15
Hitting the ground running: Computational physics education to prepare students for computational physics research Amy Lisa Graves Swarthmore College Dept. of Physics and Astronomy Swarthmore, PA 19081 Adam Light Colorado College Dept. of Physics Colorado Springs, CO 80903 Keywords: Computational Physics, Undergraduate Research, Physics Curriculum, Research Skills Abstract: Momentum exists in the physics community for integrating computation into the undergraduate curriculum. One of many benefits would be preparation for computational research. Our investigation poses the question of which computational skills might be best learned in the curriculum (prior to research) versus during research. Based on a survey of computational physicists, we present evidence that many relevant skills are developed naturally in a research context while others stand out as best learned in advance. 1. Introduction The benefits of cutting-edge research with undergraduates are undeniable, in computational physics (CP) or any other discipline. Research brings many benefits to students, with special ones attached to students who are early in their career, women and/or members of underrepresented minority groups[1]. The purpose of this paper is to ask how to best prepare a student for CP research (CPR) which in the U.S. typically happens during the summer, whether on the home campus, or elsewhere via a program like the National Science Foundation Research Experience for Undergraduates (NSF REU). Arriving prepared at a CPR lab, whether at home or away, implies a greater chance of thriving: comfort with the work, higher self-concept as a researcher, faster progress, and more likelihood of eventual co-authorship on conference posters, talks and refereed papers. Whether in a lab, or as a culminating experience in an undergraduate course or capstone, research is "increasingly important for our students' careers" (Editors' Introduction, Ref. [2]). We ask about preparation as advocates not just for students, but faculty members as well. Faculty at principally undergraduate institutions (PUIs) typically have only undergraduates as their junior partners in research. A track record of cutting-edge research is essential for the careers of most PUI faculty members, making it imperative that there is authentic research progress in an 8- to 10-week summer. The current paper originates in a 2019 talk (found at meetings.aps.org/Meeting/MAR19/Session/F22.3). To our knowledge, we are among the first

Hitting the ground running: Computational physics

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Hittingthegroundrunning:ComputationalphysicseducationtopreparestudentsforcomputationalphysicsresearchAmyLisaGravesSwarthmoreCollegeDept.ofPhysicsandAstronomySwarthmore,PA19081AdamLightColoradoCollegeDept.ofPhysicsColoradoSprings,CO80903Keywords:ComputationalPhysics,UndergraduateResearch,PhysicsCurriculum,ResearchSkillsAbstract:Momentumexistsinthephysicscommunityforintegratingcomputationintotheundergraduatecurriculum.Oneofmanybenefitswouldbepreparationforcomputationalresearch.Ourinvestigationposesthequestionofwhichcomputationalskillsmightbebestlearnedinthecurriculum(priortoresearch)versusduringresearch.Basedonasurveyofcomputationalphysicists,wepresentevidencethatmanyrelevantskillsaredevelopednaturallyinaresearchcontextwhileothersstandoutasbestlearnedinadvance.1.Introduction Thebenefitsofcutting-edgeresearchwithundergraduatesareundeniable,incomputationalphysics(CP)oranyotherdiscipline.Researchbringsmanybenefitstostudents,withspecialonesattachedtostudentswhoareearlyintheircareer,womenand/ormembersofunderrepresentedminoritygroups[1].ThepurposeofthispaperistoaskhowtobestprepareastudentforCPresearch(CPR)whichintheU.S.typicallyhappensduringthesummer,whetheronthehomecampus,orelsewhereviaaprogramliketheNationalScienceFoundationResearchExperienceforUndergraduates(NSFREU).ArrivingpreparedataCPRlab,whetherathomeoraway,impliesagreaterchanceofthriving:comfortwiththework,higherself-conceptasaresearcher,fasterprogress,andmorelikelihoodofeventualco-authorshiponconferenceposters,talksandrefereedpapers.Whetherinalab,orasaculminatingexperienceinanundergraduatecourseorcapstone,researchis"increasinglyimportantforourstudents'careers"(Editors'Introduction,Ref.[2]). Weaskaboutpreparationasadvocatesnotjustforstudents,butfacultymembersaswell.Facultyatprincipallyundergraduateinstitutions(PUIs)typicallyhaveonlyundergraduatesastheirjuniorpartnersinresearch.Atrackrecordofcutting-edgeresearchisessentialforthecareersofmostPUIfacultymembers,makingitimperativethatthereisauthenticresearchprogressinan8-to10-weeksummer.Thecurrentpaperoriginatesina2019talk(foundatmeetings.aps.org/Meeting/MAR19/Session/F22.3).Toourknowledge,weareamongthefirst

