41
K.S.O PENDAHULUAN [email protected]

HISTORY, INDIAN SMOKE COMMUNICATION...A BRIEF HISTORY OF F.O By 1964, a critical and theoretical specification was identified by Dr. Charles K. Kao for long-range communication devices,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • K.S.OPENDAHULUAN

    [email protected]

  • HISTORY, INDIAN SMOKE COMMUNICATION

  • A BRIEF HISTORY OF F.O

    In 1880, Alexander Graham Bell patented an optical telephone system, which he called the Photophone. However, his earlier invention, the telephone, was more practical and took tangible shape.

    The Photophone remained an experimental invention and never materialized.

  • BELL’S PHOTOPHONE

  • BELL’S PHOTOPHONE

  • A BRIEF HISTORY OF F.O

    During the 1920s, John Logie Baird in England and Clarence W. Hansell in the United States patented the idea of using arrays of hollow pipes or transparent rods to transmit images for television or facsimile systems.

    In 1954, Dutch scientist Abraham Van Heel and British scientist Harold H. Hopkins separately wrote papers on imaging bundles. Hopkins reported on imaging bundles of unclad fibers, whereas Van Heel reported on simple bundles of clad fibers. Van Heel covered a bare fiber with a transparent cladding of a lower refractive index.

    This protected the fiber reflection surface from outside distortion and greatly reduced interference between fibers.

  • A BRIEF HISTORY OF F.O

    Abraham Van Heel is also notable for another contribution. Stimulated by a conversation with the American optical physicist Brian O'Brien, Van Heel made the crucial innovation of cladding fiber-optic cables.

    All earlier fibers developed were bare and lacked any form of cladding, with total internal reflection occurring at a glass-air interface. Abraham Van Heel covered a bare fiber or glass or plastic with a transparent cladding of lower refractive index. This protected the total reflection surface from contamination and greatly reduced cross talk between fibers.

  • A BRIEF HISTORY OF F.O

    By 1960, glass-clad fibers had attenuation of about 1 decibel (dB) per meter, fine for medical imaging, but much too high for communications.

    In 1961, Elias Snitzer of American Optical published a theoretical description of a fiber with a core so small it could carry light with only one waveguide mode. Snitzer's proposal was acceptable for a medical instrument looking inside the human, but the fiber had a light loss of 1 dB per meter.

    Communication devices needed to operate over much longer distances and required a light loss of no more than 10 or 20 dB per kilometer.

  • A BRIEF HISTORY OF F.O

    By 1964, a critical and theoretical specification was identified by Dr. Charles K. Kao for long-range communication devices, the 10 or 20 dB of light loss per kilometer standard. Dr. Kao also illustrated the need for a purer form of glass to help reduce light loss.

    In the summer of 1970, one team of researchers began experimenting with fused silica, a material capable of extreme purity with a high melting point and a low refractive index.

    Corning Glass researchers Robert Maurer, Donald Keck, and Peter Schultz invented fiber-optic wire or "optical waveguide fibers" (patent no. 3,711,262), which was capable of carrying 65,000 times more information than copper wire, through which information carried by a pattern of light waves could be decoded at a destination even a thousand miles away.

  • A BRIEF HISTORY OF F.O

    The team had solved the decibel-loss problem presented by Dr. Kao. The team had developed an SMF with loss of 17 dB/km at 633 nm by doping titanium into the fiber core.

    By June of 1972, Robert Maurer, Donald Keck, and Peter Schultz invented multimode germanium-doped fiber with a loss of 4 dB per kilometer and much greater strength than titanium-doped fiber.

    By 1973, John MacChesney developed a modified chemical vapor-deposition process for fiber manufacture at Bell Labs. This process spearheaded the commercial manufacture of fiber-optic cable.

  • A BRIEF HISTORY OF F.O

    In April 1977, General Telephone and Electronics tested and deployed the world's first live telephone traffic through a fiber-optic system running at 6 Mbps, in Long Beach, California.

    They were soon followed by Bell in May 1977, with an optical telephone communication system installed in the downtown Chicago area, covering a distance of 1.5 miles (2.4 kilometers). Each optical-fiber pair carried the equivalent of 672 voice channels and was equivalent to a DS3 circuit.

