsonregimeTc’

TJ

1.0

0.8

0.6

0.4

0.2

0.0

!/!

0

-400 -200 0 200 400

x (nm)

89K

88K

87K

86K

84K

82K

80K

74K

60K

40K

N. Bergeal et al, submitted to PRL

TJ

Page 48: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Computing the critical current density

Usadel equations parametrized in θ

Homogeneous SC

G=cosθ

F=sinθ Pairs

Quasiparticles

Depairing ΓAB

!

hD(x)

2

" 2#n

"x 2$%

nsin#

n+ &(x)cos#

n$'

AB(x)sin#

ncos#

n

$hD(x)

2

"(

"x

)

* +

,

- .

2

sin(#)cos(#) = 0

!

hD(x)

2

" 2#n

"x 2$%

nsin#

n+ &(x)cos#

n$'

AB(x)sin#

ncos#

n= 0

Depairing by supercurrent χ

ωn=πkBT(2n+1) Matsubara frequencies

Supercurrent inside the junction

!

j(x) = "#eNDT$%

$xsin

2&'

(

Page 49: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Comparison with eperiments

Quantitative results for the critical current of our Josephson junctions

Depairing coefficient

Defects profile

With NO adjustable parameters

Irradiations on full films

SRIM simulations

Page 50: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Changing the junctions parameters

Importance of the slit size and irradiation doses

4 different doses

Simulate various

slit size

film thickness

irradiation dose, …

optimize Josephson junctions

Specific temperaturescritical currents

Reduce spread (identifyimportant parameters)

Ic(T)

Temperature (K)

Ic(A

)

3 different slit size

Page 51: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Deeper look in the low temperature regime

Want to reach high critical current lower temperature

Strong anharmonicity develops …

Lower temperatures

2.5

2.0

1.5

1.0

0.5

V(t

)/IcR

n

300025002000150010005000

Time (a.u.)

RSFQ pulses robust against anharmonicity

Page 52: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

A d-wave order parameter

1D Quasi-classical equations with an isotropic order parameter

2D symmetry of the d-wave order parameter

!

hD(x)

2

" 2#n

"x 2$%

nsin#

n+ &(x)cos#

n$'

AB(x)sin#

ncos#

n= 0

kx

ky

dx2−y2

++-

-kx

ky

• Anisotropy of the order parameter

• Sign change : Andreev Bound States

• π-junctions and RSFQ circuits

Page 53: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Order parameter anisotropy ?

dx2−y2

++-

-

kk’

kx

ky

Orientations θ = 0 °,10 °,20 °,30 °,40 °,45°

(a,b)

(a,b)

θ D-wave order parameter

Page 54: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Order parameter anisotropy ?

θ = 0°θ = 45°

No effect !!

Diffusion ?

2d order parameter ?

Anisotropic pairing !

Page 55: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Back to Eilenberger equations …

No diffusion approximation

Usadel : l < ξ

Eilenberger : l >< ξ

No wave vector dependence

Confined geometry : full d-wave calculation in a channel

a fe

w ξ

Den

sity

of

stat

es

DOS (E=0)

Andreev Bound State

Page 56: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Andreev Bound State

D-wave SCInsulator|!|

e-

x0 dn

h+e-

h+

k=kf

k=-kf

!1ei"1 !2e

i"2

SC1 SC2Metal

Surface Bound State

ϕ1-ϕ2=π Bound State E=0

Making a π junctionw = a few ξ

Gumann et al APL 2007

Ic>0

Ic<0

Ic=I0sin(Δϕ)

Ic=I0sin(Δϕ+π)

Page 57: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Spontaneous super-current

π SQUID

π junction

0 junctionGround state j=0Flux = 0

Ground state j≠0Flux = φ0/2

LIc > φ0

Free energy

Spontaneous current

Page 58: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

π-SQUID in RSFQ circuits

Spontaneous half flux quanta in YBCO/Nb SQUIDs

φ0/2

Numerous bias leads in RSFQ circuits

Ortlepp et al Science 2006

Page 59: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Toggle flip-flop

Comparison with and without π-junctions

Actual device

Page 60: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Outline

1. Superconductive electronics

3. Physics of High Tc nanojunctions

Dynamics of Josephson Junctions

Rapid Single Flux Quanta logic

Actual RSFQ devices

Proximity effect

Quasi-classical diffusive approach

D-wave order parameter symmetry

π-junctions and RSFQ devices

4. Conclusions

2. High Tc Josephson nanoJunctionsIon irradiation of High Tc Superconductors

Making Nanojunctions

Major characteristics of the Nanojunctions

A few applications

Page 61: HTc Josephson nano-junctions : physics and applications · 2017-12-28 · Dynamics of Josephson Junctions Rapid Single Flux Quanta logic Actual RSFQ devices Proximity effect Quasi-classical

Conclusions

RSFQ logic : a promissing technology

High Tc Josephson nano-Junctions : a promissing path

Applications are on their way

Proximity effect based Josephson Junctions

D-wave order parameter :it matters !

Thank you !JnJ : Bergeal & al, APL 87, 102502 (2005),

JAP 102, 083903 (2007)Squids : Bergeal & al, APL 89, 112515 (2006)

APL 90, 136102 (2007)Optimization : J. Lesueur & al,

IEEE Trans Appl Sup 17, 963 (2007)M. Sirena & al, JAP 101, 123925 (2007)M. Sirena & al, APL 91, 142506 (2007)M. Sirena & al, APL 91, 262508 (2007)