topublicallyframethequestionofhowundergraduatestudentscan"hitthegroundrunning"inCPR. In2011,theAAPTrecommendedthatsincecomputationisintegraltothemodernpracticeofphysics,"everyphysicsandastronomydepartmentprovideitsmajorsandpotentialmajorswithappropriateinstructionincomputationalphysics".In2016theAAPTUndergraduateCurriculumTaskForce(UCTF),producedaninformativerationaleforfundamentallearningofcomputer-basedtools,andmodesofcomputationalthinkinganddoingscience[3,4,5].Thisreportidentifieschallengesdepartmentswillfaceinimplementingthesuggestions,andresourcesforfaculty.Skillsarebrokenintothreecategoriesthatbuildupononeanother:fundamental,technical,andcomputationalphysics-related.Inourstudy(seeSection3),weattempttosegregatebasic,fundamental,andmoreadvancedskillsaswellasworkplaceskillslikefindinginformation,collaboratingwithothers,andprojectmanagement(alsokeyinagraduateschoolsetting)[3]. Inadditiontodesigningnewcoursesandrepurposingexistingones,expertsrecommendleveraging"opportunitiesforcomputational...researchprojects"[5]andfosteringopportunitieswhere"undergraduateresearchisvaluedandsupported"[4].Inshort,CPskillsarerecognizedasthefruitofundergraduateCPR.Thepremiseofthispaperisthatthereverseisalsotrue.Computationalskillsareneededtoengageincomputationalresearch,whichbuildsfurtherskillsandadvancesresearchprogress.

2.ComputationintheundergraduatecurriculumWemakeadistinctionbetweencomputationalphysicseducation(teachingstudentsmorephysics,moreeffectivelywithcomputersasavehicle)andeducationinthedisciplineofcomputationalphysics[2,6,7].(UtilizingsimulationssuchasPhyslets,orPhETsimulationsfromU.ofColorado,thoughexcellentpedagogy,doesn'tcountasthelatter.)Further,thereisthewell-recognizedsplitbetweena"scientificcomputingapproach"vs.a"computationalscience"approachtoCPeducation(N.ChonackyandD.Winch'sarticle,Ref.[2]).Isitbettertoteachthetheoryofanthordersymplecticintegrator;oraskstudentstofindoneinarepositoryontheWeb,downloadandutilizeit;understandingitslimitationsandinterpretingtheresultsviathetheoryofdynamicalsystems?The"understandeverythingfromthegroundup"physicists'mindsetpredisposestowardtheformer.YetthelattermaybebetterpreparationforCPRindynamicalsystemstheory,and/ortheworldofemploymentbeyondcollege. AdecadeagotherewereonlyfiveU.S.undergraduatedegreeprogramsinCP[R.H.LandauinRef.(2)].Anupdatedreport(PICUPandtheAIPStatisticalResearchCenter)surveyingallU.S.physicsdepartmentsisforthcoming,butaroughguesscanbemadethatthisnumberhasincreased,butbylessthananorderofmagnitude.Somewherebetween25%and50%ofdepartmentsteachcomputationattheintroductoryoradvancedlevel[8,9].Thestate-of-theartroughlyadecadeagowasablyreviewedinspecialissuesofCISE(Volume8,2006)andtheAmericanJournalofPhysics[2].Valuablecurricularresourcesinthelatterincludeapedagogicalresourceletter(R.H.Landau)andaguidelinespaperbasedontwoyearsofmeetingsandsurveyswithexpertsandstakeholders(N.ChonackyandD.Winch).Thatera

mightbeconstruedasthe"2ndgeneration"ofCPeducationbooksandcourses[8],inwhichpurenumericalanalysistextsgavewaytobeingmoreorientedtowardphysics,withsupportforprojects.AcluethatCPcoursesarealreadystructuredtobenefitCPRisthatthefacultyresponsibleforCPcurricularinnovationhave,thenandnow,beenfoundtobethoseengagedinCPR[8,9]. Difficultiesininitiating/sustainingaCPcurriculumhavebeenrecognized.These"systemicforces"include[5,10]

• it'stimeconsuming(instructorsmustprepare;timefortraditionaltopicsislost)• itdisruptsthestatusquoofcoursesoffered• itrequiresnewbackground(forinstructorandstudent)• itrequiresmorethanonefacultymember-acommunity• welackresearch,fromthePERcommunityorelsewhere,oneffectiveteachingofCP

Hopefully,potentialinstructorsarereassuredthattheyarenotaloneinencounteringthesedifficulties.TheyarediscussedinlightofarecentPICUP-sponsoredfacultyworkshopinRef.[10].Onthebrighterside,therearemanyresourcesavailableforcurricularsupportandchange,including:

• campusITSdepartments,anumberofwhomarealreadyofferingtrainingsinGit,commandlinetools,theXSEDEHPCframework,andmore.

• softwarebootcamps,inpersonoronlinethroughorganizationslikesoftware-carpentry.org,datacamp.com,andLynda.com

• comPADRE.org,whichisageneralAAPT-supportedmaterialsrepositoryandincludesresourcesspecifictoCPlikeOpenSourcePhysics(OSP),andthePICUPproject.PICUPinparticulariswellalignedwiththegoalsexpressedhereandfacilitatesthe“organic”useofcomputationintraditionalcourses.

