34
How does a protein get to the correct cellular location? Membrane and organelle proteins contain targeting (sorting) signals in their amino acid sequence. Targeting signals are recognized during or after the protein is translated - special machinery recognizes the signal and translocates the protein to its correct location

How Do Proteins Get to Their Correct Cellular Locations

Embed Size (px)

DESCRIPTION

biomol

Citation preview

  • How does a protein get to the

    correct cellular location? Membrane and organelle proteins

    contain targeting (sorting) signals in their

    amino acid sequence.

    Targeting signals are recognized during or after the protein is translated - special

    machinery recognizes the signal and

    translocates the protein to its correct

    location

  • Target Usual Signal Location

    Signal

    Removed? SIGNAL

    ER N-terminal

    Or internal

    (+/-) 6-12 hydrophobic aa

    often preceded by 1

    or more (+) aas

    Mitochondrial

    matrix

    N-terminal

    (multiple)

    (+) Amphipathic helix

    20-50 residues with

    R/K and

    hydrophobic sides

    Peroxisome

    C-terminal (-) Usually S-K-L at C-

    terminus

    Nucleus Internal (-) 1 cluster 5 basic

    aas or 2 smaller basic clusters

    separated by 10 aa

    Examples of protein targeting

    signals

  • Proteins are targeted to different

    compartments in different ways

  • Proteins that are

    targeted to the

    nucleus,

    mitochondria,

    chloroplasts and

    peroxisomes are

    synthesized on free

    ribosomes as soluble

    polypeptides

  • Proteins that are

    targeted to the cell

    surface, Golgi and

    Lysosomes are

    synthesized on

    ER membrane

    bound ribosomes

    and move through

    the secretory

    pathway

  • The ER targeting mechanism

    requires two special receptor

    proteins:

    What gets the ribosomes with

    secretory protein mRNA's to bind

    to the ER membranes?

    1. Signal recognition particle (SRP)

    2. SRP receptor

  • Translation of secretory mRNA

    begins on free ribosomes

    N-terminal signal sequence emerges

    from ribosome tunnel

    Signal recognition particle (SRP) binds

    to the emerging signal

    sequence from the

    ribosome

  • SRP receptor initiates the interaction of

    signal sequences with the ER membrane

    Receptor is an a,b dimer b subunit is an intrinsic

    membrane protein

    a-subunit initiates binding of ribosome SRP to ER

    membrane

  • How do intrinsic membrane

    proteins get inserted into the

    ER membrane?

  • Topologies of some integral membrane

    proteins synthesized on the rough ER

  • Most cytosolic transmembrane proteins have

    an N-terminal signal sequence and an

    internal topogenic sequence

    Type I protein

  • A single internal signal-anchor sequence directs

    insertion of single-pass Type II transmembrane

    proteins

    Type II

    protein, no

    N-terminal

    signal

    sequence

  • Multipass transmembrane proteins have

    multiple topogenic sequences

  • Most proteins synthesized in the

    Rough ER are glycosylated by a

    core oligosaccharide that is linked

    to asparagine residues

    (N-linked glycosylation)

  • The

    glycosylation

    signal is Asn-

    X- (Ser/Thr)

  • N-linked glycosylation occurs

    during protein translocation via

    the membrane bound protein

    oligosaccharide transferase

  • Core Glycosylation and Trimming

    in the ER lumen

  • Overview

    of secretory

    pathway

  • ENDOPLASMIC RETICULUM

    GOLGI

    Transport

    1.In

    2.out

    In:

    -Early endosome

    -Late endosome

    -Golgi

    -ER

  • Molecular mechanism of membrane transport

  • In and out transport

  • Protein pengikat/coated vesicles

    -Clathrin (from golgi and from membrane)

    -Copi (from golgi to ER)

    -Copii (from ER to golgi)

    Sebenarnya protein tersebut sangat beragam keberadaannya

  • Pembentukan clathrin vesicle

    Tersusun atas triskelion protein clathrin

    Multi subunit protein adaptin. Adaptin akan berikatan pada clathrin dan transmembran protein, transmembran reseptor, yang akan menagkap

    molekul cargo sehingga disebut Reseptor Cargo. Sedikitnya ada 4 jenis

    adaptin dan bersifat spesifik terhadap

  • Mekanisme terjadinya Budding, dibantu oleh:

    1.Reseptor

    2.Adaptin

    3.Clatrin

    4.Dynamin

    5.Dynamin complex protein (merusak membran dan atau merubah lipid

    membran

  • Clathrin coat akan dilepas dari budding, auxillin yang merupakan bagian dari vesicle akan mengaktifasi ATPase, HSP70 yang akan menghidrolisis

    clathrin.

    Mutasi dynamin tidak mampu membuat budding

  • Pengontrolan transport membran terjadi dengan teratur karena adanya spesifitias

    Protein SNARE dan target GTPases (Rabs).

  • Ikatan SNAREs bersifat

    Helix dan disosiasinya

    dibantu oleh NSF (ATPase)

    dan ATP

  • HIV menggunakan cara yang mirip dengan mekanisme docking dan integrasi

    membran plasma

  • Pertanyaan:

    Cara dan protein yang berperan dalam Pembentukan vesicle?

    Mekanisme dan protein yang terlibat dalam budding?

    Protein Pengawalan transport membran?

    Fungsi ATP dan GTP dalam transport membran?

    Kenapa transport membran bersifat spesifik dan teratur?

    sebutkan letak dan fungsi protein SNARE, Sar1 dan Rab?

  • ER: proses maturasi protein

    setelah disinteris oleh ribosom,

    penambahan gula pada protein

    Golgi:

    Penambahan dan

    modifikasi oligosakarida

    kepada protein

    Memproduksi karbohidrat

    dan lemak

  • Mekanisme pembetukan vesikel di ER

  • lysosom:

    - Acid hydrolase

    - Memerlukan ATP

    -