  • A BRIEF HISTORY OF F.O

    Today more than 80 percent of the world's long-distance voice and data traffic is carried over optical-fiber cables.

  • Submarine Cable Map 2016 (www.telegeography.com)

  • OVERVIEW

  • ELECTROMAGNETIC SPECTRUM

    Spektrum gelombang optik berada pada range 50

    nm (ultraviolet) – 100 µm (far infrared).

    Visible region berada pada band 400 – 700 nm.

    Pada awal penggunaannya sistem optik

    menggunakan sistem multiplex FDM/TDM, baru di

    peretengahan 1990-an menggunakan WDM.

    Relasi antara frekuensi dan panjang gelombang:

    c = v.λ, dimanac = Cepat rambat cahayav = Frekuensiλ = Panjang gelombang

  • VISIBLE LIGHT SPECTRUM

    1.5eV3eV 2.5eV 2eV

    800nm

    300nm

    3.5eV4eV

  • BASIC NETWORK INFORMATION RATES

    Boomingnya layanan seperti video on demand, home shopping, remote education, telemedicine, dan videoconferencing pada tahun 1990-an sebagai imbas dari booming nya industri Personal Computer (PC) disertai dengan tumbuhnya penggunaan internet, menyebabkan semakin tingginya kebutuhan bandwidth layanan untuk setiap pelanggan.

  • BASIC NETWORK INFORMATION RATES

    Type of services Data rate

    Video on demand/ interactive TV 1,5 – 6 Mbps

    Video games 1 – 2 Mbps

    Remote education 1,5 – 3 Mbps

    Electronic shopping 1,5 – 6 Mbps

    Data transfer or telecommuting 1 – 3 Mbps

    Videoconferencing 0,384 – 2 Mbps

    Voice (single channel) 64 kbps

  • BASIC NETWORK INFORMATION RATES

    Untuk mengirimkan layanan-layanan tersebut dari satu user ke user lainnya, network provider (penyedia layanan) menggabungkan sinyal dari beberapa user yang berbeda dan kemudian mengirimkannya melalui single transmission line.

    Metode ini dikenal dengan Time Division Multiplexing (TDM). N informasi yang saling independen, memiliki R bps, kemudian di interleaved secara elektris ke dalam single information stream yang beroperasi pada kecepatan yang lebih tinggi sebesar N x R bps.

  • BASIC NETWORK INFORMATION RATES

    Digital transmission hierarchy

    Called Telephony or T-Networks

    Uses Copper

  • BASIC NETWORK INFORMATION RATES

    Gambar di atas menunjukkan digital transmission hierarchy yang digunakan di jaringan telepon North America.

    Bagian dasar hierarchy tsb adalah transmisi rate pda 1,544 Mbps, atau yang dikenal dengan T1 rate.

    Angka tsb didapatkan dari perkalian 64 kbps dikalikan dengan 24 kanal suara, ditambah dengan Frame bits, maka menjadi 1,544 Mbps.

    Untuk level2 diatasnya, signal pada input rate dikalikan dengan input lain dengan rate yang sama.

    Tidak hanya dibatasi untuk kanal suara saja, sebagai contoh pada kanal T1, semua sinyal digital dengan rate 64 kbps dapat dibawa dengan 24 input kanal.

  • BASIC NETWORK INFORMATION RATES

  • BASIC NETWORK INFORMATION RATES

    Sebagian besar aplikasi awal dari penggunaan fiber optik adalah untuk trunking kanal telepon, dimana merupakan digital link terdiri kanal suara sebesar 64 kbps yang ter-multipleks secara time-digital multiplex

    Penggunaan awal kanal transmisi fiber optik dengan kapasitas tinggi pada 1980 –1990-an, service provider menyediakan standard signal format yang disebut dengan Synchronous Optical Network (SONET) di North America dan Synchronous Digital Hierarchy (SDH) di sebagian besar lain dunia (Eropa, Asia, dll).

    Standar tersebut mendefinisikan synchronous frame structure untuk mengirimkan multiplexed digital traffic melalui kanal fiber optik.

