46
CO 2 H H H CH 3 OC O OH HO Highlights from the Synthesis of Gibberellins: a 30 Year Odyssey A Friday Afternoon Seminar 6 February 2004 Jonathan R. Scheerer 01-gibberellin-GA3-title.cdx 2/5/04 5:10 PM

Highlights from the Synthesis of Gibberellinsevans.rc.fas.harvard.edu/pdf/smnr_2004_Scheerer_Jonathan.pdf · H H CH 3 OC O OH HO CO 2H Highlights from the Synthesis of Gibberellins:

  • Upload
    lytram

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

CO2HH

H

CH3

OC

O OH

HO

Highlights from the Synthesis of Gibberellins:a 30 Year Odyssey

A Friday Afternoon Seminar

6 February 2004

Jonathan R. Scheerer

01-gibberellin-GA3-title.cdx 2/5/04 5:10 PM

H

H

CH3

OC

O OH

HO

CO2H

Highlights from the Synthesis of Gibberellins:

Outline of Presentation:I. Introduction to Gibberellins: History, Ubiquity, and Biology

II. Biosynthesis

III. Gibberellic Acid: Structure and Reactivity

IV. Conversion of Gibberellic Acid into other Gibberellins

V. Total Synthesis

VI. Partial Synthesis / Stragedy

Mander, Chem. Rev. 1992, 573-612.Mander, Nat. Prod. Rep. 2003, 49-69.MacMillan, Nat. Prod. Rep. 1996, 229.Crozier, A. Ed. The Biochemistry and Physiology of Gibberellins. Praeger: New York, 1983. (vol 1 and 2)

Relvant Reviews:

02-gibberellin-outline.cdx 2/5/04 5:11 PM

CH3

O

HO

CO2H

H

H

OC

OH

A Brief History of Gibberellin Research:

1898 - first research paper, links disease to fungal infection

1912 - Kurosawa found that filtrates from infected dried rice seedlings also causes disease Concludes that bakanae is caused by discrete chemical

1938 - Crystalline compound (mix of three gibberellins) isolated from fungal filtrate

1935 - First use of term "gibberellin" in scientific literature

1945 - Research expands to U.S. and U.K.

1955 - compound isolated. termed "gibberellic acid"

1958 - correct structure proposed (stereochemical ambiguities remain)

1961 - structure verified by X-ray

1978 - First total synthesis (Corey)

1828 - first reports of "bakanae" disease in rice plants (foolish seedling; stupid rice crop)

03-bakanae.cdx 2/5/04 5:19 PM

CO2H

H

CH3HO2C

CH3H

CO2H

H

H

CH3

OC

O

HO2CHO2C

H

OHO

R

A

B

C

D

C20 and C19 Gibberellins: Structure and Nomenclature

1

2

3 45

6

7

8910

11 12

13

14

19

20

1516 17

18

C20-Gibberellin Skeleton

GA12

ent-gibberell-16-ene-7,19-dioic acid

1

2

35

6

7

89

11 12

13

14

19

1516 17

18

C19-Gibberellin Skeleton

GA9

ent-norgibberell-16-ene-7,19-dioic acid 19,10-lactone

R = CO2H

05-gibberellin-structureB.cdx 2/5/04 5:13 PM

H3C

OHO

R

OH

OHH

CO2H

H

H

CH3

OC

O OH

HO

CO2HH

Me

OC

OH

OH

HOCO2H

H

Me

OC

OH

HO

Gibberellic Acid (GA3)

1

2

3

56

7

89

11 12

1314

19

1516 17

18

GA1

R = CO2H

Retail prices: $10 / g

Fermented from Gibberellia fujikuroi (a fungus) on ton scale

Widely investigated and applied for commercial uses

Bioactive at low concentrations ((sub-nanomolar common for applications)

Current yields: 15-30 g / L culture

GA3

Also bio-available in decent quantity:

GA4

07-gibberellin-GA3.cdx 2/5/04 8:55 PM

CO2HH

H

CH3

OC

O OH

HO

A Brief History of Gibberellins:

– Stimulate stem elongation by stimulating cell division elongation

– Stimulates flowering/budding in response to lengthening days

– Breaks seed dormancy in plants which require winter freezing

– Can induce seedless fruit development (parthenocarpic)

– Can delay senescence (ripening) in leaves and fruit

– Induces maleness (sex expression) in dioecious flowers

– Other growth effects on fruit and budding

Representative Biological Functions of Gibberellins:

