53
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) CfA Sept 2004 ionized neutral ionized

History of IGM

Embed Size (px)

DESCRIPTION

History of IGM. ionized. C.Carilli (NRAO) CfA Sept 2004. neutral. Epoch of Reionization (EoR). bench-mark in cosmic structure formation indicating the first luminous structures. ionized. z=5.80. z=5.82. z=5.99. z=6.28. The Gunn Peterson Effect. - PowerPoint PPT Presentation

Citation preview

Page 1: History of IGM

History of IGM

• bench-mark in cosmic structure formation indicating the first luminous structures

Epoch of Reionization (EoR)

C.Carilli (NRAO) CfA Sept 2004

ionized

neutral

ionized

Page 2: History of IGM

z=5.80

z=5.82

z=5.99

z=6.28

The Gunn Peterson Effect

Fan et al 2003

Fast reionization at z=6.3

=> opaque at _obs<0.9m

f(HI) > 0.001 at z = 6.3

Page 3: History of IGM

Neutral IGM evolution (Gnedin 2000): ‘Cosmic Phase transition’ at z=6 to 7

Log (HI fraction)

Density Gas Temp

Ionizing intensity

Normalization: GP absorption, LCDM + z=4 LBGs, T_IGM

8 Mpc (comoving)

Page 4: History of IGM

Thompson scattering at EoR

e = 0.17 => F(HI) < 0.5 at z=17

Extended period of reionization: z=6 to 15?

WMAP Large scale polarization of CMB (Kogut et al.)

20deg

Page 5: History of IGM

Fan et al. 2002

Near-edge of reionization: GP Effect

Fairly Fast:• f(HI) > 1e-3 at z >= 6.4 (0.87Gyr)

• f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr)

Page 6: History of IGM

Complex reionization example: Double reionization? (Cen 2002)

Pop III stars in ‘mini-halos’ (<1e7 M_sun)

‘normal’ galaxies (>1e8M_sun)

Page 7: History of IGM

Limitations of current measurements:

CMB polarization: -- _e = Ln_ee = integral measure through universe=> allows many reionization scenarios

Gunn-Peterson effect: -- _Lya >>1 for f(HI)>0.001-- High z universe is opaque to optical observers

Page 8: History of IGM

Radio astronomical probes of the Epoch of Reionization and the 1st luminous objects

1. CMB large scale polarization

2. Objects within EoR – Molecular gas, dust, star formation

3. Neutral IGM – HI 21cm emission and absorption

Collaborators

USA – Carilli, Walter, Fan, Strauss, Owen, Gnedin

Euro – Bertoldi, Cox, Menten, Omont, Beelen

SKA Key Program science team– Briggs, Carilli, Furlanetto, Rawlings

Science with the Square Kilometer Array (NAR, Carilli & Rawlings) http://www.aoc.nrao.edu/~ccarilli/CHAPS.shtml

Page 9: History of IGM

IRAM 30m + MAMBO: sub-mJy sens at 250 GHz + wide fields

IRAM PdBI: sub-mJy sens at 90 and 230 GHz + arcsec resol.

VLA: uJy sens at 1.4 GHz

VLA: < 0.1 mJy sens at 20-50 GHz + 0.2” resol.

Page 10: History of IGM

Magic of (sub)mm

L_FIR = 4e12 x S_250(mJy) L_sun for z=0.5 to 8

Page 11: History of IGM

SDSS + DPOSS:

700 at z > 4

30 at z > 5

9 at z > 6

M_B < -26 =>

L_bol > 1e14 L_sun

M_BH > 1e9 M_sun

York et al 2001; Fan et al

High redshift QSOs

Page 12: History of IGM

QSO host galaxies – M_BH – relation

• Most (all?) low z spheroidal galaxies have SMBH

• M_BH = 0.002 M_bulge

‘Causal connection between SMBH and spheroidal galaxy formation’ (Gebhardt et al. 2002)?

Luminous high z QSOs have massive host galaxies (1e12 M_sun)

Page 13: History of IGM

• 30% of luminous QSOs have S_250 > 2 mJy, independent of redshift from z=1.5 to 6.4

• L_FIR =1e13 L_sun = 0.1 x L_bol: Dust heating by starburst or AGN?

