37
How Membrane Loads Influence the Modal Damping of Flexural Structures George A. Lesieutre Department of Aerospace Engineering Center for Acoustics and Vibration Sandia National Laboratories Albuquerque, NM September 21, 2011

How Membrane Loads Influence the Modal Damping of Flexural Structures George A. Lesieutre Department of Aerospace Engineering Center for Acoustics and

Embed Size (px)

Citation preview

How Membrane Loads Influence the Modal Damping of Flexural Structures

George A. LesieutreDepartment of Aerospace Engineering

Center for Acoustics and Vibration

Sandia National Laboratories

Albuquerque, NM

September 21, 2011

Overview

• Membrane loads

• Stiffness– Vibration modes

• Frequencies, mode shapes

• Damping– Data from the literature– Model development– Results

What Are Membrane Loads?

• In a 1-D or 2-D structural member that carries lateral loads: – Forces tangent to the midsurface– “Initial stress” or “pre-stress”

• Example members– Strings, Membranes– Beams, Plates, Shells

Importance in Structural Dynamics?

• Can provide lateral restoring force

• Can affect normal vibration modes– Frequencies – Mode shapes

Sample Applications

• Rotor blades

• Airplane fuselages

• Actuators; Acoustic transducers

• MEMS resonators

Beam Example: Spinning Blade

T (x) = ρA(ξ) ξΩ2 dξ

x

L

T(x)

G.S. Bir, “Structural Dynamics Verification of RCAS,” NREL/TP-500-35328, February

2005.

Variation of spinning uniform blade modal freqs with rotor speed

First coupled mode, nonuniform blade (Ω=0)

First mode, nonuniform blade (Ω=50)

“CF Load”

Shell Example: Airplane Fuselage

• Fuselage vibration modes – Effects of pressurization

Baker, E.H., Hermann, G., “Vibrations of Orthotropic Cylindrical Sandwich Shells under Initial Stress,” AIAA J, v 4, n 6, 1966, 1063-1070.

w(x,ϑ ,t) =Wmnsinmπx

L⎛⎝⎜

⎞⎠⎟

cos nϑ( ) cos ωt( )

u(x,ϑ ,t) =Umn cosmπx

L⎛⎝⎜

⎞⎠⎟

cos nϑ( ) cos ωt( )

v(x,ϑ ,t) =Vmnsinmπx

L⎛⎝⎜

⎞⎠⎟

sin nϑ( ) cos ωt( )

ψ x (x,ϑ ,t) = Amn cosmπ x

L⎛⎝⎜

⎞⎠⎟

cos nϑ( ) cos ωt( )

ψ ϑ (x,ϑ , t) = Bmn sinmπ x

L⎛⎝⎜

⎞⎠⎟

sin nϑ( ) cos ωt( )

transverse shear

Airplane Fuselage (continued)

• Natural freqs of thin sandwich shell

• Develop tunable piezo flexural transducers with high effective BWS product

• Use for transmission / reception of:– Frequency modulated (FM) pulses

• Short pulses for range resolution• High sweep rate for velocity resolution

• In-plane loads affect resonance

frequencies-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.5

0

0.5

ClampedSimply supported

DiskDisk

(f(frr-f-

f r0r0)/

f)/

f r0r0

N/NcrN/Ncr

++VVDD

++

++--

--

--VVCC

VVCC

Exploitation: Tunable Transducer

More Than Frequency Shifts?

Do membrane loads affect modal damping?

If so, how?

Calculations: Fuselage Damping

• Damping of thin sandwich shell

Boeing HSCT

Lesieutre, G.A., Wodtke, H.W., Zapfe,

J.A., Damped Composite Honeycomb

Sandwich Panels for High-Speed Aircraft

Interior Noise Reduction, Final Report

to Boeing Commercial Airplane Co., June 30,

1995.

Experiments: Rotor Blade Damping

Experiments in vacuum

Smith, C.B., Wereley, N.M., “Transient analysis for damping identification in rotating composite beams with integral damping layers,” Smart Materials and Structures, v 5, 1996, 540-550.

CLD treatment

Experiments: Fan Blade Damping

Experiments in vacuum

Kosmatka, J.B., and O. Mehmed, “Experimental Spin Testing of Integrally-Damped Composite Blades,” AIAA-98-1847.