08-gibberellin-functions.cdx 2/5/04 5:15 PM

CO2HH

CH3HO2C

H3CH

HO2COH

HO Me H3C

H3C CH3

H

H

CHOH

CH3HO2C

H3CH

CO2HH

H

CH3

OC

O

Gibberellin Biosynthesis: Three Stages

mevalonic acid (MVA)

ent-kaur-16-ene

Stage A Stage B

GA12-aldehyde

C19-gibberellinsand C20-gibberellins

Stage C

10-gibberellin-biosynthesis1cdx 2/5/04 12:29 PM

HO2C

HO

OH

CH3

H3C

H3C CH3

H

H

OPP

H3C

H3C CH3

H

H

OPPIPPIsopentenylpyrophosphate

OPPOPP

OPP

FPP

OPP

IPP IPP

Gibberellin Biosynthesis: Stage A

ent-CCPent-copalylpyrophosphate

mevalonic acid (MVA)

ent-kaur-16-ene

Stage A

DMAPPDimethylallylpyrophosphate

GPP

GGPPgeranyl-geranylpyrophosphate

*

*

*

*

*

11-gibberellin-biosynthesis2 2/5/04 12:30 PM

H3C

H3C CH3

H

HH3C

H3C CH3

H

H

OPP

H4OPPHa

H

H5S

H5R

H4

H5R

H5S

Ha

H

H4

H5R

H5S

Ha

H

H

HaH

H5S

H5R

Gibberellin Biosynthesis: ent-CCP to ent-kaurene

ent-kaur-16-eneent-CCPent-copalyl pyrophosphate

12-biosynthesis3.cdx 2/5/04 10:11 PM

CHOH

CH3HO2C

CH3HH3C

H3C CH3

H

H

H3C

CH3

H

H

OHHR

HS

H3C

CH3

H

H

O

HS

H3C

HO2C CH3

H

H

Ha

Hc

HbHd

H3C

HO2C CH3

H

H

Ha

OH

HbHd

HHO2C

CH3H

HbHd

O

Gibberellin Biosynthesis: Stage B

GA12-aldehydeent-kaur-16-ene

Stage B

ent-kaur-16-en-19-ol

ent-kaur-16-en-19-al

biosynthetic progenitorof all gibberellins

same biosynthesis for fungal or higher order plants

see next slide

13-biosynthesis4.cdx 2/5/04 10:35 PM

CHOH

CH3HO2C

CH3H

HO2C

OH

H

HH

H3C

H3C CH3

H

H

Fe4+Enz

O

HO2C

O

HH

H

Fe3+Enz

OH

HO2COHC

H

HO2C

O

HH

H

HO

Gibberellin Biosynthesis: Ring Contraction

GA12-aldehydeent-kaur-16-ene

Stage B

1,2-radical shift

radical trapping

14-biosynthesis5.cdx 2/5/04 12:37 PM

CHOH

CH3HO2C

CH3H

CO2HH

CH3HO2C

CH3H

CHOH

CH3HO2C

CH3H

HO

OH

CO2HH

CH3HO2C

CH3H

R

R

CO2HH

CH3HO2C

H

R

RHO

CO2HH

H

R

R

CO

O

Me

CO2HH

CH3HO2C

OHH

R

R

CO2HH

H

R

R

CO

O

Me

OH

CO2HH

OH

R

R

OC

MeCO2H

HCH3HO2C

H

R

RO

Gibberellin Biosynthesis: Stage C

GA12-aldehyde

and/or

GAn

early or late oxidations of C3, C13

-very complex-parallel pathways-organism dependent (fungal or higher order plants)-converge to common GA

