42
1. Divergence of a product: Given that is a scalar field and a vector field, show that div() = (grad) โ‹… + div grad() = ( ), โŠ— = , โŠ— + , โŠ— = โŠ— (grad ) + grad Now, div() = tr(grad()). Taking the trace of the above, we have: div() = โ‹… (grad ) + div 2. Show that grad( ยท ) = (grad ) T + (grad ) T ยท= is a scalar sum of components. grad( ยท ) = ( ), = , + , Now grad = , โŠ— swapping the bases, we have that, (grad ) T = , ( โŠ— ). Writing = , we have that, (grad ) T = , ( โŠ— ) = , = ,

Homework 3 Feb

Embed Size (px)

DESCRIPTION

Homework 3 and solutions for February.

Citation preview

Page 1: Homework 3 Feb

1. Divergence of a product: Given that ๐œ‘ is a scalar field and ๐ฏ a vector field, show that

div(๐œ‘๐ฏ) = (grad๐œ‘) โ‹… ๐ฏ + ๐œ‘ div ๐ฏ

grad(๐œ‘๐ฏ) = (๐œ‘๐‘ฃ๐‘–),๐‘— ๐ ๐‘– โŠ— ๐ ๐‘—

= ๐œ‘,๐‘— ๐‘ฃ๐‘–๐ ๐‘– โŠ— ๐ ๐‘— + ๐œ‘๐‘ฃ๐‘– ,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘—

= ๐ฏ โŠ— (grad ๐œ‘) + ๐œ‘ grad ๐ฏ

Now, div(๐œ‘๐ฏ) = tr(grad(๐œ‘๐ฏ)). Taking the trace of the above, we have:

div(๐œ‘๐ฏ) = ๐ฏ โ‹… (grad ๐œ‘) + ๐œ‘ div ๐ฏ

2. Show that grad(๐ฎ ยท ๐ฏ) = (grad ๐ฎ)T๐ฏ + (grad ๐ฏ)T๐ฎ

๐ฎ ยท ๐ฏ = ๐‘ข๐‘–๐‘ฃ๐‘– is a scalar sum of components.

grad(๐ฎ ยท ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘–),๐‘— ๐ ๐‘—

= ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘–๐ ๐‘— + ๐‘ข๐‘–๐‘ฃ๐‘– ,๐‘— ๐ ๐‘—

Now grad ๐ฎ = ๐‘ข๐‘– ,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘— swapping the bases, we have that,

(grad ๐ฎ)T = ๐‘ข๐‘– ,๐‘— (๐ ๐‘— โŠ— ๐ ๐‘–).

Writing ๐ฏ = ๐‘ฃ๐‘˜๐ ๐‘˜, we have that, (grad ๐ฎ)T๐ฏ = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘˜(๐ ๐‘— โŠ— ๐ ๐‘–)๐ ๐‘˜ =

๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘˜๐ ๐‘—๐›ฟ๐‘–๐‘˜ = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘–๐ ๐‘—

Page 2: Homework 3 Feb

It is easy to similarly show that ๐‘ข๐‘–๐‘ฃ๐‘– ,๐‘— ๐ ๐‘— = (grad ๐ฏ)T๐ฎ. Clearly,

grad(๐ฎ ยท ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘–),๐‘— ๐ ๐‘— = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘–๐ ๐‘— + ๐‘ข๐‘–๐‘ฃ๐‘– ,๐‘— ๐ ๐‘—

= (grad ๐ฎ)T๐ฏ + (grad ๐ฏ)T๐ฎ

As required.

3. Show that grad(๐ฎ ร— ๐ฏ) = (๐ฎ ร—)grad ๐ฏ โˆ’ (๐ฏ ร—)grad ๐ฎ

๐ฎ ร— ๐ฏ = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜๐ ๐‘–

Recall that the gradient of this vector is the tensor,

grad(๐ฎ ร— ๐ฏ) = (๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐ ๐‘– โŠ— ๐ ๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

= โˆ’๐œ–๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐ ๐‘– โŠ— ๐ ๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

= โˆ’ (๐ฏ ร—)grad ๐ฎ + (๐ฎ ร—)grad ๐ฏ

4. Show that div (๐ฎ ร— ๐ฏ) = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

We already have the expression for grad(๐ฎ ร— ๐ฏ) above; remember that

div (๐ฎ ร— ๐ฏ) = tr[grad(๐ฎ ร— ๐ฏ)]

= โˆ’๐œ–๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐ ๐‘– โ‹… ๐ ๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘™ ๐ ๐‘– โ‹… ๐ ๐‘™

Page 3: Homework 3 Feb

= โˆ’๐œ–๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐›ฟ๐‘–๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘™ ๐›ฟ๐‘–

๐‘™

= โˆ’๐œ–๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘– ๐‘ฃ๐‘˜ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘– = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

5. Given a scalar point function ๐œ™ and a vector field ๐ฏ, show that curl (๐œ™๐ฏ) =

๐œ™ curl ๐ฏ + (grad ๐œ™) ร— ๐ฏ.

curl (๐œ™๐ฏ) = ๐œ–๐‘–๐‘—๐‘˜(๐œ™๐‘ฃ๐‘˜),๐‘— ๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐‘ฃ๐‘˜ + ๐œ™๐‘ฃ๐‘˜ ,๐‘— )๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐‘ฃ๐‘˜๐ ๐‘– + ๐œ–๐‘–๐‘—๐‘˜๐œ™๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘–

= (โˆ‡๐œ™) ร— ๐ฏ + ๐œ™ curl ๐ฏ

6. Show that div (๐ฎ โŠ— ๐ฏ) = (div ๐ฏ)๐ฎ + (grad ๐ฎ)๐ฏ

๐ฎ โŠ— ๐ฏ is the tensor, ๐‘ข๐‘–๐‘ฃ๐‘—๐ ๐‘– โŠ— ๐ ๐‘—. The gradient of this is the third order tensor,

grad (๐ฎ โŠ— ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘—),๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— โŠ— ๐ ๐‘˜

And by divergence, we mean the contraction of the last basis vector:

div (๐ฎ โŠ— ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘—)๐‘˜

(๐ ๐‘– โŠ— ๐ ๐‘—)๐ ๐‘˜

= (๐‘ข๐‘–๐‘ฃ๐‘—)๐‘˜

๐ ๐‘–๐›ฟ๐‘—๐‘˜ = (๐‘ข๐‘–๐‘ฃ๐‘—)

๐‘—๐ ๐‘–

= ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘—๐ ๐‘– + ๐‘ข๐‘–๐‘ฃ๐‘— ,๐‘— ๐ ๐‘–

Page 4: Homework 3 Feb

= (grad ๐ฎ)๐ฏ + (div ๐ฏ)๐ฎ

7. For a scalar field ๐œ™ and a tensor field ๐“ show that grad (๐œ™๐“) = ๐œ™ grad ๐“ + ๐“ โŠ—

grad๐œ™. Also show that div (๐œ™๐“) = ๐œ™ div ๐“ + ๐“grad๐œ™

grad(๐œ™๐“) = (๐œ™๐‘‡๐‘–๐‘—),๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— โŠ— ๐ ๐‘˜

= (๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ )๐ ๐‘– โŠ— ๐ ๐‘— โŠ— ๐ ๐‘˜

= ๐“ โŠ— grad๐œ™ + ๐œ™grad ๐“

Furthermore, we can contract the last two bases and obtain,

div(๐œ™๐“) = (๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ )(๐ ๐‘– โŠ— ๐ ๐‘—)๐ ๐‘˜

= (๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ )๐ ๐‘–๐›ฟ๐‘—๐‘˜

= ๐‘‡๐‘–๐‘˜ ๐œ™,๐‘˜ ๐ ๐‘– + ๐œ™๐‘‡๐‘–๐‘˜ ,๐‘˜ ๐ ๐‘–

= ๐“grad๐œ™ + ๐œ™ div ๐“

8. For two arbitrary vectors, ๐ฎ and ๐ฏ, show that grad(๐ฎ ร— ๐ฏ) = (๐ฎ ร—)grad๐ฏ โˆ’

(๐ฏ ร—)grad๐ฎ

grad(๐ฎ ร— ๐ฏ) = (๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

Page 5: Homework 3 Feb

= (๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘™ )๐ ๐‘– โŠ— ๐ ๐‘™

= (๐‘ข๐‘— ,๐‘™ ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ + ๐‘ฃ๐‘˜,๐‘™ ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—)๐ ๐‘– โŠ— ๐ ๐‘™

= โˆ’(๐ฏ ร—)grad๐ฎ + (๐ฎ ร—)grad๐ฏ

9. For a vector field ๐ฎ, show that grad(๐ฎ ร—) is a third ranked tensor. Hence or

otherwise show that div(๐ฎ ร—) = โˆ’curl ๐ฎ.

The secondโ€“order tensor (๐ฎ ร—) is defined as ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐ ๐‘– โŠ— ๐ ๐‘˜. Taking the covariant

derivative with an independent base, we have

grad(๐ฎ ร—) = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘˜ โŠ— ๐ ๐‘™

This gives a third order tensor as we have seen. Contracting on the last two bases,

div(๐ฎ ร—) = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘˜ โ‹… ๐ ๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘–๐›ฟ๐‘˜๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘˜ ๐ ๐‘–

= โˆ’curl ๐ฎ

10. Show that div (๐œ™๐Ÿ) = grad ๐œ™

Note that ๐œ™๐Ÿ = (๐œ™๐‘”๐›ผ๐›ฝ)๐ ๐›ผ โŠ— ๐ ๐›ฝ. Also note that

Page 6: Homework 3 Feb

grad ๐œ™๐Ÿ = (๐œ™๐‘”๐›ผ๐›ฝ),๐‘– ๐ ๐›ผ โŠ— ๐ ๐›ฝ โŠ— ๐ ๐‘–

The divergence of this third order tensor is the contraction of the last two bases:

div (๐œ™๐Ÿ) = tr(grad ๐œ™๐Ÿ) = (๐œ™๐‘”๐›ผ๐›ฝ),๐‘– (๐ ๐›ผ โŠ— ๐ ๐›ฝ)๐ ๐‘– = (๐œ™๐‘”๐›ผ๐›ฝ),๐‘– ๐ ๐›ผ๐‘”๐›ฝ๐‘–

= ๐œ™,๐‘– ๐‘”๐›ผ๐›ฝ๐‘”๐›ฝ๐‘–๐ ๐›ผ

= ๐œ™,๐‘– ๐›ฟ๐›ผ๐‘– ๐ ๐›ผ = ๐œ™,๐‘– ๐ ๐‘– = grad ๐œ™

11. Show that curl (๐œ™๐Ÿ) = ( grad ๐œ™) ร—

Note that ๐œ™๐Ÿ = (๐œ™๐‘”๐›ผ๐›ฝ)๐ ๐›ผ โŠ— ๐ ๐›ฝ, and that curl ๐‘ป = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ so that,

curl (๐œ™๐Ÿ) = ๐œ–๐‘–๐‘—๐‘˜(๐œ™๐‘”๐›ผ๐‘˜),๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐‘”๐›ผ๐‘˜)๐ ๐‘– โŠ— ๐ ๐›ผ = ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘˜

= ( grad ๐œ™) ร—

12. Show that curl (๐ฏ ร—) = (div ๐ฏ)๐Ÿ โˆ’ grad ๐ฏ

(๐ฏ ร—) = ๐œ–๐›ผ๐›ฝ๐‘˜๐‘ฃ๐›ฝ ๐ ๐›ผ โŠ— ๐ ๐‘˜

curl ๐‘ป = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

so that

curl (๐ฏ ร—) = ๐œ–๐‘–๐‘—๐‘˜๐œ–๐›ผ๐›ฝ๐‘˜๐‘ฃ๐›ฝ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

Page 7: Homework 3 Feb

= (๐‘”๐‘–๐›ผ๐‘”๐‘—๐›ฝ โˆ’ ๐‘”๐‘–๐›ฝ๐‘”๐‘—๐›ผ) ๐‘ฃ๐›ฝ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐‘ฃ๐‘— ,๐‘— ๐ ๐›ผ โŠ— ๐ ๐›ผ โˆ’ ๐‘ฃ๐‘– ,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘—

= (div ๐ฏ)๐Ÿ โˆ’ grad ๐ฏ

13. Show that div (๐ฎ ร— ๐ฏ) = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

div (๐ฎ ร— ๐ฏ) = (๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘–

Noting that the tensor ๐œ–๐‘–๐‘—๐‘˜ behaves as a constant under a covariant

differentiation, we can write,

div (๐ฎ ร— ๐ฏ) = (๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘– ๐‘ฃ๐‘˜ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘–

= ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

14. Given a scalar point function ๐œ™ and a vector field ๐ฏ, show that curl (๐œ™๐ฏ) =

๐œ™ curl ๐ฏ + (โˆ‡๐œ™) ร— ๐ฏ.

curl (๐œ™๐ฏ) = ๐œ–๐‘–๐‘—๐‘˜(๐œ™๐‘ฃ๐‘˜),๐‘— ๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐‘ฃ๐‘˜ + ๐œ™๐‘ฃ๐‘˜ ,๐‘— )๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐‘ฃ๐‘˜๐ ๐‘– + ๐œ–๐‘–๐‘—๐‘˜๐œ™๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘–

Page 8: Homework 3 Feb

= (โˆ‡๐œ™) ร— ๐ฏ + ๐œ™ curl ๐ฏ

15. Show that curl (grad ๐œ™) = ๐จ

For any tensor ๐ฏ = ๐‘ฃ๐›ผ๐ ๐›ผ

curl ๐ฏ = ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ๐ ๐‘–

Let ๐ฏ = grad ๐œ™. Clearly, in this case, ๐‘ฃ๐‘˜ = ๐œ™,๐‘˜ so that ๐‘ฃ๐‘˜,๐‘— = ๐œ™,๐‘˜๐‘—. It therefore

follows that,

curl (grad ๐œ™) = ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘˜๐‘— ๐ ๐‘– = ๐ŸŽ.

The contraction of symmetric tensors with unsymmetric led to this conclusion.

Note that this presupposes that the order of differentiation in the scalar field is

immaterial. This will be true only if the scalar field is continuous โ€“ a proposition

we have assumed in the above.

16. Show that curl (grad ๐ฏ) = ๐ŸŽ

For any tensor ๐“ = T๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ

curl ๐“ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

Page 9: Homework 3 Feb

Let ๐“ = grad ๐ฏ. Clearly, in this case, T๐›ผ๐›ฝ = ๐‘ฃ๐›ผ,๐›ฝ so that ๐‘‡๐›ผ๐‘˜ ,๐‘— = ๐‘ฃ๐›ผ,๐‘˜๐‘— . It

therefore follows that,

curl (grad ๐ฏ) = ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐›ผ,๐‘˜๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ = ๐ŸŽ.

The contraction of symmetric tensors with unsymmetric led to this conclusion.

Note that this presupposes that the order of differentiation in the vector field is

immaterial. This will be true only if the vector field is continuous โ€“ a proposition

we have assumed in the above.

17. Show that curl (grad ๐“) = ๐ŸŽ

For a third order tensor ๐šต = ฮž๐›ผ๐›ฝ๐›พ๐ ๐›ผ โŠ— ๐ ๐›ฝ โŠ— ๐ ๐›พ

curl ๐šต = ๐œ–๐‘–๐‘—๐‘˜ฮž๐›ผ๐›ฝ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ โŠ— ๐ ๐›ฝ

Let ๐šต = grad ๐“. Clearly, in this case, ฮž๐›ผ๐›ฝ๐›พ = ๐‘‡๐›ผ๐›ฝ ,๐›พ so that ฮž๐›ผ๐›ฝ๐‘˜ ,๐‘— = ๐‘‡๐›ผ๐›ฝ ,๐‘˜๐‘— . It

therefore follows that,

curl (grad ๐“) = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐›ฝ ,๐‘˜๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ โŠ— ๐ ๐›ฝ = ๐ŸŽ.

The contraction of symmetric tensors with unsymmetric led to this conclusion.

Note that this presupposes that the order of differentiation in the tensor field ๐“

Page 10: Homework 3 Feb

is immaterial. This will be true only if the tensor field is continuous โ€“ a

proposition we have assumed in the above.

18. Show that curl (grad ๐ฏ)T = grad(curl ๐ฏ)

From previous derivation, we can see that, curl ๐“ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ. Clearly,

curl ๐“T = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐‘˜๐›ผ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

so that curl (grad ๐ฏ)T = ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐›ผ๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ. But curl ๐ฏ = ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ๐ ๐‘–. The

gradient of this is,

grad(curl ๐ฏ) = (๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ),๐›ผ ๐ ๐‘– โŠ— ๐ ๐›ผ = ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘—๐›ผ ๐ ๐‘– โŠ— ๐ ๐›ผ = curl (grad ๐ฏ)T

19. Given that ๐œ™ and ๐œƒare scalar fields, show that div (grad ๐œ™ ร— grad ๐œƒ) = 0

grad ๐œ™ ร— grad ฮธ = ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜ ๐ ๐‘–

The gradient of this vector is the tensor,

grad(grad ๐œ™ ร— grad ๐œƒ) = (๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜ ),๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

The trace of the above result is the divergence we are seeking:

div (grad ๐œ™ ร— grad ฮธ) = tr[grad(grad ๐œ™ ร— grad ๐œƒ)]

Page 11: Homework 3 Feb

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐ ๐‘– โ‹… ๐ ๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐ ๐‘– โ‹… ๐ ๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐›ฟ๐‘–๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐›ฟ๐‘–

๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘– ๐œƒ,๐‘˜+ ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘– = 0

Each term vanishing on account of the contraction of a symmetric tensor with an

antisymmetric.

20. Show that curl curl ๐ฏ = grad(div ๐ฏ) โˆ’ grad2๐ฏ

Let ๐ฐ = curl ๐ฏ โ‰ก ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ๐ ๐‘–. But curl ๐ฐ โ‰ก ๐œ–๐›ผ๐›ฝ๐›พ๐‘ค๐›พ ,๐›ฝ ๐ ๐›ผ. Upon inspection, we

find that ๐‘ค๐›พ = ๐‘”๐›พ๐‘–๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— so that

curl ๐ฐ โ‰ก ๐œ–๐›ผ๐›ฝ๐›พ(๐‘”๐›พ๐‘–๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ),๐›ฝ ๐ ๐›ผ = ๐‘”๐›พ๐‘–๐œ–๐›ผ๐›ฝ๐›พ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘—๐›ฝ ๐ ๐›ผ

Now, it can be shown (see below) that ๐‘”๐›พ๐‘–๐œ–๐›ผ๐›ฝ๐›พ๐œ–๐‘–๐‘—๐‘˜ = ๐‘”๐›ผ๐‘—๐‘”๐›ฝ๐‘˜ โˆ’ ๐‘”๐›ผ๐‘˜๐‘”๐›ฝ๐‘— so that,

curl ๐ฐ = (๐‘”๐›ผ๐‘—๐‘”๐›ฝ๐‘˜ โˆ’ ๐‘”๐›ผ๐‘˜๐‘”๐›ฝ๐‘—)๐‘ฃ๐‘˜,๐‘—๐›ฝ ๐ ๐›ผ

= ๐‘ฃ๐›ฝ ,๐‘—๐›ฝ ๐ ๐‘— โˆ’ ๐‘ฃ๐›ผ ,๐‘—๐‘— ๐ ๐›ผ = grad(div ๐ฏ) โˆ’ grad2๐ฏ

21. Show that ๐‘”๐›พ๐‘–๐œ–๐›ผ๐›ฝ๐›พ๐œ–๐‘–๐‘—๐‘˜ = ๐‘”๐›ผ๐‘—๐‘”๐›ฝ๐‘˜ โˆ’ ๐‘”๐›ผ๐‘˜๐‘”๐›ฝ๐‘—

Note that

Page 12: Homework 3 Feb

๐‘”๐›พ๐‘–๐œ–๐›ผ๐›ฝ๐›พ๐œ–๐‘–๐‘—๐‘˜ = ๐‘”๐›พ๐‘– |

๐‘”๐‘–๐›ผ ๐‘”๐‘–๐›ฝ ๐‘”๐‘–๐›พ

๐‘”๐‘—๐›ผ ๐‘”๐‘—๐›ฝ ๐‘”๐‘—๐›พ

๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐›ฝ ๐‘”๐‘˜๐›พ

|

= |

๐‘”๐›พ๐‘–๐‘”๐‘–๐›ผ ๐‘”๐›พ๐‘–๐‘”๐‘–๐›ฝ ๐‘”๐›พ๐‘–๐‘”๐‘–๐›พ

๐‘”๐‘—๐›ผ ๐‘”๐‘—๐›ฝ ๐‘”๐‘—๐›พ

๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐›ฝ ๐‘”๐‘˜๐›พ

| = |

๐›ฟ๐›พ๐›ผ ๐›ฟ๐›พ

๐›ฝ๐›ฟ๐›พ

๐›พ

๐‘”๐‘—๐›ผ ๐‘”๐‘—๐›ฝ ๐‘”๐‘—๐›พ

๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐›ฝ ๐‘”๐‘˜๐›พ

|

= ๐›ฟ๐›พ๐›ผ |

๐‘”๐‘—๐›ฝ ๐‘”๐‘—๐›พ

๐‘”๐‘˜๐›ฝ ๐‘”๐‘˜๐›พ| โˆ’ ๐›ฟ๐›พ

๐›ฝ|๐‘”๐‘—๐›ผ ๐‘”๐‘—๐›พ

๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐›พ| + ๐›ฟ๐›พ๐›พ

|๐‘”๐‘—๐›ผ ๐‘”๐‘—๐›ฝ

๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐›ฝ|

= |๐‘”๐‘—๐›ฝ ๐‘”๐‘—๐›ผ

๐‘”๐‘˜๐›ฝ ๐‘”๐‘˜๐›ผ| โˆ’ |

๐‘”๐‘—๐›ผ ๐‘”๐‘—๐›ฝ

๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐›ฝ| + 3 |

๐‘”๐‘—๐›ผ ๐‘”๐‘—๐›ฝ

๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐›ฝ|

= |๐‘”๐‘—๐›ผ ๐‘”๐‘—๐›ฝ

๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐›ฝ| = ๐‘”๐›ผ๐‘—๐‘”๐›ฝ๐‘˜ โˆ’ ๐‘”๐›ผ๐‘˜๐‘”๐›ฝ๐‘—

22. Given that ๐œ‘(๐‘ก) = |๐€(๐‘ก)|, Show that ๏ฟฝฬ‡๏ฟฝ(๐‘ก) =๐€

|๐€(๐‘ก)|: ๏ฟฝฬ‡๏ฟฝ

๐œ‘2 โ‰ก ๐€: ๐€

Page 13: Homework 3 Feb

Now,

๐‘‘

๐‘‘๐‘ก(๐œ‘2) = 2๐œ‘

๐‘‘๐œ‘

๐‘‘๐‘ก=

๐‘‘๐€

๐‘‘๐‘ก: ๐€ + ๐€:

๐‘‘๐€

๐‘‘๐‘ก= 2๐€:

๐‘‘๐€

๐‘‘๐‘ก

as inner product is commutative. We can therefore write that

๐‘‘๐œ‘

๐‘‘๐‘ก=

๐€

๐œ‘:๐‘‘๐€

๐‘‘๐‘ก=

๐€

|๐€(๐‘ก)|: ๏ฟฝฬ‡๏ฟฝ

as required.

