3
HMG1 Is not Rearranged by 13q12 Aberrations in Lipomas Bernd Kazmierczak, 1 Paola Dal Cin, 2 Kerstin Meyer-Bolte, 1 Herman Van den Berghe, 2 and Jo ¨ rn Bullerdiek 1* 1 Center for Human Genetics and Genetic Counseling, University of Bremen, Bremen, Germany 2 Center for Human Genetics, University of Leuven, Leuven, Belgium Several cytogenetic subgroups with characteristic lesions involving chromosomal regions 12q14–15, 6p21.3, or 13q12 can be distinguished in lipomas. Rearrangements of the HMGIC gene have been described in cases with 12q14–15 abnormalities, whereas HMGIY has been shown to be the target gene of 6p21.3 aberrations. Recently, HMG1, another member of the HMG family, was mapped to 13q12. The aim of this study was to investigate the possible role of HMG1 aberrations in lipomas with 13q12 abnormalities. Two PAC clones containing HMG1 were isolated. By molecular cytogenetic investigations using these PAC clones and by Southern blot analysis of eight lipomas with 13q12 abnormalities, we were able to show that these chromosomal rearrangements did not result in intragenic rearrangements of HMG1 or breakpoints close to it. Genes Chromosomes Cancer 24:290–292, 1999. r 1999 Wiley-Liss, Inc. High-mobility-group proteins are small nonhistone proteins that have been grouped into three families: the HMG1/2 family, the HMG14/17 family, and the HMGI(Y) family (Bustin and Reeves, 1996). Re- cently, it was shown that genes of the HMGI(Y) family, i.e., HMGIC and HMGIY, respectively, are targets of the 12q14–15 and 6p21 abnormalities seen in a variety of human benign tumors such as uterine leiomyomas, endometrial polyps, pulmo- nary chondroid hamartomas, and lipomas (Ashar et al., 1995; Schoenmakers et al., 1995; Kazmierczak et al., 1996; Tkachenko et al., 1997). HMGIC and HMGIY share this tumorigenic potential, presum- ably because their corresponding proteins have a high amino acid homology, particularly in their DNA-binding domains. Recently, HMG1, another member of the HMG family, was assigned to 13q12 (Ferrari et al., 1996), i.e., to a chromosomal region that has been found to be involved in chromosome rearrangements charac- terizing some lipomas, uterine leiomyomas, and other mesenchymal tumors. Most often the 13q11–13 rearrangements are interstitial deletions involving the long arm as a del(13)(q12q22) but translocations also occur (Mitelman, 1994). Thus, the question arises as to whether, akin to other HMG genes, HMG1 rearrangements may be caus- ally involved in the development of these tumors. Here we report the results of a molecular cytoge- netic and Southern blot analysis on eight lipomas with chromosomal abnormalities involving 13q12 (Table 1). To obtain molecular probes suitable for FISH studies, a human PAC library (Genome Systems, St. Louis, MO) was screened with a primer set derived from intron 3 of HMG1. The forward primer was 58-ACCCAAGAGGCCT- CCG-38 and as a reverse primer we used 58- CAAGAAGAAGGCCGAACT-38. For amplifica- tion, 30 cycles of denaturation (1 min at 94°C), annealing (1 min at 56°C), and extension (1 min at 72°C) were performed. The screening of the PAC library resulted in the isolation of two PAC clones (PAC1363 and PAC1364). Both clones contained the complete coding sequence of HMG1, as re- vealed by Southern blot hybridization. The PAC clones had an average insert length of about 80 kb each and restriction enzyme analysis showed that both clones have an overlap of genomic sequences of approximately 50%, i.e., 40 kb. These clones were used as a pool for fluorescence in situ hybrid- ization (FISH). To identify the chromosomes unam- biguously, FISH analysis was performed after GTG banding of the same metaphase spreads. Treatment of metaphase spreads, subsequent FISH experi- ments, and probe DNA labeling (with biotin-14- dATP) were performed using the protocol of Kievits et al. (1990) with minor modifications as described previously (Kazmierczak et al., 1996). The results of GTG banding and FISH were processed and recorded with a Power Gene Karyotyping System (PSI, Halladale, GB). Supported by: Belgium Programme on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming; Grant number: 3007490. *Correspondence to: Dr. Jo ¨ rn Bullerdiek, Center for Human Genetics and Genetic Counseling, University of Bremen, Leobener- str., ZHG, D-28359 Bremen, Germany. E-mail: bullerdiek@uni- bremen.de Received 9 March 1998; Accepted 12 October 1998 GENES, CHROMOSOMES & CANCER 24:290–292 (1999) 3 BRIEF COMMUNICATION 3 r 1999 Wiley-Liss, Inc.