many complex, as yet incompletely defined, oxidative processes

oxidative decarboxlyation

R = H, OH

15-biosynthesis6.cdx 2/5/04 12:40 PM

CO2HH

H

CH3

OC

O OH

HOCO2H

H

HOH

HO

HO

CH3HO2C

CO2HH

HOH

CH3–OOC

O

CO2HH

H

CH3

OC

O OH

HO

CO2HH

H

CH3

OC

O OH

HO

CO2HH

H

H3C

O OH

O

–O

CO2HH

H

CH3

CO

OH

HO

O

Rearrangements of Gibberellic Acid in Basic Media

GA3

Gibberellic Acid

0.01 N NaOH

retrogradealdol / aldol

Base

via

isolabletransformation can be effected by palladium

favored equatorial C3 configuration

16-GA3rearrangements.cdx 2/5/04 11:41 AM

CO2HH

H

CH3

OC

O OH

HO

H+

CO2HH

OH

HO

CH3HO2C

CO2H

OH

CH3

H

CO2H

OH

CH3

H

H+

H2NNH2

O

CO2H

CH3

CH3

H

H+

CH3

CO2H

OH

CH3

H

OH

HR

Rearrangements on Gibberellic Acid in Acidic Media

GA3

Gibberellic Acid

"...gibberellic acid has enjoyeda significant notoriety for instability and rearrangement. This view appears to be exagerated." L.Mander

(or H2NNH2)

Thermodynamicallymore stable C9 epimer

1,2 shift

Gibberellenic Acid

17-GA3rearrangements-acid.cdx 2/5/04 11:38 AM

CO2MeH

Me

OC

O

AcO

CO2MeH

Me

OC

O

AcO

HO

OHH

HH

HH2B HB H

H

OH H

H

OH

CO2MeH

Me

OC

O

HO

HO

H

BH3

C11 oxidation: Bishydroboration

BH3•SMe2

H2O2, NaOAc

e.g. GA35

18-GA-C11oxidation.cdx 2/5/04 11:34 AM

CO2MeH

Me

OC

O H OAc

Br

OH

CO2MeH

Me

OC

O H OAc

Br

O

CO2MeH

Me

OC

OH

OH

OAc

Br OH

H

H

Br

H

O

H

OH

Br O

H

H

Pb4+

Br OH

H

Zn

CO2HH

Me

OC

OH

OH

OH

CO2HH

Me

OC

OH

OH

CO2HH

Me

OC

OH

OH

C12 oxidation of Gibberellin Skeleton

Pb(OAc)4, I2 Zn, HOAc

–1e–

GA31 GA70 GA69

19-GA-C12oxidation.cdx 2/5/04 11:32 AM

O

CO2MeH

Me

OC

O

MOMO

H

OH

OH

O

CO2MeH

Me

OC

O

MOMO

H OH

NaOMe

O

CO2MeH

Me

OC

O

MOMO

H OH

OTBS

CO2MeH

Me

OC

O

MOMO

H OAc

O

CO2MeH

Me

OC

O

MOMO

H OAc

OH

NaOMe

O

OH

OH

O

O

OH

HO

H

OH

O

HO H

C14 Hydroxylation of Gibberellin Skeleton

1) DMDO2) TBAF

acyloin rearrangement

dipole minimized?

Ab initio: ∆5.7 kcal

Mander, Tetrahedron, 1998, 11637.

2 steps

20-GA-C14hydroxlation.cdx 2/5/04 11:29 AM

CO2MeH

Me

OC

O

O

HH

CO2MeH

OC

O

HO

HH

OH

CO2MeH

OH

HHO2C

O

HMe

NaOH

CO2MeH

OC

OH

H

O

O–

CO2MeH

OC

O

HO

HH

O

C18 Hydroxylation of Gibberellin Skeleton

Thomson, Mander, JCS Perkin I, 2000, 2893.

9 : 1 at C4

2 : 3 mixture of3α and 3β−OH

AllylOHDBU

RhCl(PPh3)3DABCO

21-GA-C18hydroxlation.cdx 2/5/04 11:25 AM

CO2MeH

H

CH3

OC

O OMOM

MOMO

CO2MeH

HOMOM

CH3HO2C

CO2MeH

HOMOM

CH3

ON2

Cu (powder)

PhH, 80˚C

CO2MeH

H

CH3

OC

OMOM

CO2MeH

H

CH3

OMOM

O

CO2MeH

HOMOM

CH3HO2C

CHO

OK OKO

OO

OK

O

Conversion of C19 Gibberellins into C20 Variants

Li/NH3

tBuOH

Li/NH3

tBuOH

KH, DMF; O2

C20 gibberellins: e.g. GA19

SOCl2;

