24
Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart University Of California Santa Barbara, USA Presented at the COMSOL Conference 2008 Boston

Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Highly Nonlinear Electrokinetic Simulations Using a Weak Form

Gaurav Soni, Todd Squires, Carl MeinhartUniversity Of California Santa Barbara,

USA

Presented at the COMSOL Conference 2008 Boston

Page 2: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Induced Charge Electroosmosis

-

+

- +-

+

- +

- + - +

-

+

- +

-

+

-

+

-+

KCl + H20

+ -

Page 3: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Induced Charge Electroosmosis

+ -

Page 4: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Induced Charge Electroosmosis

+ -

Page 5: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Induced Charge Electroosmosis

+ -

Page 6: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Effective Boundary PDE

• Conservation of double layer surface charge

q Dut y x x

φ φ∂ ∂ ∂ ∂ = + ∂ ∂ ∂ ∂

2

2sinh( 2)4 (1 )sinh ( / 4)

qDu m

ζ

ε ζ

= −

= +

Non-linear Capacitance

Page 7: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Transformation for Stability• Double layer charge grows

exponentially and causes numerical errors.

• To make the solution stable, a variable transformation is required.

• Stability is improved by creating diffusion without losing accuracy.

q Dut y x x

φ φ∂ ∂ ∂ ∂ = + ∂ ∂ ∂ ∂

2sinh( 2) cosh2

dq dqdt dt

ζ ζζ = − ⇒ = −

φ ζ= −

1cosh( 2)

Dut y x xζ φ ζ

ζ ∂ ∂ ∂ ∂ = − − ∂ ∂ ∂ ∂

Page 8: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Nonlinear Electrokinetic Model

0u =

0u =

HSu u=

2 0φ∇ =

ˆ 0,n φ⋅∇ =

q Dut y x x

φ φ∂ ∂ ∂ ∂ = + ∂ ∂ ∂ ∂

2 0u pη∇ −∇ =0u∇⋅ =0u =

( )2L f ta

φ α= ( )2L f ta

φ α= −

φ ζ= −

2

2sinh( 2)4 (1 )sinh ( / 4)

qDu m

ζ

ε ζ

= −

= +

22HS

D

u xaα ζ φ

ε λ= ∂ ∂

=

Bulk b.c.

Boundary PDE

L

a

Page 9: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Non-Dimensional Simulation Parameters

zeta magnitudethermal voltage ext

ze a VkT L

α = =

debye lengthelectrode length

D

aλε = =

Voltage Scaling

Length scale ratio

Page 10: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Weak Form in COMSOL

• Weak form– An integral form equivalent to the original PDE.– Derived by multiplying the PDE with a test

function and then integrating over the domain.

• Weak form advantages– Create custom equations on with dimension– Implement PDEs on boundaries– Mixed time and space derivative

Page 11: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Weak Form: Example

( )Cv d v D C d vRdtΩ Ω Ω

∂Ω = ∇⋅ ∇ Ω+ Ω

∂∫ ∫ ∫

( )C D C Rt

∂= ∇ ⋅ ∇ +

( )Cv d vD C d D v Cd vRdtΩ Ω Ω Ω

∂Ω = ∇⋅ ∇ Ω− ∇ ⋅∇ Ω+ Ω

∂∫ ∫ ∫ ∫

Consider Diffusion Equation

Weak Form: multiply with test function v and integrate over domain

Simplify

( )ˆCv d vn D C d D v Cd vRdtΩ ∂Ω Ω Ω

∂Ω = ⋅ ∇ ∂Ω − ∇ ⋅∇ Ω + Ω

∂∫ ∫ ∫ ∫

Apply Green’s Theorem

Time dependent term Boundary fluxes Diffusive term Source term

Page 12: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Weak Form Contributions

weak terms for Ω

Cv dtΩ

∂Ω

∂∫

weak terms for ∂Ω

Time dependent or dweak terms:

D v Cd vRdΩ Ω

− ∇ ⋅∇ Ω + Ω∫ ∫

( )ˆvn D C d∂Ω

⋅ ∇ Ω∫

Page 13: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Double Layer Boundary PDE∂Ω

1cosh( 2)