• shodor.org,whichfeaturestheJournalofComputationalScienceEducationandhoststheComputationalScienceEducationReferenceDesk(CSERD)andtheNationalComputationalScienceInstitute(NCSI).Theseresourcesprovidecurriculumandworkshopsforfacultyseekingtoteachcomputationalscience.

VisavispreparationforCPR,physicsmightgaininsightfrommaterialsscienceandengineering(MSE).ComputationalMSEisnowanexpecteddepartmentalresearchthrust.In2005mostofthetop20U.S.MSEdepartmentswereplanningtointroducecomputationalundergraduatecoursesand43%alreadyhad,by2009themajorityofdepartmentshaddonethis[11].Courseslikethesetendtoteachresearch-calibertools;suchasindustry-standardcodesfordensityfunctionaltheory,moleculardynamics,finiteelementmodelling,andthermodynamicphasediagrams;andanotebookenvironmentforcalculation/visualization[12].ThisisconsistentwiththefactthatmostMSEfacultiesprioritizecourseswithacomputationalscienceapproach;forexample,onlyasmallminorityofMSEfacultywantedstudentstolearntowritecodeandcreatenewtools[11].StatedaimsofcomputationalMSEcoursesare,asinphysics,deepenedunderstandingoftraditionaltopics.However,itisclearthatMSEcourseswhichteachundergraduatestobecomeconfidentmodelerswithstate-of-the-artsoftware

satisfytheneedtohitthegroundrunninginundergraduateresearch,graduateschoolandtheworkplace. ThePERliteraturerevealshowactivelearningprecepts[13]translatereadilytothetypicalhands-on,team-basedteachingofCPinwhichallstagesofmanipulatingcode,dataandresultsaskstudentstoconstructtheirownknowledgeofphysics.Since"Mostofourknowledgeofhowtoteach...CPisanecdotal."[5]and,asmentionedabove,fewPERstudieshaveconcernedCPeducation[8,14],thereexistatpresent"significantopportunityforthePERcommunitytosupportthedevelopmentofmaterials,teachingpracticesandassessmentstrategies."[9].AmotivationforthecurrentpaperistoexploretheopportunityforeducationalexpertsandCPRstakeholderstofactorinCPRreadiness.Wewonderwhichcomputationalskillsarebestacquiredoutsideofandbroughttothelabversuslearned(andenhanced)inthelab,andwhatpracticesmakeforinclusiveCPeducation.3.Thesurvey:Whatskillsareneededatwhatstage? RespondentswhodoCPresearchwithstudents(seeSection4)wereasked"Pleaseassessthetypeofexperienceundergraduatestudentsneedbeforeorduringtheirtimewithyouinordertobeeffective,productiveresearchersinyourcomputationalphysicslab."CategoriesAandHbelowaskedfortextanswers.ForB-G,respondentswereaskedtocheckoneormoreoffourboxes:

§ Ideally,studentshavepriorexperiencewiththese§ Studentsgetfocusedtrainingonthese§ Studentslearntheseinnaturalcourseofresearchwithme§ Thisskillisunnecessaryformywork

Surveycategorieswereasfollows:A.FieldofPhysicsinwhichIdocomputation-basedresearchB.Algorithmicthinkingskills

1. Convertingaproblemtoastep-by-stepprocedureamenabletocodingC.Basiccodingskillsandknowledge

1. Programminginsomelanguageat"hello,world!"level2. Calculation/visualizationenvironment(e.g.Mathematica,Jupyternotebook,Matlab)3. Numericalarithmetic(e.g.machineprecision,datatypes)4. Flowcontrol(loops,conditionals,etc.)5. Scopingrulesparticulartoaprogramminglanguage6. Selectingandmanipulatingdatastructures

D.Softwareengineering1. Whiteboarding2. Pseudocoding&diagramming

3. Softwarelifecyclebestpractices(design-code-implement-validate-utilize-archive)(Note:Thisanswercouldbe"no",despitea"yes"tothestepoftestingcode.)

4. KeepingaTODOlist5. Documentingcodeandkeepingdocumentationcurrent6. camelTypeandotherstrongtyping7. Interfacinghomegrowncodewithexternallibraries8. Objectorienteddesignprinciples9. Fluencyinanobjectorientedlanguage10. Parsing/understandinglegacyorinheritedcode11. Extendingfunctionalityofexistingcode12. Versioncontrol13. Creatingmodular,well-structuredcodeeasilypassedontootherstudents14. UsinganIDE

E.Scientificprojectanddatamanagement

1. Keepingalabnotebookorelectroniclog2. Insitudocumentation(READMEfiles,etc.)3. Recordinginputparameterswhencodesareruninproductionmode4. Recordingversionofcodeusedtoproduceanysetofdata5. Namingconventionsofoutputfiles6. Backingupandknowinghowtorestoredata/codes7. Sharingcodeeffectivelywithothers8. Proactivecommunicationofresultsandissues9. Collaborativemindset