CH2N2

Mander, Tet. Lett. 1985, 5725.22-GA-C19toC20.cdx 2/5/04 11:23 AM

CO2MeH

Me

CO

HOAcO

RO

CO2MeH

Me

CO

HOAcO

OPhO

S

Bu3SnH

SnR3

CO2MeH

Me

HOAc

O

OPhR3Sn-S

O

OCO2Me

H

Me

HOAc

O

OR3Sn-S H

O

O

CO2MeH

Me

HOAc

O

OR3Sn-S H

O

O

CO2MeH

Me

HOAc

O

H

O

O

O

Bu3SnH

Radical Cascade: Attempted Deoxygenation at C3

Barton, McCombie, JCS Perkin I, 1975, 1574.Mander,TL, 1996, 4255.*synthetic application: Sherburn,JACS, 2003, 12108.

equatorial (α)C3 hydroxyl removed without event

5-exo5-exo

23-GA-radicalcascade.cdx 2/5/04 11:15 AM

CO2MeH

HOH

CH3HO2CCO2Me

H

Me

OC

O

HO

HOH

CO2MeH

Me

OC

O

TsO

HOH

CO2MeH

Me

OC

OH

OHBr

Zn

CO2MeH

HOH

CH3HO2C

HO

HO

CO2MeH

Me

OC

O

HO

HOH

O

I

O

F3C

Zn

Dismantling and Reconstituting the A-Ring

Danheiser, Strategies and Tactics in Organic Synthesis. Ed. Lindberg 1984, 22-65.

methyl gibberellate Corey-Carney Acid

TsCl, pyr

NaBr, HMPA

1) mCPBA2) NaOH

1) I2, NaHCO32) TFAA, pyr

76%

60%90%

24-GA3-coreytotal1.cdx 2/5/04 12:45 PM

THPO

H

O

OMEM

O

OMe

O

OMe

BnO

O

HO O

OMe

OH

HO

BnO

O

H

THPO

BnO

OMOM

O

H

THPO CHO

K, TiCl3

THPO

H

OH

OH

H

OOH

H

O

OH

H

O

OH

O

H

COR

Corey Synthesis of GA3: Hydronaphthalene Approach

Corey, JACS, 1978, 8034.

o-allyl eugenol

PhH, 80˚C

90%

1) DHP, TsOH2) NaBH4

3) MOMCl, iPr2NEt4) LAH5) MsCl, NEt3 ; H2O

1) H2, Rh/C2) Li, NH3

3) PDC

"...quenching reactions involving50g of potassium can provide momentsof great drama, as well as piquant stimulationfor the experimentalist."

(50%)

1) Cl3CCO)2O, NEt3, DMSO 2) MEMCl, iPr2NEt

R=H / OH

60%

50% from [4+2] adduct

7 steps

Oxidation Products:

25-GA3-coreytotal2.cdx 2/5/04 12:47 PM

O

H OMEMOHC

THPO

THPO

H

O

OMEM OHC

OHC

THPO

H

O

OMEM

H OMEM

HO

H OMEM

O

Cl

O

Bn2NH2+-TFA–

O

Cl Cl

O

HOMEM

OO

Cl

H

H

HOMEM

OO

Me

H

Contraction of B-Ring; A-Ring Formation through Cycloaddition

Corey, JACS, 1978, 8034.

1) OsO4, NMMO2) Pb(OAc)4

1) Ph3PCH2 HMPA, 65˚

2) AcOH

nBuLi;

160˚C, PhH LiN(iPr)C6H11;

MeI

89% 78%

57%

55% 70%

72%

26-GA3-coreytotal3.cdx 2/5/04 12:51 PM

HOMEM

OO

Me

H

1) ZnBr22) KOH, Na2RuO4

CO2MeH

HOH

MeHO2C

CO2HH

Me

OC

O

HO

HOH

CO2MeH

Me

OC

O

HO

HOH

HO

I

CO2HH

HOH

MeHO2C

Gibberellic Acid Endgame: Corey

Corey, JACS, 1978, 8034.

TsCl, NEt3; MeOH

Corey-Carney Acid

1) mCPBA2) NaOH

3) I2, NaHCO3

1) TFAA, pyr2) Zn

3) PrSLiGA3

95%

27-GA3-coreytotal4.cdx 2/5/04 12:53 PM

OBn

O

MeOBn

O

O

O

O

OMs

O

O

O

HO

O

H

OHMe

O

H

OMEM

O

O

O

H

O

Me

O

H

OMEM

OH

H

OMEM

O

OMe

Alternative Route to Key Tricyclic Intermediate: The Hammer and Tongs Approach

Corey, JACS, 1978, 8034.