23. Given a tensor field ๐“, obtain the vector ๐ฐ โ‰ก ๐“T๐’— and show that its divergence

is ๐“: (โˆ‡๐ฏ) + ๐ฏ โ‹… div ๐“

The divergence of ๐’˜ is the scalar sum , (๐‘ป๐’‹๐’Š๐’—๐’‹),๐’Š. Expanding the product covariant

derivative we obtain,

div (๐“T๐ฏ) = (๐‘‡๐‘—๐‘–๐‘ฃ๐‘—),๐’Š = ๐‘‡๐‘—๐‘– ,๐‘– ๐‘ฃ๐‘— + ๐‘‡๐‘—๐‘–๐‘ฃ๐‘— ,๐‘–

= (div ๐“) โ‹… ๐ฏ + tr(๐“Tgrad ๐ฏ)

= (div ๐“) โ‹… ๐ฏ + ๐“: (grad ๐ฏ)

Recall that scalar product of two vectors is commutative so that

div (๐“T๐ฏ) = ๐“: (grad ๐ฏ) + ๐ฏ โ‹… div ๐“

Page 14: Homework 3 Feb

24. For a second-order tensor ๐“ define curl ๐“ โ‰ก ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ show that for

any constant vector ๐’‚, (curl ๐“) ๐’‚ = curl (๐“T๐’‚)

Express vector ๐’‚ in the invariant form with covariant components as ๐’‚ = ๐‘Ž๐›ฝ๐ ๐›ฝ.

It follows that

(curl ๐“) ๐’‚ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ โ‹… (๐’‚)

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐‘Ž๐›ฝ๐ ๐‘– โŠ— ๐ ๐›ผ โ‹… ๐ ๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐‘Ž๐›ฝ๐ ๐‘–๐›ฟ๐›ฝ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜(๐‘‡๐›ผ๐‘˜),๐‘— ๐ ๐‘–๐‘Ž๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜(๐‘‡๐›ผ๐‘˜๐‘Ž๐›ผ),๐‘— ๐ ๐‘–

The last equality resulting from the fact that vector ๐’‚ is a constant vector. Clearly,

(curl ๐“) ๐’‚ = curl (๐“T๐’‚)

25. For any two vectors ๐ฎ and ๐ฏ, show that curl (๐ฎ โŠ— ๐ฏ) = [(grad ๐ฎ)๐ฏ ร—]๐‘‡ +

(curl ๐ฏ) โŠ— ๐ฎ where ๐ฏ ร— is the skew tensor ๐œ–๐‘–๐‘˜๐‘—๐‘ฃ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘—.

Recall that the curl of a tensor ๐‘ป is defined by curl ๐‘ป โ‰ก ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ.

Clearly therefore,

Page 15: Homework 3 Feb

curl (๐’– โŠ— ๐’—) = ๐œ–๐‘–๐‘—๐‘˜(๐‘ข๐›ผ๐‘ฃ๐‘˜),๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ = ๐œ–๐‘–๐‘—๐‘˜(๐‘ข๐›ผ,๐‘— ๐‘ฃ๐‘˜ + ๐‘ข๐›ผ๐‘ฃ๐‘˜,๐‘— ) ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐›ผ,๐‘— ๐‘ฃ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐›ผ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐›ผ๐‘ฃ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= (๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ๐ ๐‘–) โŠ— (๐‘ข๐›ผ ,๐‘— ๐ ๐›ผ) + (๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ๐ ๐‘–) โŠ— (๐‘ข๐›ผ๐ ๐›ผ)

= (๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘—)(๐‘ข๐›ผ ,๐›ฝ ๐ ๐›ฝ โŠ— ๐ ๐›ผ) + (๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘–) โŠ— (๐‘ข๐›ผ๐ ๐›ผ)

= โˆ’(๐ฏ ร—)(grad ๐ฎ)๐‘ป + (curl ๐ฏ) โŠ— ๐ฎ = [(grad ๐ฎ)๐ฏ ร—]๐‘ป + (curl ๐ฏ) โŠ— ๐ฎ

upon noting that the vector cross is a skew tensor.

26. Show that curl (๐ฎ ร— ๐ฏ) = div(๐ฎ โŠ— ๐ฏ โˆ’ ๐ฏ โŠ— ๐ฎ)

The vector ๐ฐ โ‰ก ๐ฎ ร— ๐ฏ = ๐‘ค๐‘˜๐ ๐‘˜ = ๐œ–๐‘˜๐›ผ๐›ฝ๐‘ข๐›ผ๐‘ฃ๐›ฝ๐ ๐‘˜ and curl ๐ฐ = ๐œ–๐‘–๐‘—๐‘˜๐‘ค๐‘˜ ,๐‘— ๐ ๐‘–.

Therefore,

curl (๐ฎ ร— ๐ฏ) = ๐œ–๐‘–๐‘—๐‘˜๐‘ค๐‘˜ ,๐‘— ๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘˜๐›ผ๐›ฝ(๐‘ข๐›ผ๐‘ฃ๐›ฝ),๐‘— ๐ ๐‘–

= (๐›ฟ๐›ผ๐‘– ๐›ฟ๐›ฝ

๐‘—โˆ’ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐›ผ๐‘—) (๐‘ข๐›ผ๐‘ฃ๐›ฝ),๐‘— ๐ ๐‘–

= (๐›ฟ๐›ผ๐‘– ๐›ฟ๐›ฝ

๐‘—โˆ’ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐›ผ๐‘—) (๐‘ข๐›ผ ,๐‘— ๐‘ฃ๐›ฝ + ๐‘ข๐›ผ๐‘ฃ๐›ฝ ,๐‘— )๐ ๐‘–

= [๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘— + ๐‘ข๐‘–๐‘ฃ๐‘— ,๐‘—โˆ’ (๐‘ข๐‘— ,๐‘— ๐‘ฃ๐‘– + ๐‘ข๐‘—๐‘ฃ๐‘– ,๐‘— )]๐ ๐‘–

= [(๐‘ข๐‘–๐‘ฃ๐‘—),๐‘—โˆ’ (๐‘ข๐‘—๐‘ฃ๐‘–),๐‘— ]๐ ๐‘–

Page 16: Homework 3 Feb

= div(๐ฎ โŠ— ๐ฏ โˆ’ ๐ฏ โŠ— ๐ฎ)

since div(๐ฎ โŠ— ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘—),๐›ผ (๐ ๐‘– โŠ— ๐ ๐‘—)๐ ๐›ผ = (๐‘ข๐‘–๐‘ฃ๐‘—),๐‘— ๐ ๐‘–.

27. Given a scalar point function ๐œ™ and a second-order tensor field ๐“, show that

curl (๐œ™๐“) = ๐œ™ curl ๐“ + ((โˆ‡๐œ™) ร—)๐“T where [(โˆ‡๐œ™) ร—] is the skew tensor

๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘˜

curl (๐œ™๐‘ป) โ‰ก ๐œ–๐‘–๐‘—๐‘˜(๐œ™๐‘‡๐›ผ๐‘˜),๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐‘‡๐›ผ๐‘˜ + ๐œ™๐‘‡๐›ผ๐‘˜ ,๐‘— ) ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐‘‡๐›ผ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐›ผ + ๐œ™๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= (๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘˜) (๐‘‡๐›ผ๐›ฝ๐ ๐›ฝ โŠ— ๐ ๐›ผ) + ๐œ™๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ™ curl ๐“ + ((โˆ‡๐œ™) ร—)๐“T

28. For a second-order tensor field ๐‘ป, show that div(curl ๐“) = curl(div ๐“T)

Define the second order tensor ๐‘† as

curl ๐“ โ‰ก ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ = ๐‘†.๐›ผ๐‘– ๐ ๐‘– โŠ— ๐ ๐›ผ

The gradient of ๐‘บ is ๐‘†.๐›ผ๐‘– ,๐›ฝ ๐ ๐‘– โŠ— ๐ ๐›ผ โŠ— ๐ ๐›ฝ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘—๐›ฝ ๐ ๐‘– โŠ— ๐ ๐›ผ โŠ— ๐ ๐›ฝ

Clearly,

Page 17: Homework 3 Feb

div(curl ๐‘ป) = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘—๐›ฝ ๐ ๐‘– โŠ— ๐ ๐›ผ โ‹… ๐ ๐›ฝ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘—๐›ฝ ๐ ๐‘– ๐‘”๐›ผ๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜ ,๐‘—๐›ฝ ๐ ๐‘– = curl(div ๐“T)

29. Show that if ๐‹ defined in the space spanned by orthogonal coordinates ๐‘ฅ๐‘–, then

โˆ‡2(๐‘ฅ๐‘–๐œ‘) = 2๐œ•๐œ‘

๐œ•๐‘ฅ๐‘– + ๐‘ฅ๐‘–โˆ‡2๐œ‘ .

By definition, โˆ‡2(๐‘ฅ๐‘–๐œ‘) = ๐‘”๐‘—๐‘˜(๐‘ฅ๐‘–๐œ‘),๐‘—๐‘˜

. Expanding, we have

๐‘”๐‘—๐‘˜(๐‘ฅ๐‘–๐œ‘),๐‘—๐‘˜

= ๐‘”๐‘—๐‘˜(๐‘ฅ๐‘–,๐‘—๐œ‘ + ๐‘ฅ๐‘–๐œ‘,๐‘—)

,๐‘˜= ๐‘”๐‘—๐‘˜(๐›ฟ๐‘—

๐‘–๐œ‘ + ๐‘ฅ๐‘–๐œ‘,๐‘—),๐‘˜

= ๐‘”๐‘—๐‘˜(๐›ฟ๐‘—๐‘–๐œ‘,๐‘˜ + ๐‘ฅ๐‘–

,๐‘˜๐œ‘,๐‘— + ๐‘ฅ๐‘–๐œ‘,๐‘—๐‘˜)

= ๐‘”๐‘—๐‘˜(๐›ฟ๐‘—๐‘–๐œ‘,๐‘˜ + ๐›ฟ๐‘˜

๐‘– ๐œ‘,๐‘— + ๐‘ฅ๐‘–๐œ‘,๐‘—๐‘˜)

= ๐‘”๐‘–๐‘˜๐œ‘,๐‘˜ + ๐‘”๐‘–๐‘—๐œ‘,๐‘— + ๐‘ฅ๐‘–๐‘”๐‘—๐‘˜๐œ‘,๐‘—๐‘˜

When the coordinates are orthogonal, this becomes,

2

(โ„Ž๐‘–)2

๐œ•ฮฆ

๐œ•๐‘ฅ๐‘–+ ๐‘ฅ๐‘–โˆ‡2ฮฆ

where we have suspended the summation rule and โ„Ž๐‘– is the square root of the

appropriate metric tensor component.