F.Fundamentalscientificcomputingskills1. Runninganexecutablecodeoneisgiven2. Askingpeopleforhelpwithrunningorwritingcode3. Readingcodedocumentation4. Googlingtoanswercodingquestions5. Locatingexistingcodeandlibrariesonweb-basedservers6. Terminal/unixshellprogramming7. Unixshellscripting8. Accessingandutilizingremoteplatforms(ssh,scp,etc.)9. Submittingjobstoaqueue10. Usingaterminal-basedtexteditor11. Compilingandmaking12. Readingformatteddata13. Writingformatteddata14. Understandingcompile-timeandruntimeerrors15. Visualizinglinedata(plots)16. Visualizingimagedata(2D)17. Visualizingvolumetricdata(3D)18. Creatinganimations

G.Moreadvancedcomputationalskills

1. Highperformancecomputing2. Profilingcodeandoptimizingexecution3. Specializedhardware(GPUs,etc.)4. Usingadebuggingenvironment

H.Whathaveweforgottentoaskabout?Whatdoyourstudentsneedto"hitthegroundrunning"inyourcomputationalresearch?4.Forty-sixcomputationalphysicistsrespondtosurvey ThesurveyofSection3wassenttoatotalof105physicistsandastronomyfaculty,ofwhich35and70taughtatcolleges(PUIs)anduniversitiesrespectively.Thiscorrespondedto27and29uniqueinstitutions.WebeganwiththeU.S.NewsandWorldReport2019listoftwentytopU.S.collegesanduniversities.WebsitesfortheirPhysicsDepartmentswerescrutinizedforcomputationalresearchthatinvolvedundergraduates.Identifiedfacultymembersreceivedemailsolicitationsandalinktothesurvey.Inaddition,wecontacted19facultymembersknowntousforCPRwithundergraduates.Theoverallresponseratewas44%(substantiallyhigherforcollegesthanuniversities.)Thefieldsofrespondentswerediverse:atomicphysics,astronomy,biophysics,condensedmatter,cosmology,fluids,gravitation,materialsphysics,nonlineardynamics,nuclear,plasma,softmatter,statisticalphysics,andquantum:fieldtheory,informationtheory,mechanicsandoptics.CompellingquestionsaboutdifferencesbetweenPUIsanduniversitiesorbetweendifferentsubfieldsmustbeleftforafuturestudy. Acomprehensivelookatthesurveydataindicatesthatsomeskillsarebettersuitedtolearn"onthejob"thanothers.ThescatterplotinFigure1capturesfourdimensionsofthedata.Eachcirclecorrespondstoalabeledskill(seeSection3).Weplotskillsforwhichpriorknowledgeisdesiredvs.thoseacquirednaturallyorviafocusedtraininginthelab.Thecircleradiusindicatesfractionofrespondentsforwhichtheskillisneeded.Colorshowsfractionwhoasserttheskillisacquirednaturallyduringresearch.

Figure1:Summaryofcomputationalskillsurveydata.Eachcirclecorrespondstooneskill/surveyquestion(seeSection3).Circleradiusisscaledbythefractionofrespondentswhosestudentsneededthatskill;thelargestcircles(e.g.C4)representskillsneededby100%ofrespondents Acoarseinterpretationofthisplotisthattheskillsintheupperleftareperhapsnecessarytoteachinthecurriculum.Skillsonthelowerrightcan(perhapsshould)belearnedasneededduringthecourseoftheresearch.Theneedforbasicprogrammingskills[C1]tobedevelopedaheadoftimeisparticularlyclearinthisrepresentation.98%ofrespondentsfounditnecessary,mostagreedthatstudentsshouldhavepriorexperiencebeforebeginningresearch,andfewbelieveditdevelopsnaturallyduringthecourseofresearch.Ofthe52skillssurveyed,sixofthemhadallrespondentsidentifythemasnecessary:

• [B1]Convertingaproblemtoastep-by-stepprocedureamenabletocoding• [C4]Flowcontrol(loops,conditionals,etc.)• [E8]Proactivecommunicationofresultsandissues• [F2]Askingpeopleforhelpwithrunningorwritingcode• [F4]Googlingtoanswercodingquestions• [F15]Visualizinglinedata(plots)• [F16]Visualizingimagedata(2D)

Thetypeofexperiencerespondentsidentifiedasnecessaryforstudentstohavewiththeseskillswasnotuniform,however.Responsesfor[B1]and[E8]above,aswellas[C1](basicprogramming)and[E4](codeversion/outputassociation)arecomparedinthepiechartsofFigure2.Thevastmajorityofrespondentsvaluedtheseskills,andtheycoverarangeofthetradeoffbetweenpriorknowledgeandnaturalskilldevelopment.

C1

F1

C4

D6

G3D14

C2B1F2

F3

F15D5E9 C3F5

D4F10

F7

D9

D8D3

D1

C6F11

F6C5F13

F8E1

F4

F12F17

F18

G2D2F9D12 E2G4

G1D7

E7F14

F16E8

E6D10 E5

E4

D13E3,D11

Anoverwhelmingnumber(80%)ofrespondentsemphasizedaneedforpriorexperiencewithprogramming[C1].Respondentssplitfairlyevenlyonwhethertheskill[B1]oftranslatingaproblemintoproceduralcodewasabestlearnedaheadoftimeornaturallyinthecourseofresearch,withanother15%advocatingfocusedtraining.Athirdofrespondentsindicatedthatstudentsshouldcomeinwith[E8],abilitytoproactivelycommunicateresultsandissues.Themundanebutvitalskill,valuedby93%ofrespondents,ofmatchingcodeversionstodataproduced[E4]waslearnedprimarilyonthejob.