3 steps 7 steps

KOtBu

3 stepsNaOH, EtOH

6 steps

1) EtOCHO, NaH2) KOtBu, MeI

1) EtOCHO, NaH2) RedAl

3) H+

4) Ph3PCH2

67% 60%

93%

46% 4 steps

48%

88%

39%

28-GA3-coreytotalrevised1.cdx 2/5/04 12:54 PM

H

OMEM

O

Br

Br Br MeO2CMe

O

Br

CO2Me

OTMS

1) BF3•OEt22) TMSOTf, NEt3

H

BrO

H

BrO

O

Br Br CHO

Br

CHO

Br

Br

CO2Me

OTMS

OBN

O

TsH

nBu

R

Cope Rearrangement for B/C Ring Junction

Corey, JACS, 1982, 6129.Corey, JACS, 1994, 3611.

1) BuLi;

2) DBU + C2 isomer2: 1

1) 9BBN; NaOH, H2O2

2) PDC

1) nBu2CuLi2) MEMCl, iPr2NEt

9 steps saved over originalsynthesis

5 steps

99%ee81%

R = 3-indole

10% mol

enantioselective variant has appeared

160˚CDMSO, H2ONaCl

[3,3]

87%

53%

71%

76%65%

29-GA3-coreytotalrevised2.cdx 2/5/04 12:58 PM

OMe

MeO

HO2CI

MeOCO2Me

OMe

MeO

CO2HCO2Me

MeO

O

CO2Me

MeO

CO2Me

MeO

OCOCH2ClO

N2

O

OCOCH2Cl

MeO

CO2Me

OMOM

MeO

CO2Me

H

CO2H

O

O

Mander: Fluorene Approach

Mander, JACS. 1980, 6626.

1) Li, NH3

2)

PPA

1) HCN; NaOH2) (ClCH2CO)2O

3) (ClCO)2; CH2N2

TFA

1) Na2CO3, MeOH2) H+, (HOCH2)2

3) MOMCl, iPr2NEt4) tBu(chx)NLi; CO2

5) H2, Pd/C

88% 36%

64%

35%

68%

30-GA3-mandertotal1.cdx 2/5/04 1:00 PM

OMOM

MeO

CO2Me

H

CO2H

O

OOMOM

MeO

H

CO2Et

O

O

MeMeO2C

OMOM

PhOCO

H

CO2Et

O

O

MeHO2C

OMOM

PhOCO

H

CO2Et

O

O

BrMe

O

OC

MeO

CO2H

H

CO2Me

O

O Na, NH3; MeI

MeO

H

CO2Me

O

O

MeMeO2C

Mander: A-Ring Assembly through Birch Reduction/Alkylation

1) KOtBu, K, NH3; MeI2) CH3CHN2

4 steps

KHCO3, KBr3

Mander, JACS. 1980, 6626.Baker, Chem. Com. 1972, 951.

C7 ester controls alkylation

66%

86%

31-GA3-mandertotal2.cdx 2/5/04 1:03 PM

CO2HH

Me

OC

O

HO

HOH

OMOM

PhOCO

H

CO2Et

O

O

BrMe

O

OC

OHH

CO2Me

O

O

HMe

O

OC

OHH

CO2Me

O

O

HMe

O

OC

O

PhHC

O

OHH

CO2Me

O

O

HMe

O

OC

PhOCO

Br1) DBU2) H2O, H+

3) TMSCl

OTMSH

CO2MeH

Me

O

OC

PhOCO

O

Mander: Gibberellic Acid

GA3

5 steps1) OsO4, NMMO2) PhCHO, H+

NBS, hν

95%

1) Ph3PCH2, ClCH2CH2OTMS

2) K2CO3, MeOH3) nPrSLi, HMPA

Mander, JACS. 1980, 6626.

90%

75%

31B-GA3-mandertotal3.cdx 2/6/04 10:12 AM

OHH

CO2Me

O

O

HMe

O

OC

O

OCOCCl3O

N2

OMe

O

OCOCCl3

O

OH

OO

O

N2

OH

CO2Me

O

OOH

CO2Me

O

OHOOH

CO2Me

O

OHO

Me

O

CO2MeH

Me

OC

O

HO

HOH

CO2MeH

Me

OC

O

HO

HOH

O

O

Mander: A-ring Aldol Approach (GA1)

GA1

TFA

4 steps

hv,MeOH

1) (H2C=CHCH2)3Al2) (EtCO)2O, DMAP

1) (sia)2BH; NaOOH 2) PDC3) LDA; Ph2Se2

K2CO3, MeOH

1:1 at C3

4 steps

Mander, JACS. 1980, 6626.