Experiments: Tunable Piezoelectric Energy Harvester

Leland, E.S. and Wright, P.K., “Resonance Tuning Of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload,” Smart Materials and Structures, 2006, pp. 1413-1420.

Lesieutre, G.A., and C.L. Davis, “Can a Coupling Coefficient of a Piezoelectric Actuator be Higher Than Those of Its Active Material?,” JIMSS, Vol. 8, 1997, pp. 859-867.

With increasing compressive preload– Resonance frequency decreases– Modal damping increases– Coupling coefficient increases

• Micron-sized resonators offer advantages over larger counterparts– RF signal processing– Mass, pressure sensor– Size, power, sensitivity

• Spectral purity– High Q desirable: minimize (Meff/Q)

• Single-crystal Si, Si3N4, SiC

– RT Q ~ 10,000 to 100,000

MEMS Resonators

Verbridge, S.S., Shapiro, D.F, Craighead, H.G., Parpia, J.M., “Macroscopic Tuning Of Nanomechanics: Substrate Bending For Reversible Control Of Frequency And Quality Factor Of Nanostring Resonators,” Nano Letters, Vol. 7, No. 6, 2007, pp. 1728-1735.

Experiments: MEMS Resonators with Tension

• High Q attributed to tensile stress– RT Q > 106 measured (in vacuum)

• The precise mechanism by which tension increases Q even in the presence of increased material damping and boundary losses “remains unknown.”

Verbridge, S.S., Shapiro, D.F, Craighead, H.G., Parpia, J.M., “Macroscopic Tuning Of Nanomechanics: Substrate Bending For Reversible Control Of Frequency And Quality Factor Of Nanostring Resonators,” Nano Letters, Vol. 7, No. 6, 2007, pp. 1728-1735.

Damping Models

• Effects of membrane loads on modal damping of flexural structures

• Viscous damping– Strain-based– Motion-based

• Complex modulus (MSE)

&&x + 2ζω &x+ω 2 x=X(t)

Effect of Membrane Loads on Natural Frequencies: SS Beam

• Admits eigenfunctions:

• (Undamped) natural frequencies:

T

ρA&&w − T ′′w + EI ′′′′w = 0

Wm (x) =sinmπx

L⎛⎝⎜

⎞⎠⎟

ωm

2 =EI

L⎛⎝⎜

⎞⎠⎟

4

+ Tmπ

L⎛⎝⎜

⎞⎠⎟

2

ρA=

L⎛⎝⎜

⎞⎠⎟

4EI

ρA

⎝⎜⎞

⎠⎟1+

T

EI mπL( )

2

⎝⎜

⎠⎟

tension

ωm

= m2 π 2 EI

ρ AL4

⎝⎜⎞

⎠⎟

ω0

1 244 34 4

ωm 0

1 24 4 34 4

1 +T

EImπ

L⎛⎝⎜

⎞⎠⎟

2

⎜⎜⎜⎜

⎟⎟⎟⎟

1 2

= ωm 0

1 +T Pcr

m2

⎛⎝⎜

⎞⎠⎟

1 2

Beams (continued)

• Instability (buckling) possible– A result of compression

Pcr =−Tcr =π 2EI

L2

PP

critical load

-Pcr

T

ω1natural frequency

Effect of Membrane Loads on Damping: SS Beam (Viscous)

