50
Hinode Observations of the Onset Stage of a Solar Filament Eruption A. C. Sterling, R. L. Moore, and the Hinode Team We use Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT) filtergraph (FG) Stokes-V magnetogram observations, to study the early onset of a solar eruption that includes an erupting filament that we observe in TRACE EUV images. The filament undergoes a slow rise for about 20 min prior to its fast eruption and strong soft X-ray flaring, and the new Hinode data elucidate the physical processes occurring during the slow-rise period. Magnetic flux cancelation occurs along the neutral line of the filament, beginning several hours before eruption. During the slow-rise phase, a soft X-ray (SXR) sigmoid forms from apparent reconnection low in the sheared core field traced by the filament, and there is a low-level intensity peak in both EUV and SXRs at the start of the slow rise. https://ntrs.nasa.gov/search.jsp?R=20070038370 2018-03-06T23:55:17+00:00Z

Hinode Observations of the Onset Stage of a Solar Filament

Embed Size (px)

Citation preview

Hinode Observations of the Onset Stage of a Solar Filament Eruption

A. C. Sterling, R. L. Moore, and the Hinode Team

We use Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT) filtergraph (FG) Stokes-V

magnetogram observations, to study the early onset of a solar eruption that includes an erupting filament that we

observe in TRACE EUV images. The filament undergoes a slow rise for about 20 min prior to its fast eruption

and strong soft X-ray flaring, and the new Hinode data elucidate the physical processes occurring during the

slow-rise period. Magnetic flux cancelation occurs along the neutral line of the filament, beginning several

hours before eruption. During the slow-rise phase, a soft X-ray (SXR) sigmoid forms from apparent

reconnection low in the sheared core field traced by the filament, and there is a low-level intensity peak in bothEUV and SXRs at the start of the slow rise.

https://ntrs.nasa.gov/search.jsp?R=20070038370 2018-03-06T23:55:17+00:00Z

Hinode Observations of the OnsetStage of a Solar Filament Eruption

'-

Alphonse C. Sterling! and Ronald L. MooreNASAlMSFC

and the Hinode Team

1 Currently at JAXAJISAS, Sagamihara, Japan

Sterling, Dublin 2007

Introduction• Trying to understand solar eruptions.• Using filaments as tracers of the erupting field.• Detailed examination of several individual

events.• Today we present our first Hinode-observed

filament eruption, from 2007 March 2.• First question addressed: What leads to pre­

eruption slow rise of filaments?

Sterling, Dublin 2007

Filament pre-eruption, pre-flare slow-rise phase

00:00 03:00 05:00 09:00 12:00nme 1999 April 17 - 18 (UT)

Sterling, Moore, Thompson (2001)

1X105

8X104

--.E 6X104~"--/

-+-'...r:::

4x104Of

IVI

"l:J 2X104IIJ

-+-JUill

'--'e 0Q..

-2X104

-4X104

21 :00

path b

/

4-.8 1(1)

[I)4-"

Cl)

4-,6 -.:..Q

+Jo

-+-''--/

4-.4- :>-,;~(f)

cQ)

+J

4-.2 cxo[0

4-.0 ~--l

(e.g., Tandber-Hanssen et al. 1980, Kahler et al. 1988)

Sterling, Dublin 2007

Hinode Event: Data Sets

• On-disk filament eruption of 2 March 2007.GOES class B 2.5.

• Seen with TRACE, STEREO, Hinode.• Use TRACE for filament• Hinode:

- SOT (FG V magnetogram), etc.- SXRs from XRT

• Also use MDI magnetogram

Sterling, Dublin 2007

Image Alignment

• TRACE on MDI: both alignments known.

• Match SOT and MDI magnetograms =>SOT on MDI, TRACE.

• XRT onto SOT: Internal Hinode studies (H.Hara, N. Narukage; privatecommunication), plus "by eye." => XRT·'onto MDI, TRACE.

Sterling, Dublin 2007

STEREO 171

Sterling, Dublin 2007

TRACE 171

Sterling, Dublin 2007

TRACEonMDI

Sterling, Dublin 2007

'-

20

o140

120:

140:

20

oL...J.....J.-~II....I.......I~~

140 160 180 200 220 240 260 280X (arcsecs)

120

140

.-. 100 .-. 100:~ 8Q) 80

(])80en (J)

~()"-

co co--- 60 ....'-'" 60>- >-40 40

) 260 280

TRACEonMDI07 04:33:38 U\b) TRACE 171: 2-Mar-2007 04:47:41 (c) TRA~

- - -

Sterling, Dublin 2007

'-

HinodeXRT

Sterling, Dublin 2007

XRT (blowup)

