48
HISTORY OF SCREEN TECHNOLOGY

HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Embed Size (px)

Citation preview

Page 1: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

HISTORY OF SCREEN

TECHNOLOGY

Page 2: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

MONOCHROME CRT

Page 3: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

COLOR CRT

Page 4: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

SPLİT-FLAP DİSPLAY

Page 5: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

FLIP-DISC DISPLAY

Page 6: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

MONOCHROME PLASMA DISPLAY

Page 7: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

VACUUM FLUORESCENT DİSPLAY

Page 8: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

DİRECT-VİEW BİSTABLE STORAGE TUBE

Page 9: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

BRAILLE DISPLAY

Page 10: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

FIRST LED DISPLAY

Page 11: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

TWISTED NEMATIC FIELD EFFECT LCD

Page 12: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

SUPER-TWİSTED NEMATİC LCD

Page 13: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

THİN FİLM TRANSİSTOR LCD

Page 14: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

FULL-COLOR PLASMA DİSPLAY

Page 15: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

ORGANIC LED

Page 16: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

ORGANIC PAPER

Page 17: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

LED(Light Emitting Diode)

A light emitting diode is a semiconductor light source. Working principle of a LED is

electroluminescence that is when the LED switched on, electrons are able to recombine with holes

within the device, releasing energy in the form of photons.

Page 18: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Commercial Development

The first commercial LEDs were commonly used as replacements for incandescent and neon indicator lamps, and in seven-segment displays, first in expensive equipment such as laboratory and electronics test equipment, then later in such appliances as TVs, radios, telephones, calculators, and even watches. Until 1968, visible and infrared LEDs were extremely costly, in the order of US$ 200 per unit, and so had little practical use.

Page 19: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Commercial Development

The Monsanto Company was the first organization to mass-produce visible LEDs, using gallium arsenide phosphide (GaAsP) in 1968 to produce red LEDs suitable for indicators. Later, other colors became widely available and appeared in appliances and equipment. In the 1970s commercially successful LED devices at less than five cents each were produced by Fairchild Optoelectronics.

Page 20: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Commercial Development

As LED materials technology grew more advanced, light output rose, while maintaining efficiency and reliability at acceptable levels.

Page 21: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Lifetime and Failure

The most common symptom of LED failure is the gradual lowering of light output and loss of efficiency. Sudden failures, although rare, can occur as well.LED performance is temperature dependent. Most manufacturers' published ratings of LEDs are for an operating temperature of 25 °C. LEDs used outdoors, such as traffic signals, and that are utilized in climates where the temperature within the light fixture gets very hot, could result in low signal intensities or even failure.

Page 22: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Lifetime and Failure

LED light output rises at lower temperatures, leveling off, depending on type, at around −30 °C. Thus, LED technology may be a good replacement in uses such as supermarket freezer lighting and will last longer than other technologies. However, because they emit little heat, ice and snow may build up on the LED light fixture in colder climates. This lack of waste heat generation has been observed to sometimes cause significant problems with airport runway lighting in snow-prone areas.

Page 23: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Applications

Indicators and Signs Because of their long life, fast switching times andtheir ability to be seen in broad daylight, LEDs have

been used in ;-Brake lights and rear light clusters for vehicles-Traffic lights

Page 24: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Applications

Indicators and Signs Red or yellow LEDs are used in

indicator and alphanumeric displays in environments where night vision must be retained: aircraft cockpits, submarine ship bridges and astronomy observatories.

Page 25: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Applications

Lightining LEDs are used increasingly in

aquarium lights. Especially for reef aquariums, LED lights provide an efficient light source with less heat output to help maintain optimal aquarium temperatures.

Page 26: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Applications

LightingLEDs are the ideal solution for street lighting due to their long life, directional light, uniform brightness and illumination.

Page 27: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Applications

OthersMining operationsBlacklighting for LCD TVsLightweight laptop displays

Page 28: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

LCD SYSTEMS

Page 29: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

A liquid-crystal display (LCD) is a flat panel display, electronic visual display, or video display

that uses the light modulating properties of liquid crystals. Liquid crystals do not emit light

directly.

Page 30: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Liquid crystals were first discovered in 1888. By 2008, annual sales of televisions with LCD

screens exceeded sales of CRT units worldwide; the CRT became obsolescent for most purposes.

Page 31: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

They are used in a wide range of applications including●Computer monitors●Televisions●Instrument panels●Aircraft cockpit displays●Signage They are common in consumer devices such as video players, gaming devices, clocks, watches, calculators, and telephones, and have replaced cathode ray tube (CRT) displays in most applications. Also they are available in a wider range of screen sizes than CRT and plasma displays.

Page 32: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

The LCD screen is more energy efficient and can be disposed of more safely than a CRT. Its low electrical power consumption enables it to be

used in battery-powered electronic equipment.