Figure2:Breakdownofresponsesforparticularskillsdiscussedintext.Primaryresponses:blue,redandyellow;respondentschoosingtwoprimaryresponses:orange,purpleandgreen;choosingallthree:white;categorizingskillasunnecessary:gray.5.DosurveyresultsmaptotypicalCPcurricula? Itisarebuttablepresumptionthataphysicscourseincomputationwillinstillmany,butnotall,skillsideallyneededpriortoCPR.Forexample,considerthefollowingfourexcellentundergraduatecourses:•Sharma'sfreshman-levelcourseforpotentialSTEMmajorsatWagnerCollege[15]exposesstudentstoworkflowsinproducing,analyzingandvisualizingtechnicaldata.Withnocomputerscienceprerequisites,itdistancesitselffrombeingaprogrammingcourse.Mathematica,open-sourcemoleculardynamics,andmolecularvisualizationpackagesaretaught.AswithMSEcomputingcoursesdiscussedinSection2,theemphasisisonusinghighlevelplatformsforinsightintohighlevelquestions.IntegraltothecoursearemanipulatingandvisualizingdatastructuresinMathematica,frommolecularmechanicssimulation,andfromProteinDataBankfiles.Someofthesubstantialfinalprojectshavealevelofinnovativeexplorationwhichqualifiesascomputationalresearch.

B1

E8 E4

C1

natural

trainingprior

prior+training

training+natural

natural+prior

none

all

Colorkey

•CaballeroandPollock'sPER-informed,Mathematica-based,intermediateclassicalmechanicscourseatU.ColoradoatBoulderseeksbothtodeepenanunderstandingoftraditionaltopicsandtopreparestudentsforprofessionalphysicsresearch[14].Itispragmaticintermsofstudentandfacultytime.Forexample,theoryoferroranalysisisreplacedwithcommonsensecheckslikerunninglimitingcases,a"criticalpartofthemodelingcycle"(Editors'Introduction,Ref.[2])..•BrynMawrCollegehasdevelopedanextensivesetofmaterialsforbothinstructorsandstudents[16].FundedbyTIDES,aDiversity/EquityinitiativeoftheAACUanditsProjectKaleidoscope(PKAL),ateamdeveloped14iPython/Jupyternotebook-basedmoduleswhichembedcomputationallessonsinphysics/engineeringandsocialcontext.Students'electronicportfolioscontaincomputingworkplusprofilesofcomputationalscientistsandreflectionsonhowwhatwaslearnedintersectswithpersonalgoals.Itisclear,forexamplefromtheNationalCenterforScienceandEngineeringStatisticsWomen,Minorities,andPersonswithDisabilitiesinScienceandEngineering:2019.SpecialReportNSF19-304,thatthephysicalandcomputersciencesarefieldsthatpersistentlyskewedawayfromwomenandpeopleofcolor.Thus,goalsofequityandinclusionaresingularlyvaluable. •SwarthmoreCollege'scomputationallabhasundergonemanyincarnationsin30years-usingBasic,IDL,Matlab,Mathematica,and(currently)withiPython/Jupyternotebooks.Currently,thecourseis7weekslongandprecededbyarecommendedworkshop,runbytheSoftwareCarpentryFoundationofSanFrancisco,CAandcoveringterminalediting,Unixshell,anduseofalocalGithubforversioncontrol.Topicsinnumericalanalysisareintegratedwithphysicalapplications,withafinal,syntheticexerciseonLIGOgravitationalwavedata. InTableIwe'venotedwhichsurveyedskillsarelistedasexplicitcoursegoals;withthecaveatthatnamesofcategoriesB-Garenotrigorousidentifiers,andareopentointerpretation. Wagner Colorado BrynMawr SwarthmoreB.Algorithmicthinking

1 1 1 1

C.Basiccoding

1-6 2,3 1-4,6 1,2,4-6

D.Softwareengineering

6,11 None 2,5,7,8,11,13,14 5,7,10,11,13

E.ScientificProgramming

1,5-9 1,8,9 1,9 None

F.Fundamentalcomputing

1-4,12,13,15-18 1,2,4,15-18 1-6,10,12-16 1-4,12-16

G.Moreadvanced

None None 2,4 None

TableI.SkillsdetailedinSection3whichwerealsocoursegoals.