Sterling, Dublin 2007

XRTonMDI(a) XRT Ti-Poly: 2-Mar-2007 04:12:33 U"'{b) XRT Ti-Poly: 2-Mar-2007 04:43:18 (c) XRT Ti-Poly: 2-MaI-200705:02:

120

100

-w 800)ene 60~

>- 40

20

o

120

100

-w 800)ene. 60(1j->- 40

20

o

120

100

-w 800)ene 60~

>- 40

20

o

140 160 180 200 220 240 260 280X (arcsecs)

140 160 180 200 220 240 260 280X (arcsecs)

140 160 180 200 220 240 260 280X (arcsecs)

(c) XRT AI Thick: 2-Mar-2007 05:13: 14 (c) XRT Ti-Poly: 2-Mar-2007 05:16:03 (c) XRT AI Thick: 2-Mar-2007 05:28

-50100 150 200 250 300

X (arcsecs)

150

100-W0)'en().... 50(1j->-

0

-50100 150 200 250 300

X (arcsecs)

-50100 150 200 250 300

X (arcsecs)

150 150

100 100en en() ()0) 0)en en() ().... 50 .... 50(1j

~->- >-

0 0

Sterling, Dublin 2007

,

XRTonMDI

(a) XRT Ti-Poly: 2-Mar-2007 04:12:33 UTb) XRT-

120 120'-

100 100,

~ 80 1~ 80(J) (J)

u uQ) CD(J)

60(J)

60() ()~ ~

co ro"'-"" "'-""

>- 40 >- 40i

201 20I

i

0 0'-

Ste

140 160 180 200 220 240 260 280X (arcsecs)

140 1

I\." I 1""""'..... A I...... • I ,..... a,. ,..... ,..... """ _ """ _ ~ """ ....I ~ I\." I r""'..... -

XRTonMDI

)4:12:33 U\b) XRT Ti-Poly: 2-Mar-2007 04:43:18 (c) XR'

o

20

100

120

0'

20

i

100:

120'

...-... 80; ...-... 80~

enu

Q) Q)(f) 60i ":. (J) 60() <..)~ ~

ctS ro"-"" ! "'-'

40I

40>- >-

) 280 140 160 180 200 220 240 260 280X (arcsecs)

14

XRTonMDI

)07 04:43:18 (c) XRT Ti-Poly: 2-Mar-200705:02:

100

120

...-... 80(/)0(»(j)

600~

as'-'"

>- 40

",

20,,

0'

260 280 140 160 180 200 220 240 260 280X (arcsecs)

SOT FG V magnetogram

80

60

+0

..-..lO.0 zooIIIlOe~

>-Q

-20

-4-0

-150 -100

Sterling, Dublin 2007

-50 o 50 100

Sterling, Dublin 2007

-1:30

SOT FG/V (blowup)

-1-10':t:lorc"",csl

-90

.,

..

Sterling, Dublin 2007

2-Mar-200704:54

(This is SOT, but use MDI to get flux.)

<-

Magnetic Flux in box e<1019 Mx)

3.4

3.0

1.0"

19:00 00:00 05:00UT Time on 1-2 Mar 2007

(Cf. flux of whole region: -- 1021 Mx)Sterling, Dublin 2007

Sterling, Dublin 2007

DiscussionThis initial observation from Hinode of a filamenteruption supports the idea that flux changes in ornear the eruption site are responsible for pre­explosive phase (e.g., slow-rise phase) dynamics.

Flux changes =flux emergence and/or flux cancelation(also: tether weakening, slow tether cutting).

(E.g., van Ballegooijen & Martens 1989, Moore& Roumeliotis 1992, Rust & Kumar 1996, Lin & Forbes '­2000, Feynman &Ruzmaikin 2004, Sterling, Rarra & Moore2007.) (Also Mikic et ale 2007, this meeting.)

Sterling, Dublin 2007

Conclusions• Hinode, STEREO, TRACE observations of 2007

March 2 filament eruption and flare.• Results still preliminary, but support that pre-eruption

(pre-flare) filament slow-rise phase is due to earlyflux changes (in this case: cancelation; slowly driventether-cutting reconnection).

• During pre-eruption period, ~ep ,..., 1019 Mx

= ,-.; 1% of flux of total erupting system.

• No comment (yet!) on what triggers the fast-risephase.

'-

Sterling, Dublin 2007

Sterling, Dublin 2007

'.

'.