HMG1 is not rearranged by 13q12 aberrations in lipomas

Embed Size (px)

Citation preview

Page 1: HMG1 is not rearranged by 13q12 aberrations in lipomas

HMG1 Is not Rearranged by 13q12 Aberrationsin Lipomas

Bernd Kazmierczak,1 Paola Dal Cin,2 Kerstin Meyer-Bolte,1 Herman Van den Berghe,2 and Jorn Bullerdiek1*

1Center for Human Genetics and Genetic Counseling, University of Bremen, Bremen, Germany2Center for Human Genetics, University of Leuven, Leuven, Belgium

Several cytogenetic subgroups with characteristic lesions involving chromosomal regions 12q14–15, 6p21.3, or 13q12 can bedistinguished in lipomas. Rearrangements of the HMGIC gene have been described in cases with 12q14–15 abnormalities,whereas HMGIY has been shown to be the target gene of 6p21.3 aberrations. Recently, HMG1, another member of the HMGfamily, was mapped to 13q12. The aim of this study was to investigate the possible role of HMG1 aberrations in lipomas with13q12 abnormalities. Two PAC clones containing HMG1 were isolated. By molecular cytogenetic investigations using thesePAC clones and by Southern blot analysis of eight lipomas with 13q12 abnormalities, we were able to show that thesechromosomal rearrangements did not result in intragenic rearrangements of HMG1 or breakpoints close to it. GenesChromosomes Cancer 24:290–292, 1999. r 1999 Wiley-Liss, Inc.

High-mobility-group proteins are small nonhistoneproteins that have been grouped into three families:the HMG1/2 family, the HMG14/17 family, and theHMGI(Y) family (Bustin and Reeves, 1996). Re-cently, it was shown that genes of the HMGI(Y)family, i.e., HMGIC and HMGIY, respectively, aretargets of the 12q14–15 and 6p21 abnormalitiesseen in a variety of human benign tumors such asuterine leiomyomas, endometrial polyps, pulmo-nary chondroid hamartomas, and lipomas (Ashar etal., 1995; Schoenmakers et al., 1995; Kazmierczaket al., 1996; Tkachenko et al., 1997). HMGIC andHMGIY share this tumorigenic potential, presum-ably because their corresponding proteins have ahigh amino acid homology, particularly in theirDNA-binding domains.

Recently, HMG1, another member of the HMGfamily, was assigned to 13q12 (Ferrari et al., 1996),i.e., to a chromosomal region that has been found tobe involved in chromosome rearrangements charac-terizing some lipomas, uterine leiomyomas, andother mesenchymal tumors. Most often the13q11–13 rearrangements are interstitial deletionsinvolving the long arm as a del(13)(q12q22) buttranslocations also occur (Mitelman, 1994). Thus,the question arises as to whether, akin to otherHMG genes, HMG1 rearrangements may be caus-ally involved in the development of these tumors.

Here we report the results of a molecular cytoge-netic and Southern blot analysis on eight lipomaswith chromosomal abnormalities involving 13q12(Table 1). To obtain molecular probes suitable forFISH studies, a human PAC library (GenomeSystems, St. Louis, MO) was screened with a

primer set derived from intron 3 of HMG1. Theforward primer was 58-ACCCAAGAGGCCT-CCG-38 and as a reverse primer we used 58-CAAGAAGAAGGCCGAACT-38. For amplifica-tion, 30 cycles of denaturation (1 min at 94°C),annealing (1 min at 56°C), and extension (1 min at72°C) were performed. The screening of the PAClibrary resulted in the isolation of two PAC clones(PAC1363 and PAC1364). Both clones containedthe complete coding sequence of HMG1, as re-vealed by Southern blot hybridization. The PACclones had an average insert length of about 80 kbeach and restriction enzyme analysis showed thatboth clones have an overlap of genomic sequencesof approximately 50%, i.e., 40 kb. These cloneswere used as a pool for fluorescence in situ hybrid-ization (FISH). To identify the chromosomes unam-biguously, FISH analysis was performed after GTGbanding of the same metaphase spreads. Treatmentof metaphase spreads, subsequent FISH experi-ments, and probe DNA labeling (with biotin-14-dATP) were performed using the protocol of Kievitset al. (1990) with minor modifications as describedpreviously (Kazmierczak et al., 1996). The resultsof GTG banding and FISH were processed andrecorded with a Power Gene Karyotyping System(PSI, Halladale, GB).