1) KH, Et3NH-OAc2) (sia)2BH; NaOOH3) PDC

99% 49% 80%

50%

78%

89%

60%

32-GA3-mandertotal4.cdx 2/5/04 1:09 PM

OMe

CN

CN

CO2Me

Me

OMe

O

O

O

Me

H

OMe

OHMe

TMSO

OC

O

OMe

H

SEMOH

CH2OMOMMeMOMOH2C

O

H

SEMOH

CH2OMOMMeMOMOH2C

HO

H

SEMOH

CH2OMOMMeMOMOH2C

H

O

H

SEMOH

CH2OMOMMeMOMOH2C

H

CO2Me

H

SEMOH

CH2OMOMMeMOMOH2C

HOMOM

Yamada: Intermolecular [4+2] Ring A Construction

Yamada, TL, 1989, 971.

allene, hν

1) K, NH32) Swern

3) MOMCl, iPr2NEt4) Ph3PCH2

O3, MeOH

2) NaOH3) Ac2O

1) AlCl32) mCPBA

10 steps

1) Na, NH32) AcOH, H2O

3) K2CO3, MeOH

49%

80%

69%

86%

53%

57% Nakanishi, Chem. Com, 1969, 528.

33-GA3-yamadatotal.cdx 2/5/04 2:48 PM

H

SEMO

H

CH2OMOMMeMOMOH2C

HOMOM

HCO2HMeHO2C

HOMOM

HCO2H

HOMOM

OC

O

Me

HCO2H

HOH

OC

O

Me

HO

HCO2MOMMeHO2C

HOMOM

Yamada: Synthesis of Gibberellic Acid

Yamada, TL, 1989, 971.

8 steps

1) I2, NaHCO32) DBU

6 steps (Corey et al)

GA3

MOM-protectedCorey-Carney Acid

1) MOMCl, iPr2NEt2) LDA

30% from tri-MOM-ether

91%

99%

34-GA3-yamadatotal2.cdx 2/5/04 2:50 PM

CO2HH

Me

OC

OH

OH

OMe

CO2Me

O

MgI

Br

Br

O

MeO2C

O Br

OH

MeO2C

OBu2CuLi

OH

O

OH

EtO2C

OH

HOH

CO2Et

O

OH

HOH

CO2Et

O

HOMEM

EtO2C

O

MeO

H

H

OC

OH

OMEM

MeO

Synthesis of GA5 via Furan [4+2]: DeClercq

DeClercq, Tet. Lett. 1986, 1731.

GA5

β-cyclodextrinH2O, 65˚C

PhH80˚CLiN(chx)iPr;

MeI

1) PPTS

2) NaClO2

kineticproduct

thermodynamicproduct

then

5 steps

96%>95:5

81%

52%

50%

46%65%

3 steps50%

36-GA3-DeClerqtotal.cdx 2/5/04 4:29 PM

Me

MeMeO2C

H

HCO2Me

H

O

Me H

MeO2C Me

Me

MeMeO2CH

Me

Me

AlCl3

HCO2H

Me

MeO2C Me

OHCO2Me

Me

MeO2C MeHCO2Me

Me

MeO2C Me

OH

KOH

HCO2Me

Me

MeO2C Me

OH

H

H

1) CH2N2

2) H2SO4

1) H2, Pd/C2) AcCl, AlCl3

3) mCPBA; NaOH

Me

MeMeO2C O

O

H

HCO2Me

Me

MeO2C Me

H

H

O

N2

GA12 Synthesis from Dehydroabiatate: Tahara

Tahara, JCS Perkin I, 1972, 320.Tahara, TL, 1976, 1515.

(–)-methyl dehydroabietate

GA12

1) H2, RuO22) H2CrO4

3) Ph3PCH24) BH3/H2O2

CuSO4,hν

4 steps

CrO3, HOAc

1) H2CrO42) SOCl2;

CH2N2

39%

epimerization at C6

Wenkert, JACS, 1958, 211.