10

50

23 :00 23:15 23 :30 23 :45UT Tim e on 2000 Feb 26

Filament

3

6

7

2L____L__.L.--..L_.l...--.l-_...l....-------'-_--l...---=~____l..._______I_....ll__L____L_______:::l

22:45

...-... <,

E 40.::s::.

10

a 5 Coronal Loop,-"--'" -----.,C/)....~ 30.2'Q)

:r:Q) 4....:::J Suspended Feature....('\5

~ 20Q)

u..

Sterling, Dublin 2007

'-

Observed Characteristics• Sample size. So far, we have examined about 10 (including 2

AR) events "in detail" (e.g., motions and intensity changes);mapped trajectories of about 25 additional events.

• Trajectory. Filament eruptions often undergo two stages:slow and fast (e.g., Tandberg-Hanssen et al. 1980, Bong et al.2006; cf. Ohyama & Shibata 1997). ~

• Slow-rise linearity. In several events, slow rise is fit betterwith line than with a polynomial or exponential. (Slow-rise isfrequently complex, however; Akiyama & Sterling.)

• Flaring at start of fast eruption. Onset of SXR and HXRflaring coincides "closely" with start of fast eruption.

• Breakout signatures. Occur close to time of start of fasteruption. (Moore & Sterling 2006; Bong et al. 2006)

Sterling, Dublin 2007

'-

Observed Characteristics - Cont.• Dimmings. (Discussed by many workers; hard to generalize,

e.g., Howard & Harrison 2004.)

- Local dimmings. Intensity dimmings next to and along neutralline begin weakly during slow-rise phase (stretching of fieldlines), and become strong dimmings at start of fast-rise phase.

- Remote dimmings (and brightenings). In some cases,dimmings and brightenings occur at locations far removed frommain neutral line, consistent with breakout-type reconnection.

• Magnetic cavities. These show that filaments belong to amore extended magnetic environment; interaction' withoverlying fields can lead to remotebrightenings/dimmings. (Cf. Gibson et ale 2006.)

Sterling, Dublin 2007

Some Theories for Eruption Onset:

• Tether cutting.

• Breakout model.

• MHD Instability.

(Generally, this applies to "fast eruption" onset,although slow rise might be part of the process.)

These theories are testable (at least to within somelimits) by our observations.

Sterling, Dublin 2007

Some Theories for Eruption Onset:• Tether cutting. Moore & Labonte (1980); Sturrock (1989); Moore

et al. (1997; 2001). (Also Chen & Shibata 2000 and Lin et al.2001.)

~ Fundamentally bipolar.

~ Energy release via reconnection deep inside the "core field."

• Breakout model. Antiochos (1998); Antiochos et al. (1999).

~ Fundamentally multi-polar, with bipole core fields and restr~ining

overlying fields.

~ Earliest energy release via slow reconnection at interface.

• MHD Instability. Sturrock et al (2001); Rust & LaBonte (2005)

~ Rapid rise prior to reconnection onset.

Sterling, Dublin 2007

(Moore et al. 2001)

Before Onset

Confined Eruption, End.ing

EruptiDn Onsel

Ejeclive Eruption, Midlife

Sterling, Dublin 20 ........._-- ~ ---'

'-

Runaway Tether-Cutting Reconnection

Sterling, Dublin 2007

CurrentS:he'et -'

,Slow,RL;lil;~ ..R'eto nn~~lof1'

:Ex,pIosl\l e..f~ha se'

(Moore & Sterling 2006)

Breakout Reconnection

Cuneht5l:1eet-

~IawR:un~~Reco·nnettl.oh. - .

Sterling, Dublin 2007

. .cxp-Joslve.pmase-•• .. •. 1#

Moore & Sterling 2006

Ideal MHD Instability

'.

.EXp'lo~ly.e:-Heconn'ertlol' ~-r--..,...p...

Ideal MHO'Ef(iptl~Fl phase

Sterling, Dublin 2007

'.

Moore & Sterling 2006

What Causes the Slow Rise?

All our events have a slow-rise phase(although characteristics differ). What's thecause?

Consider quiet-region filament eruption of 28Feb 2001 (Sterling, Rarra, & Moore 2007)

Sterling, Dublin 2007

Sterling, Dublin 2007

Sterling, Dublin 2007

300 ... 400200100o

o

(b) SXT AIMg: 28-Feb-2001 08:30:31 UT100

-400-100

-300

400300200100o

(a) EIT 195: 28-Feb-2001 12:35:35 UT

o

100

-400-100

-300

- -100 -100(j)(.)Q)(j)

2~

>- -200 -200

Sterling, Rarra, & Moore (2007)

Sterling, Dublin 2007

5.0 (a)

E 4.5.::£-­+-'..c0><J.)