Supported by: Belgium Programme on Interuniversity Poles ofAttraction initiated by the Belgian State, Prime Minister’s Office,Science Policy Programming; Grant number: 3007490.

*Correspondence to: Dr. Jorn Bullerdiek, Center for HumanGenetics and Genetic Counseling, University of Bremen, Leobener-str., ZHG, D-28359 Bremen, Germany. E-mail: [email protected]

Received 9 March 1998; Accepted 12 October 1998

GENES, CHROMOSOMES & CANCER 24:290–292 (1999)

333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 BRIEF COMMUNICATION 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

r 1999 Wiley-Liss, Inc.

Page 2: HMG1 is not rearranged by 13q12 aberrations in lipomas

By FISH on metaphase spreads from normallymphocytes, both PACs were mapped to 13q12.Subsequently, the eight lipomas were tested forrearrangement of the HMG1 gene or its immediatesurroundings. For each case, 20 metaphases wereanalyzed and in none of the tumors was a rearrange-ment of HMG1 or its immediate surroundingsdetected (Fig. 1). In all cases, the signals wereproximal to the breakpoint region.

To investigate further the possibility of HMG1rearrangements, Southern blot analysis was per-formed on genomic DNA from five lipomas (125316,106877, 133939, 121668, and 182125). As a positivecontrol, DNA was extracted from lymphocyte cul-tures of healthy donors with normal karyotypes.The DNAs were digested with the restrictionenzyme EcoRI, fractionated by agarose gel electro-phoresis, and blotted onto Hybond N1 nylon mem-branes. As molecular probes for HMG1, we used the

gel-purified 500-bp PCR product derived fromintron 3 of HMG1. The probe was labeled with 32Pusing a random primer extension protocol. Prehy-bridization and hybridization buffer consisted of5 3 SSPE/0.5% SDS, 5 3 Denhardt’s solution, anddenatured salmon sperm DNA (0.5 mg/ml). Prehy-bridization was carried out for 5 hr and hybridiza-tions for 16 hr at 65°C. Blots were washed twice for5 min at room temperature in 2 3 SSC/0.1% SDS,once for 30 min at 65°C in 1 3 SSC/0.1% SDS, andfor a further 30 min in 0.1 3 SSC/0.1% SDS. As theHMG1 sequence does not contain an intragenicEcoRI restriction site, this enzyme was used fordetection of a possible intragenic rearrangement.The intragenic probe detected only the germlinefragment of 16 kb in all lipomas and the negativecontrol, clearly indicating that no HMG1 rearrange-ments were present.

Since the first observation of a link betweencertain chromosomal breakpoints in benign solidtumors and the involvement of a high-mobilitygroup of proteins, only HMGIC and HMGIY havebeen shown to be directly involved in tumorigen-esis of several benign solid tumors with 12q14–15and 6p21.3 aberrations, respectively (Ashar et al.,1995; Schoenmakers et al., 1995; Kazmierczak etal., 1996). HMG1, which maps to 13q12, was an-other candidate as several benign mesenchymaltumors show chromosome rearrangements involv-ing this band. The results of the present studyclearly show that there are no intragenic rearrange-ments of HMG1 in lipomas with 13q12 aberrations.However, it has to be taken into consideration thatnothing is known about the flanking regions ofHMG1, and regulatory sequences of this gene have

Figure 1. Localization of the PAC clones derived from HMG1 sequence in lipoma 182125 with ader(13)t(3;13)(q12;q12). Left: Signals are visible on the normal chromosome 13 and the der(13) (arrows).Right: GTG banding of the same metaphase spread prior to FISH analysis. Normal and aberrantchromosomes 13 are indicated by arrows.