MAMBO surveys of z>2 DPSS+SDSS QSOs

1148+52 z=6.4

1048+46 z=6.2

1e13L_sun

Arp220

Page 14: History of IGM

L_FIR vs L’(CO)

M(H_2) = X * L’(CO), X=4 (Milkyway), X=0.8 (ULIRGs)

Telescope time: t(dust) = 1hr, t(CO) = 10hr

Index=1.7

Index=1

1e11 M_sun

1e3 M_sun/yr

High-z sources

Page 15: History of IGM

•highest redshift quasar known•L_bol = 1e14 L_sun•central black hole: 1-5 x 109 Msun (Willot etal.)•clear Gunn Peterson trough (Fan etal.)

Objects within EoR: QSO 1148+52 at z=6.4

Page 16: History of IGM

1148+52 z=6.42: MAMBO detection

S_250 = 5.0 +/- 0.6 mJy => L_FIR = 1.2e13 L_sun,

M_dust =7e8 M_sun

3’

Page 17: History of IGM

VLA Detection of Molecular Gas at z=6.419

46.6149 GHzCO 3-2

Off channels

50 MHz ‘channels’ (320 kms-1, z=0.008)noise: ~57 Jy, D array, 1.5” beam

M(H_2) = 2e10 M_sun

Size < 1.5” (image),

Size > 0.2” (T_B/50K)^-1/2

Page 18: History of IGM

IRAM Plateau de Bure confirmation

• FWHM = 305 km/s• z = 6.419 +/- 0.001

(3-2)

(7-6)

(6-5)

• Tkin=100K, nH2=105cm-3

Typical of starburst nucleus

Page 19: History of IGM

VLA imaging of CO3-2 at 0.4” and 0.15” resolution

Separation = 0.3” = 1.7 kpc

T_B = 20K = T_B (starburst)

Merging galaxies?

Or Dissociation by QSO?

rms=50uJy at 47GHz

CO extended to NW by 1” (=5.5 kpc) tidal(?) feature

Page 20: History of IGM

Phase stability: Fast switching at the VLA

10km baseline rms = 10deg

Page 21: History of IGM

1148+5251: radio-FIR SED

Star forming galaxy characteristics: radio-FIR SED, L’_CO/FIR, CO excitation and T_B => Coeval starburst/AGN: SFR = 1000 M_sun/yr

Stellar spheroid formation in few e7 yrs = e-folding time for SMBH

=> Coeval formation of galaxy/SMBH at z = 6.4 ?

S_1.4= 55 +/- 12 uJy

1048+46

Beelen et al.

T_D = 50 K

Page 22: History of IGM

•M(dust) = 7e8 M_sun

•M(H_2) = 2e10 M_sun

•M_dyn (r=2.5kpc) = 5e10 M_sun

•M_BH = 3e9 M_sun => M_bulge = 1.5e12 M_sun

• Gas/dust = 30, typical of starburst

• Dynamical vs. gas mass => baryon dominated?

• Dynamical vs. ‘bulge’ mass => M –breaks-down at high z?

1148+52: Masses

Page 23: History of IGM

Cosmic (proper) time

T_univ = 0.87Gyr

Page 24: History of IGM

• Age of universe: 8.7e8 yr

• C, O production (3e7 M_sun): 1e8 yr

• Fe production (SNe Ia): few e8 yr (Maiolino, Freudling)

• Dust formation: 1.4e9yr (AGB winds) => dust formed in high mass stars/SNR (Dunne et al.. 2003)? => silicate grains?

=> Star formation started early (z > 10)?

Timescales

Page 25: History of IGM

Cosmic Stromgren Sphere

• Accurate redshift from CO: z=6.419+/0.001Ly a, high ioniz. Lines: uncertainty >1000km/s (z=0.03)

• Proximity effect: photons leaking from 6.32<z<6.419

z=6.32

•‘time bounded’ Stromgren sphere: R = 4.7 Mpc

t_qso= 1e5 R^3 f(HI)= 1e7yrs

White et al. 2003

Page 26: History of IGM

Richards et al. 2002SDSS QSOs

Page 27: History of IGM

Loeb & Rybicki 2000

Page 28: History of IGM

Constraints on neutral fraction at z=6.4 GP => f(HI) > 0.001

If f(HI) = 0.001, then t_qso = 1e4 yrs – implausibly short given fiducial lifetime, f_lt = 1e7 years?