IC 4.0<J.)

Ero

LL0>o

--J 3.5

3.0

00:00 03:00 06:00 09:00 12:00 15:00 18:00

Sterling, Dublin 2007 5.0 (b) I

(c) MOl: 28-Feb-2001 11 :11 :01 UT50

-150

(b) MOl: 28-Feb-2001 06:27:01 UT50

·150

(a) MOl: 27-Feb-2001 20:48:01 UT50~il'""'""'7

a a

'ffOJtil ·50 ·50~~

>-

-100 ·100

100 150 200 250X (arcsecs)

100 150 200 250X (arcsecs)

100 150 200 250X (arcsecs)

Cf. Feynman & Ruzmaikin (2004)(also, e.g., Rust 1976, Heyvaerts etal. 1977, and many others).

Sterling, Dublin 2007

Slow-rise phase: Tether-Weakening Reconnection?

"

Sterling, Rarra, Moore (2007)

Sterling, Dublin 2007'.

Some Theories for Eruption Onset:• Tether cutting. Moore & Labonte (1980); Sturrock (1989);

Moore et ale (1997; 2001). (Also Chen 0& Shibata 2000 and Linet ale 2001.)

~ Fundamentally bipolar.~ Energy release via reconnection deep inside the "core field."

• Breakout model. Antiochos (1998); Antiochos et al. (1999).~ Fundamentally multi-polar, with bipole core fields and restraining

overlying fields.~ Earliest energy release via slow reconnection at interface. "

• MHD Instability. Sturrock et al (2001); Rust & LaBonte (2005)~ Rapid rise prior to reconnection onset.

Sterling, Dublin 2007

Some Theories for Eruption Onset:• Tether cutting. Moore &·Labonte (1980); Sturrock (1989); Moore

et al. (1997; 2001). (Also Chen & Shibata 2000 and Lin et al.2001.)

~ Fundamentally bipolar.'.

~ Energy release via reconnection deep inside the "core field."

• Breakout model. Antiochos (1998); Antiochos et al. (1999).~ Fundamentally multi-polar, with bipole core fields and

restraining overlying fields.~ Earliest energy release via slow reconnection at interface.

• MHD Instability. Sturrock et al (2001); Rust & LaBonte (2005)~ Rapid rise prior to reconnection onset. ~

Sterling, Dublin 2007

TRACE

Sterling, Dublin 2007

"

TRACE (over)

150

'.

Sterling, Dublin 2007

150 2.50X·(ti~3CC~J

350. 400

'.

TRACEonMDI

(a) TRACE 171: 2-Mar-2007 04:33:38 U"{b) TRACE 171: 2-Mar-200704:47:41 (c) TRACE 171: 2-Mar-200705:12:

___ 100 ___ 100 ___ 100(/J (/J (/J() () ()Q)

80 Q)80

Q)80(/J (/J (/J

() 2 ().... ....<U ~ ~....... 60 60 60>- >- >-

40

20

o............~c.w...:l..:u;sIo:::i.:Xolo.l.J...Ll~c..J..:'-'IU.lIL.:LJ140 160 180 200 220 240 260 280

X (arcsecs)

120

140

40

20

o................-...ILL..L.J........,..~ ~uu::>o~'""-"-'

140 160 180 200 220 240 260 280X (arcsecs)

140

120

40

20

O............."""""'<..o....L.J.-"-""'"'_

140 160 180 200 220 240 260 280X (arcsecs)

140

120

Sterling, Dublin 2007

'-

STEREO 171

Sterling, Dublin 2007

'.

ZOQ

100

XRT (over)

'-

Sterling, Dublin 2007

..,u.,I>-

o

-206 o'X. (Or<:3CC:tJ

1110 100

Sterling, Dublin 2

XRTonMDI'-

Sterling, Dublin 2007

SOTFG/V2-Mar-2007 05:54

2-Mar-2007 03: 15

I-Mar-200722:56

2-Mar-2007 04:54

'-

'-

Cancelation Energetics• Field strength, B ,...; 40 G in enhanced network in box.

• V==2"x26"x2"

• f =0.1• Magnetic energy =. (B 2 /81Z")Vf ~ 4x1027 ergs

during six hours or less prior to the eruption. <.

It's no surprise that this is not enough energy to power

the eruption, but it could be enough cancelation

for instability to kick in, or for runaway to take over

(e.g., van Ballegooijen & Martens, Moore

& Roumeliotis, Rust & Kumar, Lin & Forbes).

Sterling, Dublin 2007