37-GA12-Tahara-total.cdx 2/5/04 3:00 PM

H

Me

MeMeO2CH

O

H

Me

MeMeO2CH O

H

H

Me

MeMeO2CH O

H

O

H

Me

MeMeO2CH O

H

H

Br

OTHP

H

Me

MeMeO2CH O

H

O

H

Me

H O

H

OO

Me

HCO2H

HMe H

HO2C Me

H

Me

H OTs

H

OO

Me

GA12 Formal Synthesis: Mori

Mori, Tet, 1976, 1497.

(±)- from synthesis ofsteviol Tet ,1966, 879.

4 steps1) Ph3PCHOAr2) H3O+

3) Ph3PCH2

1) Br2, HOAc2) LiCl, DMF

3) Ph3PCH2

GA12

1) NaBH42) TsCl, pyr

1) KOH, tBuOH2) H2CrO4

Cross, Hanson, JCS, 1963, 2944.

1) NaH2) H3O+

3) H2CrO4

1) NBS, H2O2) DHP, H+

10-30%

10%

38-GA12-Mori-total.cdx 2/5/04 3:03 PM

H

Me

H

H

OAc

O

H

Me

H O

H

MeO2C Me

HCO2H

HMe H

HO2C Me

OO

Me

Me

H

H

OO

Me

MeH

OO

Me

MeH

H

H

MeO

H

H

OAc

OTES

Me OTES

OO

Me

Me

H

SnR3

AcOH

Me

OTES

GA12 Formal Synthesis: Ihara

Ihara, JACS, 2001, 1856.

GA12Cross, Hanson, JCS, 1963, 2944.

1) 200˚C

2) TBAF

1) Bu3SnH, AIBN 2) SiO2

93% (1:18 mix)A : B

1) s-BuLi

2) Ac2O

5 steps

10 steps

3:1 at C7 72% (4 steps)

88%

37%

39-GA12-Ihara-formal.cdx 2/5/04 3:04 PM

H

OH

O

H

O

O

O

HO

OO

O

O

O

O

O

O

O

O

O

H

O

O

O OEt OEtOH

O

MeO2C O

O

MeO2C

HO

OO

O

OO

O

O

O

Br NC

H

CN

O

OO

O

Stork D-ring Approach: Reductive Cyclization

Stork, JACS, 1979, 7107.Stork, JACS, 1965, 1148.

1) K, NH3, (NH4)2SO4

2) HOAc, H2O

1) H3O+

2) NaBH4

3) (HOCH2)2 H+

4) PDC

Three Routes to Bicycle:

40-GA3-Stork-CDring.cdx 2/5/04 3:05 PM

CO2HH

OC

O

HOOH

H

O

TBSOH

O

HTBSO

O O

H

EtAlCl2

HTBSO

O O

OH

H

OH

H

TBSO

O2N

O O

H

O

H

TBSO

O

OC

CO2Me

MeO

CO2Me

I

O

TBSO

O

N2

CO2MeH

OC

O

O

H

TBSO

NiBr2

O2N

OH

N-tBu

Total Synthesis of Antheridic Acid: Corey

Corey, Myers, JACS, 1985, 5574.

antheridic acidoriginal structure proposed as 3β−OH

1) Cu(II)L22) Br2; DBU

1) MeCO3H2) LiNEt2

7 steps

2

6 steps

1) TMSCl, LDA

2) Eschemoser's salt, MeI, iPr2NEt

4 steps

= L

51% overall 53% 80%

57%76%

52%

60%

90%

41-anteridiogens3-Corey.cdx 2/5/04 3:31 PM

CO2MeHAcO

MeO2C

O

CO2HH

OC

O

HOOH

H

CO2HH

OH

H

AcO

MeO2CCO2MeHAcO

HO2C

Proposed Biomimmetic Synthesis of Antheridic Acid Investigated

Epoxide initiated1,2 bond migration

Mander, JACS, 1987, 6839.

C9,10-epoxygibberellin

antheridic acidoriginal structure proposed as3β−OH

Desired Bond Migration could not beEffected

A or B

A) Im2CO, H2O2 intramolecular deliveryB) mCPBA (krel < 10-2) intermolecular

42-anteridiogens2.cdx 2/5/04 3:33 PM

CO2HH

OC

O

HO

HH

CO2HH

OC

O

HOOH

H

O

CO2MeH

CO

MOMO

HOI

CO2MeH

CO

MOMO

H

O

O

CO2MeH

OC

O

MOMO

O

H

CO2MeH

OC

O

MOMO

O

H

KH 1) DBU2) H2, Rh3) Ph3PCH2

Conversion of GA7 into Antheridic Acid

Mander, JACS, 1987, 6839.