Notes:i.AbsenceofD3isnotindicativeofalackof"validation",sinceseveralcoursesincludedtestingofknowncases.ii.D14mayrefertotheJupyterenvironment,notaseparateIDE. Weinvitereaderstocross-compareTableIwithCPRexpertprioritiesdisplayedinFigures1and2.Alsoconsiderthehandfulofskillswhichnoneofthefourcourseshadasaninstructionalgoal:D1,D3,D4,D9,D12;E2-4;F7-9,F11;G1andG3.TheseomissionsarequiteconsistentwithFigure1.Theleastconsistentwas[D4]keepingaTODOlist;evenso,lessthan30%ofrespondentswantedpriorexperience,around50%saiditwouldbelearnedonthejob,and20%itwasnotneededatall.Understandably,someitemsareabsentbecausetheyareoutsidethetechnicalscopeofcoursetools(e.g.terminaleditingusingahighlevellanguage,HPC).Evenso,studentsdidfeelthelackofsomeofthese,suchastheabilitytodebugtheirprograms. Outsidethetechnicalreachofmanycoursearecertainskillsinwhichroughly20%ofsurveyrespondentswishedpriortraining:[F7]Unixshellscripting,[F8]connectingwithremoteplatforms,[F11]compilingandmaking,and[E2-4]writingREADMEsandkeepingtrackofversionsandinputparameters.(Item[F6]terminalandUnixbasics,wasequallydesirousforCPR,andagoalofonlyoneofthefourcourses.)Ontheotherhand,skill[D4]KeepingaTODOlist,wasoneinwhichroughly30%ofrespondentswantedpriorpreparation.Thispre-professionalskillworthteachingwouldnotstretchthetechnicalscopeofanycourse.6.AdviceandinnovationfromfolksdoingCPR OneCPcoursewhichdeservescarefulmention[17]isfocusedonCPRreadinessandrootedinexpertadvice.BurkeandAtherton,fortheir2015TuftsUniversitycourse(mostlyundergraduatesatroughlyasophomorelevel)modifiedtheirinitiallistofcompetenciesbasedoninterviewswithfacultyandpostdocsactiveinCPR.Theirevidence-basedmodelofexpertproblemsolvingwaslesslinearthantheiroriginalmodel(Figure3below),andincludedmeta-competenciesseldomfoundintraditionalundergraduateCPcourses.

Figure3:Adapted from Figures 1 and 2 of Am. J. Phys. 85 , 301 (2017), with the permission of the American Association of Physics Teachers. Thelearninggoals,inanutshell,were:(1)modelaphysicalsystem(2)design-implement-validatecode(3)understandtheimportanceofnumericalanalysis(4)testhypothesesviavisualizationandothermeans(5)connecttheory,experimentandsimulation.Aphysics-content-driven,project-basedcourseisatime-honoredwaytoprogressivelyintroducesuccessivelydeeperknowledgeofthevariouselementsofCP,afactinevidenceinmanywidely-usedCPtextbooks.(SeeforexampleRebbi'sarticleinRef.[2];Gould,TobachnikandChristian'sIntroductiontoComputerSimulationMethods,2006;orLandau,Päez,andBordeianu'sComputationalPhysics:ProblemSolvingwithPython,2015).Ithasalsobeennotedthatsuchcoursesarebothconsistentwiththeethosofaliberalartseducationandvaluablepreparationforsizeableresearchprojects[18],towitCPR,inthefuture.InRef.[17],learningwasimplementedviashortprojectsinclassical,quantumandstatisticalphysics,culminatinginafinalprojectofthestudent'schoice.Asubsetoflearningobjectiveswerehighlightedforeachproject;theseincludedauthenticresearch-relatedactivitieslikereadingpapers,consultingInternetresources,workingingroups,runningcode,testingperformance,documenting,andversioncontrol.MathematicaandPythonwerechosenastherequiredprogramminglanguages,butstudentswereallowedtouseothersforthefinalproject,providingyetanotherpragmaticlesson:cross-comparingdifferentlanguagesincontext.Courseevaluationsindicatedsuccess,butpointedtoconstructivechangessuchasadditionalscaffoldedlearningforstudentswithdifferentbackgrounds,andbettermanagementofgroupdynamics.

initialmodel evidence-basedmodel

includesmeta-practiceslikeexternaldocumentationandversioncontrol

Turningtoournewsurveydata,suggestionsofferedinItemH(seeSection3)canbedistilledintovariouscategories.SomerespondentsI.assertedthatstudentsshould

• haveprogrammingandprerequisitemathematics• beabletoconvertaproblemtoastepwiseprocedureforcoding(surveyItemB1)• knowspecificnumericaltechniques,e.g.FFT,nonlinearcurvefitting,orlinearalgebra• beabletorefactoranexistingcode• beabletocreateneworsubstantiallyextendalgorithms• knowtotestacode-evenifitisviaa"realitycheck"viaaknowncase.(Some

respondentsworkinenvironmentswhichdon'thavedebuggingcapabilities.)• thinkincommon-sensetermsaboutalgorithmsandworkflow.Forexample

"tostructureandautomatecomputationssothattheoutputofonecalculationcanbeefficientlypassedasinputtothenext"

• tohavealgorithmicthinkingskillspairedwithanassociatedunderstandingoftheunderlyingscience

• beproactivelycommunicative• beinterested,dedicated,andmotivated

II.wonderedhowtoteachtheirstudents

• tobe"fearless"abouttryingwhatmaynotwork,andpersistuntiltheysucceed• "softskills"ofcomputinglikecommenting/versioncontrol/writingREADMEs• skillsthattheythemselvesmaynothavelearned,ordon'temploytotheextentthat

best-practiceswoulddictate.Asonesaid:"Mycodingexperiencewasmostlyself-taughtandIgraduallylearnedthe(se)lessonsthehardway".