Page 18: Homework 3 Feb

30. In Cartesian coordinates, If the volume ๐‘‰ is enclosed by the surface ๐‘†, the

position vector ๐’“ = ๐‘ฅ๐‘–๐ ๐‘– and ๐’ is the external unit normal to each surface element,

show that 1

6โˆซ โˆ‡(๐’“ โ‹… ๐’“) โ‹… ๐’๐‘‘๐‘†

๐‘† equals the volume contained in ๐‘‰.

๐’“ โ‹… ๐’“ = ๐‘ฅ๐‘–๐‘ฅ๐‘—๐ ๐‘– โ‹… ๐ ๐‘— = ๐‘ฅ๐‘–๐‘ฅ๐‘—๐‘”๐‘–๐‘—

By the Divergence Theorem,

โˆซโˆ‡(๐’“ โ‹… ๐’“) โ‹… ๐’๐‘‘๐‘†๐‘†

= โˆซ โˆ‡ โ‹… [โˆ‡(๐’“ โ‹… ๐’“)]๐‘‘๐‘‰๐‘‰

= โˆซ ๐œ•๐‘™[๐œ•๐‘˜(๐‘ฅ๐‘–๐‘ฅ๐‘—๐‘”๐‘–๐‘—)] ๐ ๐‘™ โ‹… ๐ ๐‘˜ ๐‘‘๐‘‰๐‘‰

= โˆซ ๐œ•๐‘™[๐‘”๐‘–๐‘—(๐‘ฅ๐‘– ,๐‘˜ ๐‘ฅ๐‘— + ๐‘ฅ๐‘–๐‘ฅ๐‘— ,๐‘˜ )] ๐ ๐‘™ โ‹… ๐ ๐‘˜ ๐‘‘๐‘‰๐‘‰

= โˆซ ๐‘”๐‘–๐‘—๐‘”๐‘™๐‘˜(๐›ฟ๐‘˜๐‘– ๐‘ฅ๐‘— + ๐‘ฅ๐‘–๐›ฟ๐‘˜

๐‘—),๐‘™ ๐‘‘๐‘‰

๐‘‰

= โˆซ 2๐‘”๐‘–๐‘˜๐‘”๐‘™๐‘˜๐‘ฅ๐‘– ,๐‘™ ๐‘‘๐‘‰๐‘‰

= โˆซ 2๐›ฟ๐‘–๐‘™๐›ฟ๐‘™

๐‘– ๐‘‘๐‘‰๐‘‰

= 6 โˆซ ๐‘‘๐‘‰๐‘‰

Page 19: Homework 3 Feb

31. For any Euclidean coordinate system, show that div ๐ฎ ร— ๐ฏ = ๐ฏ curl ๐ฎ โˆ’

๐ฎ curl ๐ฏ

Given the contravariant vector ๐‘ข๐‘– and ๐‘ฃ๐‘– with their associated vectors ๐‘ข๐‘– and ๐‘ฃ๐‘–,

the contravariant component of the above cross product is ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ .The

required divergence is simply the contraction of the covariant ๐‘ฅ๐‘– derivative of this

quantity:

(๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—,๐‘–๐‘ฃ๐‘˜ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘–

where we have treated the tensor ํœ€๐‘–๐‘—๐‘˜ as a constant under the covariant

derivative.

Cyclically rearranging the RHS we obtain,

(๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘–

= ๐‘ฃ๐‘˜๐œ–๐‘˜๐‘–๐‘—๐‘ข๐‘—,๐‘– + ๐‘ข๐‘—๐œ–๐‘—๐‘˜๐‘–๐‘ฃ๐‘˜,๐‘– = ๐‘ฃ๐‘˜๐œ–๐‘˜๐‘–๐‘—๐‘ข๐‘—,๐‘– + ๐‘ข๐‘—๐œ–๐‘—๐‘–๐‘˜๐‘ฃ๐‘˜,๐‘–

where we have used the anti-symmetric property of the tensor ๐œ–๐‘–๐‘—๐‘˜. The last

expression shows clearly that

div ๐ฎ ร— ๐ฏ = ๐ฏ curl ๐ฎ โˆ’ ๐ฎ curl ๐ฏ

as required.

Page 20: Homework 3 Feb

32. For a general tensor field ๐‘ป show that, curl(curl ๐‘ป) = [โˆ‡2(tr ๐‘ป) โˆ’

div(div ๐‘ป)]๐‘ฐ + grad(div ๐‘ป) + (grad(div ๐‘ป))T

โˆ’ grad(grad (tr๐‘ป)) โˆ’ โˆ‡2๐‘ปT

curl ๐‘ป = ๐๐›ผ๐‘ ๐‘ก๐‘‡๐›ฝ๐‘ก ,๐‘  ๐ ๐›ผ โŠ— ๐ ๐›ฝ

= ๐‘† .๐›ฝ๐›ผ ๐ ๐›ผ โŠ— ๐ ๐›ฝ

curl ๐‘บ = ๐œ–๐‘–๐‘—๐‘˜๐‘† .๐‘˜๐›ผ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

so that

curl ๐‘บ = curl(curl ๐‘ป) = ๐œ–๐‘–๐‘—๐‘˜๐œ–๐›ผ๐‘ ๐‘ก๐‘‡๐‘˜๐‘ก ,๐‘ ๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= |

๐‘”๐‘–๐›ผ ๐‘”๐‘–๐‘  ๐‘”๐‘–๐‘ก

๐‘”๐‘—๐›ผ ๐‘”๐‘—๐‘  ๐‘”๐‘—๐‘ก

๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐‘  ๐‘”๐‘˜๐‘ก

| ๐‘‡๐‘˜๐‘ก ,๐‘ ๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= [๐‘”๐‘–๐›ผ(๐‘”๐‘—๐‘ ๐‘”๐‘˜๐‘ก โˆ’ ๐‘”๐‘—๐‘ก๐‘”๐‘˜๐‘ ) + ๐‘”๐‘–๐‘ (๐‘”๐‘—๐‘ก๐‘”๐‘˜๐›ผ โˆ’ ๐‘”๐‘—๐›ผ๐‘”๐‘˜๐‘ก)

+๐‘”๐‘–๐‘ก(๐‘”๐‘—๐›ผ๐‘”๐‘˜๐‘  โˆ’ ๐‘”๐‘—๐‘ ๐‘”๐‘˜๐›ผ)] ๐‘‡๐‘˜๐‘ก ,๐‘ ๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= [๐‘”๐‘—๐‘ ๐‘‡ .๐‘ก๐‘ก ,๐‘ ๐‘—โˆ’ ๐‘‡ ..

๐‘ ๐‘— ,๐‘ ๐‘— ](๐ ๐›ผ โŠ— ๐ ๐›ผ) + [๐‘‡ ..๐›ผ๐‘— ,๐‘ ๐‘—โˆ’ ๐‘”๐‘—๐›ผ๐‘‡ .๐‘ก

๐‘ก ,๐‘ ๐‘— ](๐ ๐‘  โŠ— ๐ ๐›ผ)

+ [๐‘”๐‘—๐›ผ๐‘‡ .๐‘ก๐‘ .,๐‘ ๐‘—โˆ’ ๐‘”๐‘—๐‘ ๐‘‡ .๐‘ก

๐›ผ.,๐‘ ๐‘— ](๐ ๐‘ก โŠ— ๐ ๐›ผ)

Page 21: Homework 3 Feb

= [โˆ‡2(tr ๐‘ป) โˆ’ div(div ๐‘ป)]๐‘ฐ + (grad(div ๐‘ป))T

โˆ’ grad(grad (tr๐“))

+ (grad(div ๐“)) โˆ’ โˆ‡2๐“T

33. When ๐“ is symmetric, show that tr(curl ๐“) vanishes.

curl ๐“ = ๐๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ฝ

tr(curl ๐“) = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜ ,๐‘— ๐ ๐‘– โ‹… ๐ ๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜ ,๐‘— ๐›ฟ๐‘–๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐‘–๐‘˜ ,๐‘—

which obviously vanishes on account of the symmetry and antisymmetry in ๐‘– and

๐‘˜. In this case,

curl(curl ๐“)

= [โˆ‡2(tr ๐“) โˆ’ div(div ๐“)]๐Ÿ โˆ’ grad(grad (tr๐‘ป)) + 2(grad(div ๐‘ป))

โˆ’ โˆ‡2๐“

as (grad(div ๐“))T

= grad(div ๐“) if the order of differentiation is immaterial and

๐“ is symmetric.

Page 22: Homework 3 Feb

34. For a scalar function ๐›ท and a vector ๐’—๐’Š show that the divergence of the vector

๐’—๐’Š๐šฝ is equal to, ๐ฏ โ‹… ๐›๐›ท + ๐›ท ๐‘‘๐‘–๐‘ฃ ๐ฏ

(๐‘ฃ๐‘–ฮฆ),๐‘–

= ฮฆ๐‘ฃ๐‘–,๐‘– + ๐‘ฃ๐‘–ฮฆ,i

Hence the result.

35. Show that curl ๐ฎ ร— ๐ฏ = (๐ฏ โˆ™ ๐›๐ฎ) + (๐ฎ โ‹… div ๐ฏ) โˆ’ (๐ฏ โ‹… div ๐ฎ) โˆ’ (๐ฎ โˆ™ ๐› ๐ฏ)

Taking the associated (covariant) vector of the expression for the cross product in

the last example, it is straightforward to see that the LHS in indicial notation is,

๐œ–๐‘™๐‘š๐‘–(๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘š

Expanding in the usual way, noting the relation between the alternating tensors

and the Kronecker deltas,

๐œ–๐‘™๐‘š๐‘–(ํœ€๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘š

= ๐›ฟ๐‘—๐‘˜๐‘–๐‘™๐‘š๐‘–(๐‘ข๐‘—

,๐‘š๐‘ฃ๐‘˜ โˆ’ ๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘š)

= ๐›ฟ๐‘—๐‘˜๐‘™๐‘š(๐‘ข๐‘—

,๐‘š๐‘ฃ๐‘˜ โˆ’ ๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘š) = |

๐›ฟ๐‘—๐‘™ ๐›ฟ๐‘—

๐‘š

๐›ฟ๐‘˜๐‘™ ๐›ฟ๐‘˜

๐‘š| (๐‘ข๐‘—

,๐‘š๐‘ฃ๐‘˜ โˆ’ ๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘š)

= (๐›ฟ๐‘—๐‘™๐›ฟ๐‘˜

๐‘š โˆ’ ๐›ฟ๐‘˜๐‘™ ๐›ฟ๐‘—

๐‘š)(๐‘ข๐‘—,๐‘š๐‘ฃ๐‘˜ โˆ’ ๐‘ข๐‘—๐‘ฃ๐‘˜

,๐‘š)

= ๐›ฟ๐‘—๐‘™๐›ฟ๐‘˜

๐‘š๐‘ข๐‘—,๐‘š๐‘ฃ๐‘˜ โˆ’ ๐›ฟ๐‘—

๐‘™๐›ฟ๐‘˜๐‘š๐‘ข๐‘—๐‘ฃ๐‘˜

,๐‘š + ๐›ฟ๐‘˜๐‘™ ๐›ฟ๐‘—

๐‘š๐‘ข๐‘—,๐‘š๐‘ฃ๐‘˜ โˆ’ ๐›ฟ๐‘˜

๐‘™ ๐›ฟ๐‘—๐‘š๐‘ข๐‘—๐‘ฃ๐‘˜

,๐‘š

Page 23: Homework 3 Feb

= ๐‘ข๐‘™,๐‘š๐‘ฃ๐‘š โˆ’ ๐‘ข๐‘š

,๐‘š๐‘ฃ๐‘™ + ๐‘ข๐‘™๐‘ฃ๐‘š,๐‘š โˆ’ ๐‘ข๐‘š๐‘ฃ๐‘™

,๐‘š

Which is the result we seek in indicial notation.