  • BASIC NETWORK INFORMATION RATES

    North America

    Other parts of the

    world (Eropa,

    Asia, dll)

  • EVOLUSI SISTEM FIBER OPTIK

    Operating range of

    optical fiber system

  • EVOLUSI SISTEM FIBER OPTIK

  • EVOLUSI SISTEM FIBER OPTIK

  • EVOLUSI SISTEM FIBER OPTIK

    • Generasi pertama beroperasi di 850 nm dengan serat multimode dan bit rate 45 s.d. 140 Mbps dengan spasi repeater 10 km.

    • Berikutnya penggunaan serat Single Mode memungkinkan bit rate 155 Mbps, 622 Mbps, hingga 2,5 Gbps dengan spasi repeater 40 km.

    • Sistem 1550 nm memberikan kapasitas sampai 10 Gbps dengan spasi repeater hingga 90 km pada 2,5 Gbps.

  • FIBER OPTIC CABLE (MULTIMODE & SINGLE MODE)

    Low loss (Attenuation)

  • FIRST GENERATION FO SYSTEM

    Purpose

    • Eliminate repeaters in T-1 systems used in inter-office trunk lines

    Technology

    • 0.8 µm GaAs semiconductor lasers

    • Multimode silica fibers

    Limitations

    • Fiber attenuation

    • Intermodal dispersion

    Deployed since 1974

  • SECOND GENERATION FO SYSTEM

    Opportunity

    • Development of low-attenuation fiber (removal of H2O and other impurities)

    • Eliminate repeaters in long-distance lines

    Technology

    • 1.3 µm multi-mode semiconductor lasers

    • Single-mode, low-attenuation silica fibers

    • DS-3 signal: 28 multiplexed DS-1 signals carried at 44.736 Mbits/s

    Limitation

    • Fiber attenuation (repeater spacing ≈ 6 km)

    Deployed since 1978

  • THIRD GENERATION FO SYSTEM

    Opportunity

    • Deregulation of long-distance market

    Technology

    • 1.55 µm single-mode semiconductor lasers

    • Single-mode, low-attenuation silica fibers

    • OC-48 signal: 810 multiplexed 64-kb/s voice channels carried at 2.488 Gbits/s

    Limitations

    • Fiber attenuation (repeater spacing ≈ 40 km)

    • Fiber dispersion

    Deployed since 1982

  • FOURTH GENERATION FO SYSTEM

    Opportunity

    • Development of erbium-doped fiber amplifiers (EDFA)

    Technology (deployment began in 1994)

    • 1.55 µm single-mode, narrow-band semiconductor lasers

    • Single-mode, low-attenuation, dispersion-shifted silica fibers

    • Wavelength-division multiplexing of 2.5 Gb/s or 10 Gb/s signals

    Nonlinear effects limit the following system parameters

    • Signal launch power

    • WDM channel separation

    • Maximum number of WDM channels per fiber

  • ELEMEN-ELEMEN TRANSMISI FIBER OPTIK

  • ELEMEN-ELEMEN TRANSMISI FIBER OPTIK

  • FIBER OPTIK

  • STRUKTUR FIBER OPTIK

  • STRUKTUR FIBER OPTIK

    1. Core

    Merupakan tempat merambatnya cahaya dari satu ujung ke ujung lainnya(carries the light signals). Terbuat dari bahan silica dan bahan tambahan.

    Diameter core:

    Single mode fiber (SMF) : ± 10 µm

    Multimode step index : ± 50 µm

    Multimode graded index : ± 50 µm

  • STRUKTUR FIBER OPTIK

    2. Cladding

    Berfungsi sebagai cermin, yakni memantulkan cahaya agar dapat merambat keujung lainnya (keeps the light in the core). Terbuat dari pure silica.

    Terbuat dari bahan kuarsa atau silika dengan nilai indeks bias lebih kecil dariCore.

    Merupakan selubung dari Core.

    Hubungan indeks bias antara Core dan cladding akan mempengaruhiperambatan cahaya pada Core ( berpengaruh terhadap besarnya sudut Kritis).

    Diameter cladding:

    SMF, MMF : ± 125 µm

  • STRUKTUR FIBER OPTIK

    3. Coating (jacket)

    Berfungsi sebagai pelindung mekanis core dan cladding (Protects the glass). Terbuat dari bahan plastik.

    Diameter coating:

  • NEXT

    Hukum Snellius

    NA

    SMF, MMF