Severalrespondentsdescribedaself-pacedbootcampexperiencewhichtheyhavedevisedforstudents.Forexample:"Ihavethemlogintomycomputationalclustertoworkthroughsomestandardcannedexercises...studentsworkinteams.Twostudentscanbeworkingonslightlydifferentversionsofthesameproblem...Thatway,theyhaveacommunitytotalkto,buttheyhaveownershipovertheirownresults."Finally,whileseveralrespondentsstruggledwiththerarityofhavingstudentswhohitthegroundrunning;atleastone(fromanR1university)wasOKwiththis,expectingundergraduatestoarriveneedinginstructioninverybasicskills.

AfinalexpertperspectivecomesfromCaballero'scodednotesfrominterviewswithCPRprofessionalsinacademiaandindustry.Ref.[19]breaksskillsintoseveralusefulcategories,mostofwhichappearedonoursurveydirectlyorwereaddressedinoneormorefreeresponses.Theonlycategorywithoutrepresentationwasmeta-knowledgeofwhata

computationalsolutioncandeliver.ResonancesbetweentheskillsinRef.[19]andoursurveydataare:

• Knowledgeofcertaincomputationalmethods,bothnumericalanddata-centered(freeresponses)

• Knowledgeofspecificphysicalconcepts(freeresponses)• Movefluidlybetweenmath,physicsandcomputation-relatedideas(free

responses)• Professionalpracticeslikeplanning/writingpseudocodeanddebugging

(addresseddirectly)• Dataanalysisandvisualization(addresseddirectly)• Computationalthinking:breakingacomplextaskintostepswhichcanbe

encoded(addresseddirectly)• Meta-knowledgeofwhatacomputationalsolutioncandeliver(notaddressed)• Professionalpracticeslikedocumentingcodeandversioncontrol(addressed

directly)IntervieweesinRef.[19]alsomadeapointechoedbyseveralofoursurveyrespondents:Theywereself-taughtinprofessionalCPpractices.Therewasagreement,however,thatthiswasnotasituationthatshouldcarryforwardintotheeducationofthenextgenerationofphysicists.7.Conclusions CPissuccinctlydefinedbytheEuropeanInstituteofPhysics(IOP)websiteas"thescienceofusingcomputerstoassistinginthesolutionofphysicalproblems,andtofurtherphysicsresearch".TheIOP'sComputationalPhysicsGrouplistsaremarkablearrayofcomputationalphysicssubfields,suggestingitmaybehopelesstoidentifyasingletypeofworthwhileundergraduatepreparationforall.Nevertheless,theCPRandPERcommunitieswouldbenefitfromcomingtogethertoclassifytypesofskillsandbestteachingpractices.Thisissueisexpressedbyonesurveyrespondent,whowishestheyhadanestablishedprogramtobringstudentsuptoaneededlevelofpreparedness"insteadofitbeingacase-by-case,adhoctrainingsituation"whichworksforasmallnumbersofstudents,butnotinperpetuitywithlargenumbersofstudentsintheirresearchpipeline.Anotherrespondentremarksthatonemightsimilarlywishtoprepareincominggraduatestudentswithneededbreadthofskills.Giventheirdata-intensivefield,thispersonremarks"youunfortunatelyhavetoeitherteachthemcomputationorphysics.Astheseskillsarelearnedindifferentschoolswithinuniversities...I'mnotawareofanyundergraduateprogramthatIthinkstreamlinespeopletoworkwithme." Inconclusion,wehopethatourcurrentstudyisa"proofofprinciple"thatexpertsandstakeholderscanteachuswhichskillsareneeded,yetnoteasilymastered,duringabriefstintdoingundergraduateCPR.Inthisway,weinformourselveshowtostructureCPcurriculatohelpstudentshitthegroundrunning.

8.AcknowledgementsWearegratefultoJoanAdlerandRubinLandaufortheopportunitytopresentourwork.Wethankthecolleagueswhogenerouslyrespondedtoourlengthysurvey.AdditionalthankstoTonyAtherton,LorenaBarba,DanielCaballero,CatherineCrouch,RobertHilborn,PaulJacobs,MichaelLerner,MarkMatlin,RobertPanoff,ArjenduPattanayak,AndrewRuether,ArunkumarSharma,andChristopherTunnell.WegratefullyacknowledgefundingfromtheOfficeoftheProvostand(AG)aJamesMichenerFacultyFellowshipofSwarthmoreCollege.References1.A.Carpi,D.M.Ronan,H.M.Falconer,N.H.Lents.Cultivatingminorityscientists:Undergraduateresearchincreasesself-efficacyandcareerambitionsforunderrepresentedstudentsinSTEM.JournalofResearchinScienceTeaching54,169(2017).