36. . In Cartesian coordinates let ๐‘ฅ denote the magnitude of the position vector ๐ซ =

๐‘ฅ๐‘–๐ž๐‘–. Show that (a) ๐‘ฅ,๐’‹ =๐’™๐’‹

๐’™, (b) ๐‘ฅ,๐’Š๐’‹ =

๐Ÿ

๐’™๐›ฟ๐’Š๐’‹ โˆ’

๐’™๐’Š๐’™๐’‹

(๐’™)๐Ÿ‘, (c) ๐‘ฅ,๐’Š๐’Š =๐Ÿ

๐’™, (d) If ๐‘ผ =

๐Ÿ

๐’™, then ๐‘ผ,๐’Š๐’‹ =

โˆ’๐œน๐’Š๐’‹

๐’™๐Ÿ‘ +๐Ÿ‘๐’™๐’Š๐’™๐’‹

๐’™๐Ÿ“ ๐‘ผ,๐’Š๐’Š = ๐ŸŽ and div (๐ซ

๐‘ฅ) =

2

๐‘ฅ.

(๐‘Ž) ๐‘ฅ = โˆš๐‘ฅ๐‘–๐‘ฅ๐‘–

๐‘ฅ,๐‘— =๐œ•โˆš๐‘ฅ๐‘–๐‘ฅ๐‘–

๐œ•๐‘ฅ๐‘—=

๐œ•โˆš๐‘ฅ๐‘–๐‘ฅ๐‘–

๐œ•(๐‘ฅ๐‘–๐‘ฅ๐‘–)ร—

๐œ•(๐‘ฅ๐‘–๐‘ฅ๐‘–)

๐œ•๐‘ฅ๐‘—=

1

2โˆš๐‘ฅ๐‘–๐‘ฅ๐‘–

[๐‘ฅ๐‘–๐›ฟ๐‘–๐‘— + ๐‘ฅ๐‘–๐›ฟ๐‘–๐‘—] =๐‘ฅ๐‘—

๐‘ฅ.

(๐‘) ๐‘ฅ,๐‘–๐‘— =๐œ•

๐œ•๐‘ฅ๐‘—(

๐œ•โˆš๐‘ฅ๐‘–๐‘ฅ๐‘–

๐œ•๐‘ฅ๐‘–) =

๐œ•

๐œ•๐‘ฅ๐‘—(

๐‘ฅ๐‘–

๐‘ฅ) =

๐‘ฅ๐œ•๐‘ฅ๐‘–

๐œ•๐‘ฅ๐‘—โˆ’ ๐‘ฅ๐‘–

๐œ•๐‘ฅ๐œ•๐‘ฅ๐‘—

(๐‘ฅ)2=

๐‘ฅ๐›ฟ๐‘–๐‘— โˆ’๐‘ฅ๐‘–๐‘ฅ๐‘—

๐‘ฅ(๐‘ฅ)2

=1

๐‘ฅ๐›ฟ๐‘–๐‘— โˆ’

๐‘ฅ๐‘–๐‘ฅ๐‘—

(๐‘ฅ)3

(๐‘) ๐‘ฅ,๐‘–๐‘– =1

๐‘ฅ๐›ฟ๐‘–๐‘– โˆ’

๐‘ฅ๐‘–๐‘ฅ๐‘–

(๐‘ฅ)3=

3

๐‘ฅโˆ’

(๐‘ฅ)2

(๐‘ฅ)3=

2

๐‘ฅ.

Page 24: Homework 3 Feb

(๐‘‘) ๐‘ˆ =1

๐‘ฅ so that

๐‘ˆ,๐‘— =๐œ•

1๐‘ฅ

๐œ•๐‘ฅ๐‘—=

๐œ•1๐‘ฅ

๐œ•๐‘ฅร—

๐œ•๐‘ฅ

๐œ•๐‘ฅ๐‘—= โˆ’

1

๐‘ฅ2

1

๐‘ฅ๐‘ฅ๐‘— = โˆ’

๐‘ฅ๐‘—

๐‘ฅ3

Consequently,

๐‘ˆ,๐‘–๐‘— =๐œ•

๐œ•๐‘ฅ๐‘—

(๐‘ˆ,๐‘– ) = โˆ’๐œ•

๐œ•๐‘ฅ๐‘—(

๐‘ฅ๐‘–

๐‘ฅ3) =

๐‘ฅ3 (๐œ•

๐œ•๐‘ฅ๐‘—(โˆ’๐‘ฅ2)) + ๐‘ฅ๐‘–

๐œ•๐œ•๐‘ฅ๐‘—

(๐‘ฅ3)

๐‘ฅ6

=

๐‘ฅ3(โˆ’๐›ฟ๐‘–๐‘—) + ๐‘ฅ๐‘– (๐œ•(๐‘ฅ3)

๐œ•๐‘ฅ๐œ•๐‘ฅ๐œ•๐‘ฅ๐‘—

)

๐‘ฅ6=

โˆ’๐‘ฅ3๐›ฟ๐‘–๐‘— + ๐‘ฅ๐‘– (3๐‘ฅ2๐‘ฅ๐‘—

๐‘ฅ )

๐‘ฅ6=

โˆ’๐›ฟ๐‘–๐‘—

๐‘ฅ3+

3๐‘ฅ๐‘–๐‘ฅ๐‘—

๐‘ฅ5

๐‘ˆ,๐‘–๐‘– =โˆ’๐›ฟ๐‘–๐‘–

๐‘ฅ3+

3๐‘ฅ๐‘–๐‘ฅ๐‘–

๐‘ฅ5=

โˆ’3

๐‘ฅ3+

3๐‘ฅ2

๐‘ฅ5= 0.

div (๐ซ

๐‘ฅ) = (

๐‘ฅ๐‘—

๐‘ฅ) ,๐‘— =

1

๐‘ฅ๐‘ฅ๐‘— ,๐‘—+ (

1

๐‘ฅ)

,๐‘—=

3

๐‘ฅ+ ๐‘ฅ๐‘— (

๐œ•

๐œ•๐‘ฅ(

1

๐‘ฅ)

๐‘‘๐‘ฅ

๐‘‘๐‘ฅ๐‘—)

=3

๐‘ฅ+ ๐‘ฅ๐‘— [โˆ’ (

1

๐‘ฅ2)

๐‘ฅ๐’‹

๐‘ฅ] =

3

๐‘ฅโˆ’

๐‘ฅ๐‘—๐‘ฅ๐‘—

๐‘ฅ3=

3

๐‘ฅโˆ’

1

๐‘ฅ=

2

๐‘ฅ

Page 25: Homework 3 Feb

37. For vectors ๐ฎ, ๐ฏ and ๐ฐ, show that (๐ฎ ร—)(๐ฏ ร—)(๐ฐ ร—) = ๐ฎ โŠ—(๐ฏ ร— ๐ฐ) โˆ’

(๐ฎ โ‹… ๐ฏ)๐ฐ ร—.

The tensor (๐ฎ ร—) = โˆ’๐œ–๐‘™๐‘š๐‘›๐‘ข๐‘›๐ ๐‘™ โŠ— ๐ ๐‘š similarly, (๐ฏ ร—) = โˆ’๐œ–๐›ผ๐›ฝ๐›พ๐‘ฃ๐›พ๐ ๐›ผ โŠ— ๐ ๐›ฝ and

(๐ฐ ร—) = โˆ’๐œ–๐‘–๐‘—๐‘˜๐‘ค๐‘˜๐ ๐‘– โŠ— ๐ ๐‘—. Clearly,

(๐ฎ ร—)(๐ฏ ร—)(๐ฐ ร—) = โˆ’๐œ–๐‘™๐‘š๐‘›๐œ–๐›ผ๐›ฝ๐›พ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘›๐‘ฃ๐›พ๐‘ค๐‘˜(๐ ๐›ผ โŠ— ๐ ๐›ฝ)(๐ ๐‘™ โŠ— ๐ ๐‘š)(๐ ๐‘– โŠ— ๐ ๐‘—)

= โˆ’๐œ–๐›ผ๐›ฝ๐›พ๐œ–๐‘™๐‘š๐‘›๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘›๐‘ฃ๐›พ๐‘ค๐‘˜(๐ ๐›ผ โŠ— ๐ ๐‘—)๐›ฟ๐›ฝ๐‘™ ๐›ฟ๐‘–

๐‘š

= โˆ’๐œ–๐›ผ๐‘™๐›พ๐œ–๐‘™๐‘–๐‘›๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘›๐‘ฃ๐›พ๐‘ค๐‘˜(๐ ๐›ผ โŠ— ๐ ๐‘—)

= โˆ’๐œ–๐‘™๐›ผ๐›พ๐œ–๐‘™๐‘›๐‘–๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘›๐‘ฃ๐›พ๐‘ค๐‘˜(๐ ๐›ผ โŠ— ๐ ๐‘—)

= โˆ’(๐›ฟ๐‘›๐›ผ๐›ฟ๐‘–

๐›พโˆ’ ๐›ฟ๐‘–

๐›ผ๐›ฟ๐‘›๐›พ

)๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘›๐‘ฃ๐›พ๐‘ค๐‘˜(๐ ๐›ผ โŠ— ๐ ๐‘—)

= โˆ’๐œ–๐‘–๐‘—๐‘˜๐‘ข๐›ผ๐‘ฃ๐‘–๐‘ค๐‘˜(๐ ๐›ผ โŠ— ๐ ๐‘—) + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐›พ๐‘ฃ๐›พ๐‘ค๐‘˜(๐ ๐‘– โŠ— ๐ ๐‘—)

= [๐ฎ โŠ— (๐ฏ ร— ๐ฐ) โˆ’ (๐ฎ โ‹… ๐ฏ)๐ฐ ร—]

38. Show that [๐ฎ, ๐ฏ, ๐ฐ] = tr[(๐ฎ ร—)(๐ฏ ร—)(๐ฐ ร—)]

In the above we have shown that (๐ฎ ร—)(๐ฏ ร—)(๐ฐ ร—) = [๐ฎ โŠ— (๐ฏ ร— ๐ฐ) โˆ’

(๐ฎ โ‹… ๐ฏ)๐ฐ ร—]

Page 26: Homework 3 Feb

Because the vector cross is traceless, the trace of [(๐ฎ โ‹… ๐ฏ)๐ฐ ร—] = 0. The trace of

the first term, ๐ฎ โŠ— (๐ฏ ร— ๐ฐ) is obviously the same as [๐ฎ, ๐ฏ, ๐ฐ] which completes

the proof.