TABLE 1. Karyotypes of Lipomas Used

Case number Karyotype

125316 46,XY,t(13;16)(q12;q24)106877 46,XY,der(7)t(7;12)(p15;

q15)del(12)(q23),der(12)t(12;13)(q15;q12),der(13)t(7;13)(p15;q12)

133939 46,X,t(X;1)(q23;q23),t(10;13)(q24;q12)121668 46,XX,add(1)(p22),t(3;12)(q13;q15),der(13)t(1;

13)(p22;q12), ?ins(13;13)(q32;q?q12)182125 46,XX,t(8;12)(p12;q15),der(13)t(3;13)(q12;q12)187628 46,XX,t(3;9)(q27;

q13),del(11)(q14q21),del(13)(q14q22)177307 46,XY,t(12;13)(q15;q12)177230 46,XX,der(6)t(6;?19)(p21;

?q11),del(13)(q14q22),219,1mar

291HMG1 IS NOT REARRANGED

Page 3: HMG1 is not rearranged by 13q12 aberrations in lipomas

not yet been characterized. By PCR with a primerset derived from the untranscribed exon 1 ofHMG1, we were able to show that this exon ispresent on the two PACs used for FISH experi-ments (data not shown). Although we cannot ex-clude an involvement of HMG1 in lipomas with13q12 aberrations, with relevant breakpoints lo-cated somewhat distant to that gene akin to whathas been described for some breakpoints in thevicinity of HMGIC (Fejzo et al., 1996) and HMGIY(Tkachenko et al., 1997; Xiao et al., 1997; Kazmierc-zak et al., 1998), the results of our present studyclearly rule out any intragenic rearrangements ofHMG1.

REFERENCES

Ashar HR, Schoenberg Fejzo M, Tkachenko A, Zhou X, Fletcher JA,Weremowicz S, Morton CC, Chada K. 1995. Disruption of thearchitectural factor HMGI-C: DNA binding AT hook motifs fusedin lipomas to distinct transcriptional regulatory domains. Cell82:57–65.

Bustin M, Reeves R. 1996. High-mobility-group chromosomal pro-teins: architectural components that facilitate chromatin function.Progr Nucl Acid Res Molec Biol 54:35–100.

Fejzo MS, Ashar HR, Krauter KS, Powell WL, Rein MS, Weremo-

wicz S, Yoon S-J, Kucherlapati RS, Chada K, Morton CC. 1996.Translocation breakpoints upstream of the HMGIC gene inuterine leiomyomata suggest dysregulation of this gene by amechanism different from that in lipomas. Genes ChromosomesCancer 17:1–6.

Ferrari S, Finelli P, Rocchi M, Bianchi ME. 1996. The active genethat encodes human high mobility group 1 protein (HMG1)contains introns and maps to chromosome 13. Genomics 35:367–371.

Kazmierczak B, Rosigkeit J, Wanschura S, Meyer-Bolte K, Van deVen WJM, Kayser K, Krieghoff B, Kastendiek H, Bartnitzke S,Bullerdiek J. 1996. HMGI-C rearrangements as the molecularbasis for the majority of pulmonary chondroid hamartomas: asurvey of 30 tumors. Oncogene 12:515–521.

Kazmierczak B, Dal Cin P, Wanschura S, Borrmann L, Fusco A, Vanden Berghe H, Bullerdiek J. 1998. HMGIY is the target of 6p21.3rearrangements in various benign mesenchymal tumors. GenesChromosomes Cancer 23:279–285.

Kievits T, Dauwerse JG, Wiegant J, Devilee P, Breuning MH,Cornelisse CJ, Van Ommen G-JB, Pearson PL. 1990. Rapidsubchromosomal localization of cosmids by non radioactive in situhybridization. Cytogenet Cell Genet 53:134–136.

Mitelman F. 1994. Catalog of chromosome aberrations in cancer, 5thed. New York: Wiley-Liss.

Schoenmakers EFPM, Wanschura S, Mols R, Bullerdiek J, Van denBerghe H, Van de Ven WJM. 1995. Recurrent rearrangements inthe high mobility group protein gene, HMGI-C, in benignmesenchymal tumours. Nat Genet 10:436–444.

Tkachenko A, Ashar HR, Meloni AM, Sandberg AA, Chada KK.1997. Misexpression of disrupted HMGI architectural factorsactivates alternative pathways of tumorigenesis. Cancer Res 57:2276–2280.

Xiao S, Lux ML, Reeves R, Hudson TJ, Fletcher JA. 1997.HMGI(Y) activation by chromosome 6p21 rearrangements inmultilineage mesenchymal cells from pulmonary hamartoma. AmJ Pathol 150:901–910.

292 KAZMIERCZAK ET AL.