Probability arguments suggest: f(HI) > 0.1 at z=6.4 – much better limit than GP

Wyithe and Loeb 2003

Page 29: History of IGM

z>6 QSOs with MgII and/or CO redshifts (Walter et al, Willot et al., Maiolino et al.,

<z> = 0.08 => <R> = 4.4 Mpc

Page 30: History of IGM

Near-edge of reionization: GP + Cosmic Stromgren Spheres

Very Fast?• f(HI) > 1e-1 at z >= 6.4 (0.87Gyr)

• f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr)

See also Cosmic Stromgren Surfaces (Mesinger & Haiman 2004)

Page 31: History of IGM

Gas and dust during the EoR

• FIR luminous galaxy at z=6.42: 1e13 Lsun observe dust, gas, star formation, AGN

• Merging(?) galaxy: Molecular gas mass = 2x1010 M_sun, M_dyn = 6e10 M_sun

• Early enrichment of heavy elements and dust produced in the first stars => star formation commenced at 0.4 Gyr after the big bang

• Coeval formation of SMBH + stars in earliest galaxies – break-down of M- at high z?

• Cosmic Stromgren sphere of 4.7 Mpc => ‘witnessing process of reionization’ t_qso = 1e7 * f(HI) yrs ‘fast’ reionization: f(HI)>0.1 at z=6.4?

Page 32: History of IGM

J1048+4637: A second FIR-luminous QSO source at z=6.2

S_250 = 3.0 +/- 0.4 mJy => L_FIR = 7.5e12 L_sun

z(MgII)

S(CO 3-2) = 0.17 +/- 0.09 mJy

EVLA correlator: 8GHz, 16000 channels

z(opt)

MAMBO 250 GHz VLA CO 3-2

Page 33: History of IGM

VLA detections of HCN 1-0 emission

n(H_2) > 1e5 cm^-3 (vs. CO: n(H_2) > 1e3 cm^-3)

z=2.58

Solomon et al

index=1

z=4.7

z=6.4

70 uJy

Page 34: History of IGM

Continuum sensitivity of future arrays: Arp 220 vs z (FIR = 1.6e12 L_sun)

cm: Star formation, AGN

(sub)mm Dust, molecular gas

Near-IR: Stars, ionized gas, AGN

ConX: AGN

Page 35: History of IGM

Studying the pristine IGM beyond the EOR: redshifted HI

21cm observations (100 – 200 MHz) with the Square Kilometer Array. ‘Pathfinders’: LOFAR, MWA, PAST, VLA-VHF,…

SKA goal: Jy at 200 MHz Large scale structure: density, f(HI), T_spin

Page 36: History of IGM

Low frequency background – hot, confused sky

Eberg 408 MHz Image (Haslam + 1982)

Coldest regions: T = 100z)^2.6 K

Highly ‘confused’: 3 sources/arcmin^2 with S_0.2 > 0.1 mJy

Page 37: History of IGM

Terrestrial interference

100 MHz z=13

200 MHz z=6

Page 38: History of IGM

Temperatures: Spin, CMB, Kinetic and the 21cm signal

•Initially T_S= T_CMB

•T_S couples to T_K via Lya scattering

•T_K = 0.026 (1+z)^2 (wo. heating)

•T_CMB = 2.73 (1+z)

•T_S = T_CMB => no signal

•T_S = T_K < T_CMB => Absorption against CMB

•T_S > T_CMB => Emission

T_K

T_CMBT_s

Tozzi + 2002

z = 11 z = 7

t = 10mK

Page 39: History of IGM

Global reionization signature in low frequency HI spectra

(Gnedin & Shaver 2003)

double

fast21cm ‘deviations’ at

1e-4 wrt foreground

Spectral index deviations of 0.001

Page 40: History of IGM

HI 21cm Tomography of IGM Zaldarriaga + 2003

z=12 9 7.6

T_B(2’) = 10’s mK

SKA rms(100hr) = 4mK

LOFAR rms (1000hr) = 80mK

Page 41: History of IGM

Power spectrum analysis

Zaldarriaga + 2003

LOFAR

SKA

Z=10

129 MHz

2deg 1arcmin

Page 42: History of IGM

1422+23 z=3.62 Womble 1996

N(HI) = 1e13 -- 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6

=> Before reionization N(HI) =1e18 – 1e21 cm^-2

Cosmic Web after reionization = Ly alpha forest ( <= 10)