39. Show that (๐ฎ ร—)(๐ฏ ร—) = (๐ฎ โ‹… ๐ฏ)๐Ÿ โˆ’ ๐ฎ โŠ— ๐ฏ and that tr[(๐ฎ ร—)(๐ฏ ร—)] =

2(๐ฎ โ‹… ๐ฏ)

(๐ฎ ร—)(๐ฏ ร—) = โˆ’๐œ–๐‘™๐‘š๐‘›๐œ–๐›ผ๐›ฝ๐›พ๐‘ข๐‘›๐‘ฃ๐›พ(๐ ๐›ผ โŠ— ๐ ๐›ฝ)(๐ ๐‘™ โŠ— ๐ ๐‘š)

= โˆ’๐œ–๐‘™๐‘š๐‘›๐œ–๐›ผ๐›ฝ๐›พ๐‘ข๐‘›๐‘ฃ๐›พ(๐ ๐›ผ โŠ— ๐ ๐‘š)๐›ฟ๐›ฝ๐‘™ = โˆ’๐œ–๐›ฝ๐‘š๐‘›๐œ–๐›ฝ๐›พ๐›ผ๐‘ข๐‘›๐‘ฃ๐›พ(๐ ๐›ผ โŠ— ๐ ๐‘š)

= [๐›ฟ๐‘›๐›พ

๐›ฟ๐‘š๐›ผ โˆ’ ๐›ฟ๐‘š

๐›พ๐›ฟ๐‘›

๐›ผ]๐‘ข๐‘›๐‘ฃ๐›พ(๐ ๐›ผ โŠ— ๐ ๐‘š)

= ๐‘ข๐‘›๐‘ฃ๐‘›(๐ ๐›ผ โŠ— ๐ ๐›ผ) โˆ’ ๐‘ข๐‘›๐‘ฃ๐‘š(๐ ๐‘› โŠ— ๐ ๐‘š) = (๐ฎ โ‹… ๐ฏ)๐Ÿ โˆ’ ๐ฎ โŠ— ๐ฏ

Obviously, the trace of this tensor is 2(๐ฎ โ‹… ๐ฏ)

40. The position vector in the above example ๐’“ = ๐‘ฅ๐‘–๐’†๐‘–. Show that (a) div ๐’“ = ๐Ÿ‘, (b)

div (๐’“ โŠ— ๐’“) = ๐Ÿ’๐’“, (c) div ๐’“ = 3, and (d) grad ๐’“ = ๐Ÿ and (e) curl (๐’“ โŠ— ๐’“) = โˆ’๐’“ ร—

grad ๐’“ = ๐‘ฅ๐‘– ,๐’‹ ๐’†๐‘– โŠ— ๐’†๐’‹

= ๐›ฟ๐‘–๐‘—๐’†๐‘– โŠ— ๐’†๐’‹ = ๐Ÿ

div ๐’“ = ๐‘ฅ๐‘– ,๐’‹ ๐’†๐‘– โ‹… ๐’†๐’‹

Page 27: Homework 3 Feb

= ๐›ฟ๐‘–๐‘—๐›ฟ๐‘–๐‘— = ๐›ฟ๐‘—๐‘— = 3. ๐’“ โŠ— ๐’“ = ๐‘ฅ๐‘–๐’†๐‘– โŠ— ๐‘ฅ๐‘—๐’†๐‘— = ๐‘ฅ๐‘–๐‘ฅ๐‘—๐’†๐‘– โŠ— ๐’†๐’‹grad(๐’“ โŠ— ๐’“)

= (๐‘ฅ๐‘–๐‘ฅ๐‘—),๐‘˜ ๐’†๐‘– โŠ— ๐’†๐’‹ โŠ— ๐’†๐’Œ = (๐‘ฅ๐‘– ,๐‘˜ ๐‘ฅ๐‘— + ๐‘ฅ๐‘–๐‘ฅ๐‘— ,๐‘˜ )๐’†๐‘– โŠ— ๐’†๐’‹ โ‹… ๐’†๐’Œ

= (๐›ฟ๐‘–๐‘˜๐’™๐’‹ + ๐’™๐’Š๐›ฟ๐‘—๐‘˜)๐›ฟ๐‘—๐‘˜๐’†๐‘– = (๐›ฟ๐‘–๐‘˜๐’™๐’Œ + ๐’™๐’Š๐›ฟ๐‘—๐‘—)๐’†๐‘–

= 4๐‘ฅ๐‘–๐’†๐‘– = 4๐’“

curl(๐’“ โŠ— ๐’“) = ๐œ–๐›ผ๐›ฝ๐›พ(๐‘ฅ๐‘–๐‘ฅ๐›พ),๐›ฝ ๐’†๐›ผ โŠ— ๐’†๐’Š

= ๐œ–๐›ผ๐›ฝ๐›พ(๐‘ฅ๐‘– ,๐›ฝ ๐‘ฅ๐›พ + ๐‘ฅ๐‘–๐‘ฅ๐›พ,๐›ฝ )๐’†๐›ผ โŠ— ๐’†๐’Š

= ๐œ–๐›ผ๐›ฝ๐›พ(๐›ฟ๐‘–๐›ฝ๐‘ฅ๐›พ + ๐‘ฅ๐‘–๐›ฟ๐›พ๐›ฝ)๐’†๐›ผ โŠ— ๐’†๐’Š

= ๐œ–๐›ผ๐‘–๐›พ๐‘ฅ๐›พ๐’†๐›ผ โŠ— ๐’†๐’Š + ๐œ–๐›ผ๐›ฝ๐›ฝ๐‘ฅ๐‘–๐’†๐›ผ โŠ— ๐’†๐’Š = โˆ’๐œ–๐›ผ๐›พ๐‘–๐‘ฅ๐›พ๐’†๐›ผ โŠ— ๐’†๐’Š = โˆ’๐’“ ร—

41. Define the magnitude of tensor ๐€ as, |๐€| = โˆštr(๐€๐€T) Show that โˆ‚|๐€|

โˆ‚๐€=

๐€

|๐€|

By definition, given a scalar ๐›ผ, the derivative of a scalar function of a tensor ๐‘“(๐€)

is

โˆ‚๐‘“(๐€)

โˆ‚๐€: ๐ = lim

๐›ผโ†’0

โˆ‚

โˆ‚๐›ผ๐‘“(๐€ + ๐›ผ๐)

for any arbitrary tensor ๐.

In the case of ๐‘“(๐€) = |๐€|,

Page 28: Homework 3 Feb

โˆ‚|๐€|

โˆ‚๐€: ๐ = lim

๐›ผโ†’0

โˆ‚

โˆ‚๐›ผ|๐€ + ๐›ผ๐|

|๐€ + ๐›ผ๐| = โˆštr(๐€ + ๐›ผ๐)(๐€ + ๐›ผ๐)T = โˆštr(๐€๐€T + ๐›ผ๐๐€T + ๐›ผ๐€๐T + ๐›ผ2๐๐T)

Note that everything under the root sign here is scalar and that the trace

operation is linear. Consequently, we can write,

lim๐›ผโ†’0

โˆ‚

โˆ‚๐›ผ|๐€ + ๐›ผ๐| = lim

๐›ผโ†’0

tr (๐๐€T) + tr (๐€๐T) + 2๐›ผtr (๐๐T)

2โˆštr(๐€๐€T + ๐›ผ๐๐€T + ๐›ผ๐€๐T + ๐›ผ2๐๐T)=

2๐€: ๐

2โˆš๐€: ๐€

=๐€

|๐€|: ๐

So that,

โˆ‚|๐€|

โˆ‚๐€: ๐ =

๐€

|๐€|: ๐

or,

โˆ‚|๐€|

โˆ‚๐€=

๐€

|๐€|

as required since ๐ is arbitrary.

Page 29: Homework 3 Feb

42. Show that ๐œ•๐‘ฐ3(๐‘บ)

๐œ•๐‘บ=

๐œ•det(๐‘บ)

๐œ•๐‘บ= ๐‘บ๐’„ the cofactor of ๐‘บ.

Clearly ๐‘บ๐’„ = det(๐‘บ) ๐‘บโˆ’T = ๐‘ฐ3(๐‘บ) ๐‘บโˆ’T. Details of this for the contravariant

components of a tensor is presented below. Let

det(๐‘บ) โ‰ก |๐‘บ| โ‰ก ๐‘† =1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก

Differentiating wrt ๐‘†๐›ผ๐›ฝ, we obtain,

๐œ•๐‘†

๐œ•๐‘†๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ =

1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก [

๐œ•๐‘†๐‘–๐‘Ÿ

๐œ•๐‘†๐›ผ๐›ฝ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ

๐œ•๐‘†๐‘—๐‘ 

๐œ•๐‘†๐›ผ๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ 

๐œ•๐‘†๐‘˜๐‘ก

๐œ•๐‘†๐›ผ๐›ฝ] ๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก [๐›ฟ๐‘–

๐›ผ๐›ฟ๐‘Ÿ๐›ฝ

๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐›ฟ๐‘—๐›ผ๐›ฟ๐‘ 

๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐›ฟ๐‘˜

๐›ผ๐›ฟ๐‘ก๐›ฝ

] ๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

3!๐œ–๐›ผ๐‘—๐‘˜๐œ–๐›ฝ๐‘ ๐‘ก[๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก]๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

2!๐œ–๐›ผ๐‘—๐‘˜๐œ–๐›ฝ๐‘ ๐‘ก๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก๐ ๐›ผ โŠ— ๐ ๐›ฝ โ‰ก [๐‘†c]๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ

Which is the cofactor of [๐‘†๐›ผ๐›ฝ] or ๐‘บ

Page 30: Homework 3 Feb

43. For a scalar variable ๐›ผ, if the tensor ๐“ = ๐“(๐›ผ) and ๏ฟฝฬ‡๏ฟฝ โ‰ก๐‘‘๐“

๐‘‘๐›ผ, Show that

๐‘‘

๐‘‘๐›ผdet(๐“) = det(๐“) tr(๏ฟฝฬ‡๏ฟฝ๐“โˆ’๐Ÿ)

Let ๐‘จ โ‰ก ๏ฟฝฬ‡๏ฟฝ๐‘ปโˆ’1 so that, ๏ฟฝฬ‡๏ฟฝ = ๐‘จ๐‘ป. In component form, we have ๏ฟฝฬ‡๏ฟฝ๐‘—๐‘– = ๐ด๐‘š

๐‘– ๐‘‡๐‘—๐‘š.

Therefore,

๐‘‘

๐‘‘๐›ผdet(๐‘ป) =

๐‘‘

๐‘‘๐›ผ(๐œ–๐‘–๐‘—๐‘˜๐‘‡๐‘–

1๐‘‡๐‘—2๐‘‡๐‘˜

3) = ๐œ–๐‘–๐‘—๐‘˜(๏ฟฝฬ‡๏ฟฝ๐‘–1๐‘‡๐‘—

2๐‘‡๐‘˜3 + ๐‘‡๐‘–

1๏ฟฝฬ‡๏ฟฝ๐‘—2๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐‘‡๐‘—

2๏ฟฝฬ‡๏ฟฝ๐‘˜3)

= ๐œ–๐‘–๐‘—๐‘˜(๐ด๐‘™1๐‘‡๐‘–

๐‘™๐‘‡๐‘—2๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐ด๐‘š

2 ๐‘‡๐‘—๐‘š๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐‘‡๐‘—

2๐ด๐‘›3 ๐‘‡๐‘˜

๐‘›)

= ๐œ–๐‘–๐‘—๐‘˜ [(๐ด11๐‘‡๐‘–

1 + ๐ด21๐‘‡๐‘–

2 + ๐ด31๐‘‡๐‘–

3 ) ๐‘‡๐‘—2๐‘‡๐‘˜

3 + ๐‘‡๐‘–1 ( ๐ด1

2๐‘‡๐‘—1 + ๐ด2

2๐‘‡๐‘—2

+ ๐ด32๐‘‡๐‘—

3 ) ๐‘‡๐‘˜3 + ๐‘‡๐‘–

1๐‘‡๐‘—2 ( ๐ด1

3๐‘‡๐‘˜1 + ๐ด2

3๐‘‡๐‘˜2 + ๐ด3

3๐‘‡๐‘˜3)]

All the boxed terms in the above equation vanish on account of the contraction of

a symmetric tensor with an antisymmetric one.