Page 33: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent

electrodes, and two polarizing filters, the axes of transmission of which are perpendicular to each

other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second polarizer.

Page 34: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT
Page 35: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Since LCD panels produce no light of their own, they require external light to produce a visible

image. In a "transmissive" type of LCD, this light is provided at the back of the glass "stack" and is

called the backlight.

Page 36: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

SpecificationsThere are several factors when evaluating an LCD

●Resolution versus range●Spatial performance●Temporal/timing performance●Color performance●Color depth or color support●Brightness and contrast ratio

Page 37: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Plasma Display

These televisions are light-weight and save a lot of space

Page 38: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

• made of 2 sheets of glass with 2 gases stored

between the sheets• xenon and neon gases• red, blue and green phosphors (substances

that give off light when struck by light)

Page 39: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

plasma display panel (PDP)• small cells• containing electrically charged ionized gases,

or what are in essence chambers more commonly known as fluorescent lamps

Page 40: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

*displays are bright (1,000 lux or higher for the module), have a wide color gamut*can be produced in fairly large sizes—up to 3.8 metres (150 in) diagonally*very low-luminance "dark-room" black level* life time is 100,000 hours of actual display time, or 27 years at 10 hours per day.

Page 41: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

native plasma resolutions

*The most common native resolutions for plasma display panels are 853×480 (EDTV), 1,366×768 or 1,920×1,080 (HDTV).

*upscaling and downscaling algorithms used by each display manufacturer.

Page 42: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

enhanced-definition plasma television

*Early plasma televisions were enhanced-definition (ED) with a native resolution of 840×480 (discontinued) or 853×480, and down-scaled their incoming High-definition video signals to match their native display resolution.

Page 43: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

ED Resolutions*Following ED resolutions were common prior

to the introduction of HD displays, but have long been phased out in favor of HD displays.

Page 44: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

High-definition plasma television• Early high-definition (HD) plasma displays had a

resolution of 1024x1024 and were alternate lighting of surfaces (ALiS) panels made by Fujitsu/Hitachi.

These were interlaced displays, with non-square pixels.

• HD Resolutions• 1024×1024 (discontinued)• 1024×768• 1280×768• 1366×768• 1280×1080• 1920×1080

Page 45: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

How plasma display works

*millions of tiny cells in between two panels of glass

*noble gases and a minuscule amount of mercury gas or plasma

Page 46: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Comparison of Television Display Technologies

Page 47: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

LCD

Advantages• Slim profile• Lighter and less bulky than rear-

projection televisions• Is less susceptible to burn-in: Burn-in

refers to the television displaying a permanent ghost-like image due to constant, prolonged display of the image. Light-emitting phosphors lose their luminosity over time and, when frequently used, the low-luminosity areas become permanently visible.

• LCDs reflect very little light, allowing them to maintain contrast levels in well-lit rooms and not be affected by glare.

• Slightly lower power usage than equivalent sized Plasma displays.

• Can be wall-mounted.

Disadvantages• Poor black level: Some light passes through

even when liquid crystals completely untwist, so the best black color that can be achieved is varying shades of dark gray, resulting in worse contrast ratios and detail in the image. This can be mitigated by the use of a matrix of LEDs as the illuminator to provide nearly true black performance.

• Narrower viewing angles than competing technologies. It is nearly impossible to use an LCD without some image warping occurring.

• LCDs rely heavily on thin-film transistors, which can be damaged, resulting in a defective pixel.

• Typically have slower response times than Plasmas, which can cause ghosting and blurring during the display of fast-moving images. This is also improving by increasing the refresh rate of LCD displays

Page 48: HISTORY OF SCREEN TECHNOLOGY. MONOCHROME CRT COLOR CRT

Plasma displayAdvantages• Slim profile• Can be wall mounted• Lighter and less bulky than rear-

projection televisions• Achieves better and more-accurate

color reproduction than LCDs (68 billion (236) versus 16.7 million (224)) colors[

• Produces deep, true blacks allowing for superior contrast ratios (up to 1:1,000,000)

• Far wider viewing angles than those of LCD (up to 178°), images do not suffer from degradation at high angles unlike LCD‘s

• Absence of motion blur, because of very high refresh rates and faster response times (as fast as one microsecond) make plasmas ideal for fast motion video (films or sports viewing)

Disadvantages• Susceptible to Screen burn-in and

image retention (however, newer models have built-in technologies to prevent this such as pixel shifting)

• Phosphors lose luminosity over time, resulting in gradual decline of absolute image brightness (newer models are less susceptible to this, having lifespans exceeding 60,000 hours, far longer than older CRT technology)

• Generally do not come in sizes smaller than 42 inches

• Susceptible to reflection glare in bright rooms

• High power consumption• Heavier than LCDs due to the

requirement of a glass screen to hold the gases

• Damage to the glass screen can be permanent and far more difficult to repair than an LCD