Page 43: History of IGM

Cosmic web before reionization: HI 21cm Forest (Carilli, Gnedin, Owen 2002)

)1()10

1)((008.0 2/1

HI

S

CMB fz

T

T

• Mean optical depth (z = 10) = 1% = ‘Radio Gunn-Peterson effect’

• Narrow lines (= few %, few km/s) = HI 21cm forest (<= 10), 10/unit z at z=8

• Mini-halos (= 100) (Furlanetto & Loeb 2003)

• Primordial disks: low cosmic density=0.001/unit z, but high opacity=> fainter radio sources -- GRBs?

Radio sources beyond the EOR?

• Radio loud QSO fraction = 10% to z=5.8 (Petric + 2003)

• Models => expect 0.05 to 0.5 deg^-2 at z> 6 with S_151 > 6 mJy, out of 100 total (Carlli,Jarvis,Haiman)

Z=1020mJy

Z=8

Page 44: History of IGM

GMRT 228 MHz search for HI21cm abs toward highest z radio galaxy, 0924-220 z=5.2

Continuum point source = 0.55 Jy; rms/(40km/s chan) = 5 mJy

z(CO)230Mhz

8GHz

1”

Van Breugel et al.

Page 45: History of IGM

GMRT 230 MHz 0924-220 z=5.2

channel 20 (229.60MHz)

Page 46: History of IGM

‘Pathfinders’: PAST, LOFAR, MWA, VLA-VHF, …

MWA prototype (MIT/ANU)

LOFAR (NL)

PAST (CMU/China) VLA-VHF (CfA/NRAO)

Page 47: History of IGM
Page 48: History of IGM

VLA-VHF: 180 – 200 MHz Prime focus X-dipole (Greenhill et al – proposed)

Leverage: existing telescopes, IF, correlator, operations

Page 49: History of IGM

Main Experiment: Cosmic Stromgren spheres around z>6 SDSS QSOs (Wyithe & Loeb 2004)

VLA spectral/spatial resolution well matched to expected signal: 5’, 1000 km/s

VLA-VHF 190MHz 250hrs

15’

20mK

0.50+/-0.12 mJy

Page 50: History of IGM

Other Experiments: power spectrum analysis, ‘HI 21cm forest’

Sensitivity per 0.8MHz channel: currently have 16 channels over 12.5 MHz

Piggy-back on CSS experiment

Centrally condensed uv coverage

Page 51: History of IGM

System/Site characteristics

Work hours

TV carrier

Proposed band

First sidelobe = 15db

Page 52: History of IGM

Challenges and ‘mitigation’: VLA-VHF CSS Ionospheric phase errors – higher freq (freq^-2); 4deg FoV; 1km B_max

T_bg – higher freq (freq^-2.75)

Confusion (in-beam) – spectral measurement (eg. Morales & Hewitt 2004); mJy point source removal w. A array; precise position and redshift

Wide field problems – polarization, sidelobes, bandpass – all chromatic ?

RFI – “interferometric excision” (but D array); consistently ‘clean’ times in

monitor plots (but very insensitive measure) ?

Proposed Cost and Timeline

100K in parts (CfA) + labor (CfA/NRAO)

First tests (4 prototypes): Q1, Q2 2005

First experiments (100-200 hr): D array, Q4 2005

Large proposal (500 hr): D array, Q1 2007

Page 53: History of IGM

Radio astronomy – Probing the EoR

•Study physics of the first luminous sources (limited to near-IR to radio wavelengths)

•Currently limited to pathological systems (‘HLIRGs’)

•EVLA, ALMA 10-100x sensitivity is critical to study normal galaxies

•Low freq pathfinders: HI 21cm signatures of neutral IGM

•SKA imaging of IGM

z