(For example, the first boxed term yields, ๐œ–๐‘–๐‘—๐‘˜๐ด21๐‘‡๐‘–

2๐‘‡๐‘—2๐‘‡๐‘˜

3

Which is symmetric as well as antisymmetric in ๐‘– and ๐‘—. It therefore vanishes. The

same is true for all other such terms.)

Page 31: Homework 3 Feb

๐‘‘

๐‘‘๐›ผdet(๐“) = ๐œ–๐‘–๐‘—๐‘˜[(๐ด1

1๐‘‡๐‘–1)๐‘‡๐‘—

2๐‘‡๐‘˜3 + ๐‘‡๐‘–

1(๐ด22๐‘‡๐‘—

2)๐‘‡๐‘˜3 + ๐‘‡๐‘–

1๐‘‡๐‘—2(๐ด3

3๐‘‡๐‘˜3)]

= ๐ด๐‘š๐‘š๐œ–๐‘–๐‘—๐‘˜๐‘‡๐‘–

1๐‘‡๐‘—2๐‘‡๐‘˜

3 = tr(๏ฟฝฬ‡๏ฟฝ๐“โˆ’1) det(๐“)

as required.

44. Without breaking down into components, establish the fact that ๐œ•det(๐“)

๐œ•๐“= ๐“๐’„

Start from Liouvilleโ€™s Theorem, given a scalar parameter such that ๐“ = ๐“(๐›ผ),

โˆ‚

โˆ‚๐›ผ(det(๐“)) = det(๐“) tr [(

โˆ‚๐“

โˆ‚๐›ผ) ๐“โˆ’๐Ÿ] = [det(๐“) ๐“โˆ’๐“]: (

โˆ‚๐“

โˆ‚๐›ผ)

By the simple rules of multiple derivative,

โˆ‚

โˆ‚๐›ผ(det(๐“)) = [

โˆ‚

โˆ‚๐“(det(๐“))]: (

โˆ‚๐“

โˆ‚๐›ผ)

It therefore follows that,

[โˆ‚

โˆ‚๐“(det(๐“)) โˆ’ [det(๐“) ๐“โˆ’๐“]]: (

โˆ‚๐“

โˆ‚๐›ผ) = 0

Hence

Page 32: Homework 3 Feb

โˆ‚

โˆ‚๐“(det(๐“)) = [det(๐“) ๐“โˆ’๐“] = ๐“๐œ

45. [Gurtin 3.4.2a] If T is invertible, show that โˆ‚

โˆ‚๐“(log det(๐“)) = ๐“โˆ’๐“

โˆ‚

โˆ‚๐“(log det(๐“)) =

โˆ‚(log det(๐“))

โˆ‚det(๐“) โˆ‚det(๐“)

โˆ‚๐“

=1

det(๐“)๐“๐œ =

1

det(๐“)det(๐“) ๐“โˆ’๐“

= ๐“โˆ’๐“

46. [Gurtin 3.4.2a] If ๐“ is invertible, show that โˆ‚

โˆ‚๐“(log det(๐“โˆ’1)) = โˆ’๐“โˆ’๐“

โˆ‚

โˆ‚๐“(log det(๐“โˆ’1)) =

โˆ‚(log det(๐“โˆ’1))

โˆ‚det(๐“โˆ’1) โˆ‚det(๐“โˆ’1)

โˆ‚๐“โˆ’1

โˆ‚๐“โˆ’1

โˆ‚๐“

=1

det(๐“โˆ’1)๐“โˆ’๐œ(โˆ’๐“โˆ’2)

=1

det(๐“โˆ’1)det(๐“โˆ’1) ๐“๐“(โˆ’๐“โˆ’2)

= โˆ’๐“โˆ’๐“

Page 33: Homework 3 Feb

47. Given that ๐€ is a constant tensor, Show that โˆ‚

โˆ‚๐’tr(๐€๐’) = ๐€T

In invariant components terms, let ๐€ = A๐‘–๐‘—๐ ๐‘– โŠ— ๐ ๐‘— and let ๐’ = S๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ.

๐€๐’ = A๐‘–๐‘—S๐›ผ๐›ฝ(๐ ๐‘– โŠ— ๐ ๐‘—)(๐ ๐›ผ โŠ— ๐ ๐›ฝ)

= A๐‘–๐‘—S๐›ผ๐›ฝ(๐ ๐‘– โŠ— ๐ ๐›ฝ)๐›ฟ๐‘—๐›ผ

= A๐‘–๐‘—S๐‘—๐›ฝ(๐ ๐‘– โŠ— ๐ ๐›ฝ)

tr(๐€๐’) = A๐‘–๐‘—S๐‘—๐›ฝ(๐ ๐‘– โ‹… ๐ ๐›ฝ)

= A๐‘–๐‘—S๐‘—๐›ฝ๐›ฟ๐‘–๐›ฝ

= A๐‘–๐‘—S๐‘—๐‘–

โˆ‚

โˆ‚๐’tr(๐€๐’) =

โˆ‚

โˆ‚S๐›ผ๐›ฝtr(๐€๐’)๐ ๐›ผ โŠ— ๐ ๐›ฝ

=โˆ‚A๐‘–๐‘—S๐‘—๐‘–

โˆ‚S๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ

= A๐‘–๐‘—๐›ฟ๐‘—๐›ผ๐›ฟ๐‘–

๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ = A๐‘–๐‘—๐ ๐‘— โŠ— ๐ ๐‘– = ๐€T =

โˆ‚

โˆ‚๐’(๐€T: ๐’)

as required.

Page 34: Homework 3 Feb

48. Given that ๐€ and ๐ are constant tensors, show that โˆ‚

โˆ‚๐’tr(๐€๐’๐T) = ๐€T๐

First observe that tr(๐€๐’๐T) = tr(๐T๐€๐’). If we write, ๐‚ โ‰ก ๐T๐€, it is obvious

from the above that โˆ‚

โˆ‚๐’tr(๐‚๐’) = ๐‚T. Therefore,

โˆ‚

โˆ‚๐’tr(๐€๐’๐T) = (๐T๐€)๐“ = ๐€T๐

49. Given that ๐€ and ๐ are constant tensors, show that โˆ‚

โˆ‚๐’tr(๐€๐’T๐T) = ๐T๐€

Observe that tr(๐€๐’T๐T) = tr(๐T๐€๐’T) = tr[๐’(๐T๐€)T] = tr[(๐T๐€)T๐’]

[The transposition does not alter trace; neither does a cyclic permutation. Ensure

you understand why each equality here is true.] Consequently,

โˆ‚

โˆ‚๐’tr(๐€๐’T๐T) =

โˆ‚

โˆ‚๐’ tr[(๐T๐€)T๐’] = [(๐T๐€)T]๐“ = ๐T๐€

Page 35: Homework 3 Feb

50. Let ๐‘บ be a symmetric and positive definite tensor and let ๐ผ1(๐‘บ), ๐ผ2(๐‘บ)and๐ผ3(๐‘บ)

be the three principal invariants of ๐‘บ show that (a) ๐œ•๐‘ฐ1(๐‘บ)

๐œ•๐‘บ= ๐Ÿ the identity tensor, (b)

๐œ•๐‘ฐ2(๐‘บ)

๐œ•๐‘บ= ๐ผ1(๐‘บ)๐Ÿ โˆ’ ๐‘บ and (c)

๐œ•๐ผ3(๐‘บ)

๐œ•๐‘บ= ๐ผ3(๐‘บ) ๐‘บโˆ’1

๐œ•๐‘ฐ1(๐‘บ)

๐œ•๐‘บ can be written in the invariant component form as,

๐œ•๐ผ1(๐‘บ)

๐œ•๐‘บ=

๐œ•๐ผ1(๐‘บ)

๐œ•๐‘†๐‘–๐‘—

๐ ๐‘– โŠ— ๐ ๐‘—

Recall that ๐ผ1(๐’) = tr(๐’) = ๐‘†ฮฑฮฑ hence

๐œ•๐ผ1(๐’)

๐œ•๐’=

๐œ•๐ผ1(๐’)

๐œ•๐‘†๐‘–๐‘—

๐ ๐‘– โŠ— ๐ ๐‘— =๐œ•๐‘†ฮฑ

ฮฑ

๐œ•๐‘†๐‘–๐‘—

๐ ๐‘– โŠ— ๐ ๐‘—

= ๐›ฟ๐›ผ๐‘– ๐›ฟ๐‘—

๐›ผ๐ ๐‘– โŠ— ๐ ๐‘— = ๐›ฟ๐‘—๐‘–๐ ๐‘– โŠ— ๐ ๐‘—

= ๐Ÿ

which is the identity tensor as expected.

Page 36: Homework 3 Feb

๐œ•๐ผ2(๐’)

๐œ•๐’ in a similar way can be written in the invariant component form as,

๐œ•๐ผ2(๐’)

๐œ•๐’=

1

2

๐œ•๐ผ1(๐’)

๐œ•๐‘†๐‘–๐‘—

[๐‘†ฮฑฮฑ๐‘†๐›ฝ

๐›ฝโˆ’ ๐‘†๐›ฝ

ฮฑ๐‘†ฮฑ๐›ฝ

] ๐ ๐‘– โŠ— ๐ ๐‘—

where we have utilized the fact that ๐ผ2(๐’) =1

2[tr2(๐’) โˆ’ tr(๐’2)]. Consequently,

๐œ•๐ผ2(๐’)

๐œ•๐’=

1

2

๐œ•

๐œ•๐‘†๐‘–๐‘—

[๐‘†ฮฑฮฑ๐‘†๐›ฝ

๐›ฝโˆ’ ๐‘†๐›ฝ

ฮฑ๐‘†ฮฑ๐›ฝ

] ๐ ๐‘– โŠ— ๐ ๐‘—

=1

2[๐›ฟ๐›ผ

๐‘– ๐›ฟ๐‘—๐›ผ๐‘†๐›ฝ

๐›ฝ+ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐‘—๐›ฝ

๐‘†ฮฑฮฑ โˆ’ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐‘—๐›ผ๐‘†ฮฑ

๐›ฝโˆ’ ๐›ฟ๐›ผ

๐‘– ๐›ฟ๐‘—๐›ฝ

๐‘†๐›ฝฮฑ] ๐ ๐‘– โŠ— ๐ ๐‘—

=1

2[๐›ฟ๐‘—

๐‘–๐‘†๐›ฝ๐›ฝ

+ ๐›ฟ๐‘—๐‘–๐‘†ฮฑ

ฮฑ โˆ’ ๐‘†๐‘–๐‘—

โˆ’ ๐‘†๐‘–๐‘—] ๐ ๐‘– โŠ— ๐ ๐‘— = (๐›ฟ๐‘—

๐‘–๐‘†ฮฑฮฑ โˆ’ ๐‘†๐‘–

๐‘—)๐ ๐‘– โŠ— ๐ ๐‘—

= ๐ผ1(๐’)๐Ÿ โˆ’ ๐’

det(๐‘บ) โ‰ก |๐‘บ| โ‰ก ๐‘† =1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก

Differentiating wrt ๐‘†๐›ผ๐›ฝ, we obtain,

๐œ•๐‘†

๐œ•๐‘†๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ =

1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก [

๐œ•๐‘†๐‘–๐‘Ÿ

๐œ•๐‘†๐›ผ๐›ฝ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ

๐œ•๐‘†๐‘—๐‘ 

๐œ•๐‘†๐›ผ๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ 

๐œ•๐‘†๐‘˜๐‘ก

๐œ•๐‘†๐›ผ๐›ฝ] ๐ ๐›ผ โŠ— ๐ ๐›ฝ

Page 37: Homework 3 Feb

=1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก [๐›ฟ๐‘–

๐›ผ๐›ฟ๐‘Ÿ๐›ฝ

๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐›ฟ๐‘—๐›ผ๐›ฟ๐‘ 

๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐›ฟ๐‘˜

๐›ผ๐›ฟ๐‘ก๐›ฝ

] ๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

3!๐œ–๐›ผ๐‘—๐‘˜๐œ–๐›ฝ๐‘ ๐‘ก[๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก]๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

2!๐œ–๐›ผ๐‘—๐‘˜๐œ–๐›ฝ๐‘ ๐‘ก๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก๐ ๐›ผ โŠ— ๐ ๐›ฝ โ‰ก [๐‘†c]๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ

Which is the cofactor of [๐‘†๐›ผ๐›ฝ] or ๐‘บ

51. For a tensor field ๐œฉ, The volume integral in the region ฮฉ โŠ‚ โ„ฐ, โˆซ (grad ๐œฉ)ฮฉ

๐‘‘๐‘ฃ =

โˆซ ๐œฉ โŠ— ๐’โˆ‚ฮฉ

๐‘‘๐‘  where ๐’ is the outward drawn normal to ๐œ•ฮฉ โ€“ the boundary of ฮฉ.

Show that for a vector field ๐’‡

โˆซ (div ๐’‡)ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐’‡ โ‹… ๐’๐œ•ฮฉ

๐‘‘๐‘ 

Replace ๐œฉ by the vector field ๐’‡ we have,

โˆซ (grad ๐’‡)ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐’‡ โŠ— ๐’โˆ‚ฮฉ

๐‘‘๐‘ 

Page 38: Homework 3 Feb

Taking the trace of both sides and noting that both trace and the integral are

linear operations, therefore we have,

โˆซ (div ๐’‡)ฮฉ

๐‘‘๐‘ฃ = โˆซ tr(grad ๐’‡)ฮฉ

๐‘‘๐‘ฃ

= โˆซ tr(๐’‡ โŠ— ๐’)โˆ‚ฮฉ

๐‘‘๐‘ 

= โˆซ ๐’‡ โ‹… ๐’๐œ•ฮฉ

๐‘‘๐‘ 

52. Show that for a scalar function Hence the divergence theorem

becomes,โˆซ (grad ๐œ™)ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐œ™๐’๐œ•ฮฉ

๐‘‘๐‘ 

Recall that for a vector field, that for a vector field ๐’‡

โˆซ (div ๐’‡)ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐’‡ โ‹… ๐’๐œ•ฮฉ

๐‘‘๐‘ 

if we write, ๐Ÿ = ๐œ™๐’‚ where ๐’‚ is an arbitrary constant vector, we have,

โˆซ (div[๐œ™๐’‚])ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐œ™๐’‚ โ‹… ๐ง๐œ•ฮฉ

๐‘‘๐‘ 

Page 39: Homework 3 Feb

= ๐’‚ โ‹… โˆซ ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

For the LHS, note that, div[๐œ™๐’‚] = tr(grad[๐œ™๐’‚])

grad[๐œ™๐’‚] = (๐œ™๐‘Ž๐‘–),๐‘— ๐ ๐‘– โŠ— ๐ ๐‘—

= ๐‘Ž๐‘–๐œ™,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘—

The trace of which is,

๐‘Ž๐‘–๐œ™,๐‘— ๐ ๐‘– โ‹… ๐ ๐‘— = ๐‘Ž๐‘–๐œ™,๐‘— ๐›ฟ๐‘–๐‘—

= ๐‘Ž๐‘–๐œ™,๐‘– = ๐’‚ โ‹… grad ๐œ™

For the arbitrary constant vector ๐’‚, we therefore have that,

โˆซ (div[๐œ™๐’‚])ฮฉ

๐‘‘๐‘ฃ = ๐’‚ โ‹… โˆซ grad ๐œ™ ฮฉ

๐‘‘๐‘ฃ = ๐’‚ โ‹… โˆซ ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

โˆซ grad ๐œ™ ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

53. Show that Stokes Theorem leads to

โˆซ ๐ฏ โ‹… ๐‘‘๐ฑ =๐ถ

โˆซ (grad ๐ฏ) : (๐ง ร—) ๐‘‘๐‘Ž๐‘†

In the classical form Stokes Theorem states that,

Page 40: Homework 3 Feb

โˆซ ๐ฏ โ‹… ๐‘‘๐ฑ =๐ถ

โˆซ ๐ง โ‹… curl ๐ฏ ๐‘‘๐‘Ž๐‘†

Now curl ๐ฏ = ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ๐ ๐‘– so that

๐ง โ‹… curl ๐ฏ = ๐‘›๐‘–๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— = ๐‘ฃ๐‘˜,๐‘— ๐œ–๐‘–๐‘—๐‘˜๐‘›๐‘–

= (๐‘ฃ๐›ผ,๐›ฝ ๐ ๐›ผ โŠ— ๐ ๐›ฝ): (โˆ’๐œ–๐‘–๐‘—๐‘˜๐‘›๐‘–๐ ๐‘— โŠ— ๐ ๐‘˜)

= (grad ๐ฏ): (๐ง ร—)

Hence

โˆซ ๐ฏ โ‹… ๐‘‘๐ฑ =๐ถ

โˆซ ๐ง โ‹… curl ๐ฏ ๐‘‘๐‘Ž๐‘†

= โˆซ(grad ๐ฏ): (๐ง ร—)๐‘‘๐‘Ž๐‘†

As required.

54. Establish the following Identities using Stokes Theorem:

โˆซ (๐ฎ โŠ— ๐ฏ) ๐‘‘๐ฑ =๐ถ

โˆซ [(grad ๐ฎ) ๐ฏ ร— ๐ง + (๐ง โ‹… curl ๐ฏ) ๐ฎ] ๐‘‘๐‘Ž๐‘†

โˆซ ๐ฏ ร— ๐‘‘๐ฑ =๐ถ

โˆซ [(div ๐ฏ) ๐ง โˆ’ (grad ๐ฏ)T

๐ง] ๐‘‘๐‘Ž๐‘†

To establish the first equation, observe that โˆซ ๐ฏ โ‹… ๐‘‘๐ฑ =๐ถ โˆซ ๐ง โ‹… curl ๐ฏ ๐‘‘๐‘Ž๐‘† can be used

to show that for any tensor ๐“

Page 41: Homework 3 Feb

โˆซ ๐“๐‘‘๐ฑ =๐ถ

โˆซ (curl ๐“)T

๐ง ๐‘‘๐‘Ž๐‘†

Now let ๐“ = ๐ฎ โŠ— ๐ฏ = ๐‘ข๐‘–๐‘ฃ๐‘—๐ ๐‘– โŠ— ๐ ๐‘—. But curl ๐“ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ The

transpose of this,

(curl ๐“)T = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐›ผ โŠ— ๐ ๐‘–

Clearly,

โˆซ(curl ๐“)T๐ง ๐‘‘๐‘Ž๐‘†

= โˆซ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— (๐ ๐›ผ โŠ— ๐ ๐‘–)๐ง ๐‘‘๐‘Ž๐‘†

= โˆซ๐œ–๐‘–๐‘—๐‘˜(๐‘ข๐›ผ๐‘ฃ๐‘˜),๐‘— (๐ ๐›ผ โŠ— ๐ ๐‘–)๐ง ๐‘‘๐‘Ž๐‘†

= โˆซ๐œ–๐‘–๐‘—๐‘˜(๐‘ข๐›ผ ,๐‘— ๐‘ฃ๐‘˜ + ๐‘ข๐›ผ๐‘ฃ๐‘˜ ,๐‘— )(๐ ๐›ผ โŠ— ๐ ๐‘–)๐ง ๐‘‘๐‘Ž๐‘†

= โˆซ๐œ–๐‘–๐‘—๐‘˜(๐‘ข๐›ผ ,๐‘— ๐‘ฃ๐‘˜ + ๐‘ข๐›ผ๐‘ฃ๐‘˜ ,๐‘— )(๐ ๐›ผ โŠ— ๐ ๐‘–)๐ง ๐‘‘๐‘Ž๐‘†

= โˆซ(๐‘ข๐›ผ ,๐‘— ๐œ–๐‘—๐‘˜๐‘–๐‘ฃ๐‘˜๐‘›๐‘–๐ ๐›ผ + ๐‘›๐‘–๐œ–๐‘–๐‘—๐‘˜๐‘ข๐›ผ๐‘ฃ๐‘˜,๐‘— ๐ ๐›ผ) ๐‘‘๐‘Ž๐‘†

= โˆซ[(grad ๐ฎ)๐ฏ ร— ๐ง + (๐ง โ‹… curl ๐ฏ)๐ฎ]๐‘‘๐‘Ž๐‘†

Page 42: Homework 3 Feb

As required.

To establish the second result, we allow ๐“ = ๐ฏ ร—= ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘—๐ ๐‘– โŠ— ๐ ๐‘˜. As before, we

have that,

โˆซ(curl ๐“)T๐ง ๐‘‘๐‘Ž๐‘†

= โˆซ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— (๐ ๐›ผ โŠ— ๐ ๐‘–)๐ง ๐‘‘๐‘Ž๐‘†

= โˆซ๐œ–๐‘–๐‘—๐‘˜(๐œ–๐›ผ๐›ฝ๐‘˜๐‘ฃ๐›ฝ),๐‘— (๐ ๐›ผ โŠ— ๐ ๐‘–)๐ง ๐‘‘๐‘Ž๐‘†

= โˆซ (๐›ฟ๐›ผ๐‘– ๐›ฟ๐›ฝ

๐‘—โˆ’ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐›ผ๐‘—) ๐‘ฃ๐›ฝ ,๐‘— (๐ ๐›ผ โŠ— ๐ ๐‘–)๐ง ๐‘‘๐‘Ž

๐‘†

= โˆซ๐‘ฃ๐‘— ,๐‘— ๐‘›๐‘–๐ ๐‘– โˆ’ ๐‘ฃ๐‘– ,๐‘— ๐ ๐‘—๐‘›๐‘– ๐‘‘๐‘Ž๐‘†

โˆซ ๐ฏ ร— ๐‘‘๐ฑ =๐ถ

โˆซ [(div ๐ฏ) ๐ง โˆ’ (grad ๐ฏ)T

๐ง] ๐‘‘๐‘Ž๐‘†

Because (grad ๐ฏ)T๐ง = ๐‘ฃ๐‘– ,๐‘— (๐ ๐‘— โŠ— ๐ ๐‘–)๐ง = ๐‘ฃ๐‘– ,๐‘— ๐ ๐‘—๐‘›๐‘– .