Dut y x xζ φ ζ

ζ ∂ ∂ ∂ ∂ = − − ∂ ∂ ∂ ∂

, BoundaryΩ

cosh( 2) cosh( 2)v vv d d Du d

t y x xζ φ ζ

ζ ζΩ Ω Ω

∂ ∂ ∂ ∂ Ω = − Ω+ Ω ∂ ∂ ∂ ∂ ∫ ∫ ∫

, Points∂Ω

Boundary PDE

Weak Form

2

ˆ tanh( / 2)cosh( / 2) cosh( / 2) 2

Du d Du v vK v nd ddx x x xζ ζ ζζ

ζ ζ∂Ω Ω

∂ ∂ ∂ = ⋅ ∂Ω− − Ω ∂ ∂ ∂ ∫ ∫

K

Ω ContributionContribution∂Ω

Simplify

Page 14: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Weak Form Contributions

weak terms for boundary Ω

v dtζ

Ω

∂Ω

∂∫

weak terms for Points ∂Ω

Time dependent or dweak terms:

ˆcosh( / 2)

Du dv nddxζ

ζ∂Ω

⋅ ∂Ω

2

tanh( / 2)cosh( / 2) 2 cosh( )

v Du Du vd dy x a x xφ ζ ζζ

ζ ζΩ Ω

∂ ∂ ∂ ∂ − − Ω− Ω ∂ ∂ ∂ ∂ ∫ ∫

DiffusionSources

Page 15: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Effect of Surface Conduction

Page 16: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

α=10 ε=0.0001

α=31.6

Uslip/Ulinear

x/a

zeta magnitudethermal voltage

debye lengthelectrode length

ext

D

ze a VkT L

a

α

λε

= =

= =

Page 17: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

α=10

α=3.16ε=0.000316

α=31.6

x/a

Uslip/Ulinear

zeta magnitudethermal voltage

debye lengthelectrode length

ext

D

ze a VkT L

a

α

λε

= =

= =

Page 18: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

α=10

α=3.16ε=0.001

α=31.6

x/a

Uslip/Ulinear

zeta magnitudethermal voltage

debye lengthelectrode length

ext

D

ze a VkT L

a

α

λε

= =

= =

Page 19: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

α=31.6

α=10

α=3.16α=1

ε=0.00316

x/a

Uslip/Ulinear

zeta magnitudethermal voltage

debye lengthelectrode length

ext

D

ze a VkT L

a

α

λε

= =

= =

Page 20: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

α=31.6

α=10

α=3.16

α=1ε=0.01

x/a

Uslip/Ulinear

zeta magnitudethermal voltage

debye lengthelectrode length

ext

D

ze a VkT L

a

α

λε

= =

= =

Page 21: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

α=31.6

α=10

α=3.16

α=1 ε=0.0316

x/a

Uslip/Ulinear

zeta magnitudethermal voltage

debye lengthelectrode length

ext

D

ze a VkT L

a

α

λε

= =

= =

Page 22: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Normalized Velocity: Nonlinear Effects

10-4

10-3

10-2

10-1

100

0

0.2

0.4

0.6

0.8

1

ε

Um

ax

α=31.6

α=10

α=3.16

α=1

α=0.316α=0.1

ε=λD/a

As double layer gets thicker, the normalized velocity decreases due to higher surface conduction.

zeta magnitudethermal voltage

debye lengthelectrode length

ext

D

ze a VkT L

a

α

λε

= =

= =

Page 23: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Normalized Velocity: Nonlinear Effects

10-1

100

101

102

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

Um

ax

ε=0.1

ε=0.0316

ε=0.01

ε=0.00316

ε=0.001

ε=0.000316

ε=0.0001

As zeta potential increases, the normalized velocity decreases due to higher surface conduction.

zeta magnitudethermal voltage

debye lengthelectrode length

ext

D

ze a VkT L

a

α

λε

= =

= =

Page 24: Highly Nonlinear Electrokinetic Simulations Using a Weak Form · 2009. 1. 29. · Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart

Conclusions• An effective boundary PDE was used for simulation

electroosmosis.• Nonlinear effects such as exponential capacitance and surface

conduction were simulated.• The boundary PDE was made stable by variable

transformations.• Results for high zeta potentials (~30x thermal voltage) were

obtained.• The dimensionless velocity decreases with increasing zeta

potentials and increasing double layer thickness, because surface conduction effects become prominent for high zeta potentials and thicker double layers.