antheridic acidoriginal structure proposed as3β−OH

GA7

4 steps

1) LiN(chx)iPr; Et3NHCl 2) SeO2, tBuOOH3) Me2BBr4) LiOH

43-anteridiogens.cdx 2/5/04 3:35 PM

CO2MeH

OC

O

HO2C

O

H

COCHN2

OMe

O

H

OMe

O

O

O

Me

O

H

OMe

OO

O H

H

OH

OC

O

BnO2C

N2

HO

CO2HH

OC

O

H

CO2MeH

OC

O

O

H

AcO

CO2HH

OC

O

H

OH

Synthesis of Antheridiogens: Mander

Mander, JACS, 1997, 3828.

antheridic acid

Cu(acac)2

1) hν, MeOH2) PDC

3) H2, Pd

18h, rtadded in situ

GA103GA104

Formalsynthesis

75%5 steps

1) PhI(OAc)2, I22) HSnBu33) Zn, CH2Br2 TiCl4

1) PhI(OAc)2, I22) Hg(OAc)2 HOAc75%

31%

70%

71%

44-antheridiogens4-Mander.cdx 2/5/04 3:36 PM

HO

O

H

H

OH

O

O

O

OH

Me

O

OO

OH

H

OH

O

H

SMe

OH

OOMeO2C

H

O

O SMe

O

MeO2C CO2Me

HOH

NaOMe

H

O

MeO2C

Br

CO2Me

H

CO2Me

OH

MeO2C

Aldol C/D Ring Strategies Not Discussed

Ireland, JOC, 1966, 2530. (toward kaurenes)

Takano, Ogasawara, Chem. Com., 1981, 635.

Hg(II)OH2SO4

HCl,acetone

tBuMgCl 14 steps

Takano, Ogasawara, Chem. Com., 1981, 637.

House, JOC, 1973, 1398.

Ziegler, JOC, 1971, 3707. (model system)

Zn,HOAc

45-cd-ring stragedy.cdx 2/5/04 3:43 PM

CO2Me

H

H

O

O

O

CO2H

O

1) NaOMe

2) HClMeO2C

H

CO2Me

CO2Me

CO2H

H

O

O

H

O

Acylation C/D Ring Strategies Not Discussed

Baker, Chem. Com., 1971, 180.

PPA

Jammaer, Tet., 1975, 2293.

BF3

AcOHLowenthal, JCS Perkin I, 1976, 944.

46-cd-ring stragedy2.cdx 2/5/04 3:44 PM

H

OO

OTs

CHO

O

SPh

OMs

HO

H

O

SPh

O

HSPh

DBU

CHO

H

OO

HN

O

H

CO2Me

O

MeO

SMe

MeO

O

MeS O

TFAA

O

MeS O

O

O

TFAA

SnCl4O

SMeO

Alkylation C/D Ring Strategies Not Discussed

Trost, JOC, 1978, 1031.

Barco, Tet., 1989, 3935.

Mander, Synthesis, 1981, 620.

1) PhSCH2Li2) TsOH

6 steps

Nagata, JACS, 1972, 4654.

GA15

47-cd-ring stragedy3.cdx 2/5/04 3:46 PM

OHCN

Cl

HMe

OHH

H

PCl5

HOH

HOMs

Me

MeO

CO2H

ArOH

Me

O

HO2C

Ar

H3O+

O

Cl CN

O

ClCN

H BF3•OEt2

O

HOH

O

H O HOH

OH

H OH

Rearrangement C/D Ring Strategies Not Discussed

Ziegler, Tet., 1977, 373.

Yamada, Synthesis, 1977, 581.

Monti, JOC, 1978, 4062.

Cross, MacMillan, JCS, 1958, 2520.

H2O, acetone, 2,6-Lutidine

Zn, HOAcMori, Tet., 1972, 3217.

poor conversion

48-cd-ring stragedy4.cdx 2/5/04 3:57 PM

H HOH

O

HOH

A Summary of General C/D Ring Strategies

I) Reductive Ring Closure

II) Alkylation / Acylation

III) Aldol

IV) Carbenoid

V) Rearrangement / Fragmentation

"The problem of the synthesis of gibberellic acid has provided the impetus for the development of many new synthetic methods . . . " Corey

49-cd-ring summary.cdx 2/5/04 3:58 PM