• Modal damping

T

ρA&&w + cs ′′′′&w − T ′′w + EI ′′′′w = 0

strain-based viscous damping

T Pcr

ζEI m =cEI

L⎛⎝⎜

⎞⎠⎟

2

2 ρ A EI( )1 2

ζ EI m 0

1 24 34

1

1+T

m2Pcr

⎝⎜⎞

⎠⎟

1 2 =ζ EI m0

1 +T Pcr

m2

⎛⎝⎜

⎞⎠⎟

1 2

−ω 2ρ A + EI(1 + i η EI

lossfactor

{ )mπ

L⎛⎝⎜

⎞⎠⎟

4

− Tmπ

L⎛⎝⎜

⎞⎠⎟

2⎡

⎢⎢⎢

⎥⎥⎥

Am* (ω ) = Fm

Effect of Membrane Loads on Damping: Complex Modulus

• Modal damping

Modal damping evaluatedat resonance, decreases with T-1

T

T Pcr

complex modulus

ζm =η EI

2

1

1+T Pcr

m2

⎛⎝⎜

⎞⎠⎟

ωm

ω=

η EI

2

1

1+T Pcr

m2

⎛⎝⎜

⎞⎠⎟

1 2

ωm0

ω

Modal Loss Factor & Frequency vs. Tension & Mode Number

Modal tension stiffness factor

Normalized modal freq

Relative modal loss factor

αm =ω

m

2

ωm 0

2= 1 +

T Pcr

m2

⎛⎝⎜

⎞⎠⎟

ωm

ω0

= α m m2

ηm

η EI

=1

α m

Good qualitative agreement of theory with experiment

Experiments: MEMS Resonators with Tension

Verbridge, S.S., Shapiro, D.F, Craighead, H.G., Parpia, J.M., “Macroscopic Tuning Of Nanomechanics: Substrate Bending For Reversible Control Of Frequency And Quality Factor Of Nanostring Resonators,” Nano Letters, Vol. 7, No. 6, 2007, pp. 1728-1735.

Insight: Modal Strain Energy

• Damping of a mode of a structure is a weighted sum of the damping of its parts– Weighting factors are the fraction of strain

(potential) energy stored in each part

ηm =Vpart

VTOTAL

⎝⎜⎞

⎠⎟m

η partparts∑ with VTOTAL( )

m= Vpart( )

mparts∑

ηm =VEI

VTOTAL

⎝⎜⎞

⎠⎟m

η EI +VT

VTOTAL

⎝⎜⎞

⎠⎟m

ηT

mat’l loss factorloss factor assoc. w/ tension = 0

=VEI

VEI + VT

⎝⎜⎞

⎠⎟m

η EI =1

1 +T Pcr

m2

⎛⎝⎜

⎞⎠⎟

η EI

Summary and Conclusions

• Membrane loads affect the apparent lateral stiffness of flexural structures– Modify normal vibration modes (freqs, shapes)

• Tensile (compressive) membrane loads decrease (increase) modal damping– Strongest effect on the lowest vibration modes– Complex modulus: modal damping decreases in

direct proportion to the increase in tension– Viscous damping: slightly different, but similar– Consistent with available experimental data

• Alternate damping approaches?

More Than Frequency Shifts!

Acknowledgments

• In addition to the cited references, students and post-docs:– Hans-Walter Wodtke– Jeff Zapfe– Chris Davis– Chad Hébert– Julien Bernard– Jeff Kauffman– Mike Thiel

• Sponsors– Boeing (HSCT), ONR, NASA/Army (RCOE)

Effect of Membrane Loads on Damping: SS Beam (Viscous)

• Modal damping

T

ρA&&w + cv &w − T ′′w + EI ′′′′w = 0

motion-based viscous damping

ζV m =cV

2 ρ A EI( )1

2 mπ

L⎛⎝⎜

⎞⎠⎟

2

ζV m 0

1 24 4 4 34 4 4

1

1 +T

m2Pcr

⎝⎜⎞

⎠⎟

1 2 =ζ V m0

1 +T Pcr

m2

⎛⎝⎜

⎞⎠⎟

1 2

Effect of Membrane Loads on Damping: SS Beam (Damped)

• Modal damping

T

ρA&&w + c0 &′′w − T ′′w + EI ′′′′w = 0

ζm =c0

2 ρA EI( )1

2 1+T

EI mπL( )

2

⎝⎜

⎠⎟

12

Insensitive to frequency (if T=0)

Strings (1-D)

• Lateral stiffness due entirely to tension• Tension from sol’n of tangent problem

d T (x)

dx+ px(x) =0

Tangent Equilibrium

ρA(x)∂2w(x, t)

∂t 2−

∂xT (x)

∂w(x, t)

∂x⎛⎝⎜

⎞⎠⎟

= pz (x, t)Lateral Eqn of Motion

Independent of lateral disps (linear)

Neglect dynamics

Membranes (2-D)