2."ThemeDoubleIssue:IncorporatingComputationintotheUndergraduateCurriculum"(W.ChristianandB.Ambrose,eds.)Am.J.Phys.76,293(2008).

3.E.BehringerandL.Engelhardt,GuestEditorial:AAPTRecommendationsforcomputationalphysicsintheundergraduatephysicscurriculum,andthePartnershipforIntegratingComputationintoUndergraduatePhysics,Am.J.Phys.85,325(2017).

4.L.McNeilandP.Heron,PreparingPhysicsStudentsfor21stCenturyCareers,PhysicsToday70,38(2017).

5.AAPTUndergraduateCurriculumTaskForce,ComputationalPhysicsintheUndergraduateCurriculum:Executivesummary(2016)[PDFfile]Retrievedfromhttps://www.aapt.org/Resources/upload/AAPT_UCTF_CompPhysReport_final_B.pdf

6.R.H.Landau,ComputationalPhysics:ABetterModelforPhysicsEducation?CISE8,22(2006).

7.R.M.Panoff,PhysicsattheSpeedofRight:ChallengesinComputationalPhysicsEducation(2011)Retrievedfromhttp://www.shodor.org/talks/computationalphysics.

8.R.Martin,Undergraduatecomputationalphysicseducation:unevenhistoryandpromisingfuture,J.Phys.:Conf.Ser.759,012005(2016).

9.M.D.CaballeroandL.MernerPrevalenceandnatureofcomputationalinstructioninundergraduatephysicsprogramsacrosstheUnitedStatesPhys.Rev.Phys.Educ.Res.14,020129(2018).

10.A.Leary,P.W.IrvingandM.D.Caballero,Thedifficultiesassociatedwithintegratingcomputationintoundergraduatephysics.(PERResearchConference,Washington,DC,2018).Retrievedfromhttps://www.compadre.org/per/items/detail.cfm?ID=14812

11.K.Thornton,S.Nola,R.E.Garcia,M.AstaandG.B.OlsonComputationalMaterialsScienceandEngineeringEducation:ASurveyofTrendsandNeeds,JOM61,12 (2009).

12.R.Mansbach,A.Ferguson,K.Kilian,D.R.Krogstad,M.WestandG.L.Herman,Reforminganundergraduatematerialssciencecurriculumwithcomputationalmodules,J.MaterialsEducation38,161(2016).

13.D.E.MeltzerandR.K.Thornton,ResourceLetterALIP-1:Active-LearningInstructioninPhysics,Am.J.Phys.80,478(2012).

14.M.D.CaballeroandS.J.Pollock,AModelforIncorporatingComputationwithoutChangingtheCourse:Anexamplefrommiddle-divisionclassicalmechanics,Am.J.Phys.82,231(2014).

15.A.K.Sharma,AmodelScientificComputingcourseforfreshmanstudentsatliberalartscolleges,J.ofComp.Sci.Ed.8,2(2017).

16.M.Matlin,D.BlankandE.McCormackEnhancingComputationandInformationScienceLearningOpportunitiesforWomenLeadersinSTEM(2017)Retrievedfrom

blendedlearning.blogs.brynmawr.edu/tides-computational-skill-building/

17.C.J.BurkeandT.J.Atherton,Developingaproject-basedcomputationalphysicscoursegroundedinexpertpractice,Am.J.Phys.85,301(2017).

18.R.DominguezandB.Huff,Theroleofcomputationalphysicsintheliberalartscurriculum,J.ofPhys.ConferenceSeries640,012061(2015).

19.D.M.Caballero,Computationacrossthecurriculum:Whatskillsareneeded?(2015)[PDFfile]Retrievedfromarxiv.org/pdf/1507.00533.pdf

AuthorBiographies:AmyGraves(formerlyAmyBug)istheWalterKempProfessorintheNaturalSciencesatSwarthmoreCollege.EducatedinmathematicsandphysicsatWilliamsCollegeandinphysicsatM.I.T.,hercomputationalsoftmatterresearchhasbeensupportedbytheAmericanChemicalSociety'sPetroleumResearchFundandtheNationalScienceFoundation'sDivisionofMaterialsResearch.Shealsostudiescomputationinthephysicscurriculum,andraceandgenderissuesinSTEM.SheisaFellowoftheAmericanPhysicalSociety,amemberofitsCommitteeontheStatusofWomeninPhysics(CSWP),andontheEditorialBoardoftheAmericanJournalofPhysics.Hercontactemailisabug1@swarthmore.edu.AdamLightisanAssistantProfessorintheDepartmentofPhysicsatColoradoCollege.EducatedatCaseWesternReserveUniversityandTheUniversityofColoradoBoulder,heisinterestedinbasicandappliedplasmaphysics.Dr.LightisamemberoftheAmericanPhysicalSociety.Hiscontactemailisalight@coloradocollege.edu.