• Lateral stiffness due to membrane stress• Stress from sol’n of tangent problem

∂ N xx

∂x+

∂ N xy

∂y+ px (x, y) = 0

∂ N xy

∂x+

∂ N yy

∂y+ py (x, y) = 0

Tangent Equilibrium

ρh(x, y)∂2w

∂t 2−

∂xN xx

∂w

∂x⎛⎝⎜

⎞⎠⎟

−∂

∂xN xy

∂w

∂y

⎛⎝⎜

⎞⎠⎟

−∂

∂yN xy

∂w

∂x⎛⎝⎜

⎞⎠⎟

−∂

∂yN yy

∂w

∂y

⎛⎝⎜

⎞⎠⎟

= pz (x, y, t)

Lateral Eqn of Motion

ρh∂2w

∂t 2− N ∇2 (w) = pz (x, y, t)

uniform tension

Beams (1-D)

• Lateral stiffness a combination of bending and tension– Tension can be negative (compression)

• Tension from sol’n of tangent problem– Like that of string

ρA(x)∂2w

∂t 2−

∂xT (x)

∂w

∂x⎛⎝⎜

⎞⎠⎟

+∂2

∂x2EI(x)

∂2w

∂x2

⎝⎜⎞

⎠⎟= pz (x, t)

Lateral Eqn of Motion (planar)

Plates (2-D)

• Lateral stiffness a combination of bending and membrane stress– Stress(es) can be negative; instability possible

• Stress from sol’n of tangent problem– Like that of membrane

ρh∂2w

∂t 2+ D∇4w − N xx

∂2w

∂x2+ 2N xy

∂2w

∂x∂y+ N yy

∂2w

∂y2

⎝⎜⎞

⎠⎟= pz (x, y, t)

Lateral Eqn of Motion

Shells (2-D, curved)

• Curvature couples membrane & bending

Shallow cylindrical shell

a∂ Nxx

∂x+

∂ Nxθ

∂θ=0

a∂ Nxθ

∂x+

∂ Nθθ

∂θ=0

Tangent Equilibrium

ρh∂2w

∂t 2+ D∇4w +

1

aNθθ − N xx

∂2w

∂x2+

2

aN xθ

∂2w

∂x∂θ+

1

a2Nθθ

∂2w

∂θ 2

⎝⎜⎞

⎠⎟= pz (x,θ , t)

Lateral Eqn of Motion

ff (Hz) (Hz)

t t (s)(s)

WDWD

– initial carrying freq: f0 = 50 Hz

– carrying freq:– instantaneous freq:

Time-Frequency Analysis of FM Pulses

• Linear FM (LFM) pulse:– amplitude: A = 1 Vpk

– duration: = 1 s– frequency sweep: f = 50 Hz

tf

ftfm

+= 0)(

tf

ftfi

+= 2)( 0

tt (s) (s)

ff (Hz) (Hz)

ff (Hz) (Hz)

tt (s) (s)

22 ππ|V

(f)|

|V(f

)|22 (

V (V

22 /Hz)

/Hz)

vv (t)

(V

)(t

) (

V)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

40 60 80 100 120 140 1600

1

2

3x 10-3

40 60 80 100 120 140 1600

0.5

1

Fixed (Q = 47)

Tunable vs. Fixed-Freq Transducer

750 800 850 900 950 100010501100115012000

0.02

0.04

0.06

0.08

0.1

0.12

Frequency (Hz)

Tim

e (

s)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14-5

-4

-3

-2

-1

0

1

2

3

4

5x 10

-3

Time (s)

u(t

) (m

/s)

Tunable (Q = 47)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14-6

-4

-2

0

2

4

6x 10

-3

Time (s)u

(t)

(m/s

)

Higher, uniform output over broad range

Tuning:

Track instantaneous frequency

Bernard, J. and G.A. Lesieutre, “Design and Realization of Frequency Agile Piezoceramic Transducers,” AIAA Adaptive Structures Forum, Atlanta, GA, April 3-6, 2000.

Prototype Transducers and Experiments

Electrical impedance measurement under bias voltages

• Coupling coefficient: Coupling coefficient: 0.20.2• Frequency shift: Frequency shift: 30% for 1 kV/mm30% for 1 kV/mm

0 100 200 300 400 500 600 700 800 900 10000.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Vb (V)

Rel

ativ

e fr

eque

ncy

shif

t

#6

#5

#4

#2

#7

44 mm63.5 mm

12.7 mm