26
Institute of Technical Physics Folie 1 High Power Thin Disk Lasers Dr. Adolf Giesen German Aerospace Center Institute of Technical Physics

High Power Thin Disk Lasers Dr. Adolf Giesen · 2013. 12. 12. · (A. Killi et. al. „The broad applicability of the Disk Laser principle – from CW to ps“, in Solid State Lasers

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Institute of Technical Physics

    Folie 1

    High Power Thin Disk Lasers Dr. Adolf Giesen German Aerospace Center Institute of Technical Physics

  • Institute of Technical Physics

    Folie 2

    Research Topics - Institute of Technical Physics

    Laser sources and nonlinear optics

    Speiser

    Atm. propagation and target effects

    Handke

    Studies and Concepts

    Eckel

    Beam control and optical diagnostics

    Riede

    „Stand off“ Detection

    Handke

    Pulse laser NLO

    Trials, spectroscopy, data processing

    System studies, risk reduction

    (Receiver) Optics

    Long range laser effector

    Speiser High power laser

    Propagation and target effects

    Scenarios, system studies

    Beam control

    Laser propulsion Eckel

    (Pulse) Laser Mission studies, system concepts

    Transmitter optics beam control

    Opt. reconnaissance (space situational awareness)

    Riede

    Pulse laser Atmospheric data,

    trials Threat analysis, system studies

    Telescope, beam control

    Target effects

  • Institute of Technical Physics

    Folie 3

    Outline

    Thin Disk laser concept

    State of the art (commercial & laboratory)

    Pulsed Thin Disk lasers – influence of ASE

    Power scalability & high brightness

    High power laser design

    Eye-safe Thin Disk laser

    Scaling limits

    Summary

  • Institute of Technical Physics

    Folie 4

    Core idea: thin active material, one face cooled, used as active mirror thickness 0.1 – 1 mm, diameter 5 – 45 mm Heat flow parallel to laser beam Minimized thermal lens High output power and high efficiency simultaneously Power / energy scaling by scaling of pump spot area (power / energy densities and temperatures constant) variety of active materials

    Thin Disk laser concept

    Lase

    r

    Hea

    tre

    mov

    al

    Thin Disk

  • Institute of Technical Physics

    Folie 5

    Pump source brightness requirements: constant for power scaling (~80 kW cm-2 sr-1 for 5 kW/cm2 with 24 pump passes )* => low costs

    Decoupling of pump absorption and laser reabsorption significantly increases performance of quasi-3-level materials like Yb:YAG

    Small pump absorption in single pass Simple setup to re-use not absorbed pump power With 1 parabolic mirror and 5 plane mirrors 16 – 32 (44) pump beam passes realized

    Thin Disk laser concept

    * S. Erhard, Pumpoptiken und Resonatoren f. den Scheibenlaser, PhD Thesis, 2002

  • Institute of Technical Physics

    Folie 6

    Thin Disk laser – technical realization

    new design for high-power Disk module > 30 kW pump power, suitable for vacuum Development of DLR-TP and industrial partner (D+G)

    medium power disk (> 500 W) low power Thin Disk pump module

    medium power Thin Disk pump module in operation

  • Institute of Technical Physics

    Folie 7

    State of the art - Commercial systems

    High power, multimode 1 kW, 1 disk, 2 mm mrad (M² ~ 6) 4 kW – 16 kW, 1 – 4 disks, < 8 mm mrad (M² ~ 24)

    Pulsed

    Mode-locked oscillator, 80 W average power, 800 fs Regenerative amplifier, 40 µJ, 100 kHz, 400 fs Cavity dumped, 750 W average power, 80 mJ, 30 ns

    Small systems 3 W @ 532 nm, 105.7 mm x 62 mm x 24 mm (without DC power supply)

  • TRUMPF Kurzzeichen - 25.04.2007 Titel der Präsentation © TRUMPF - vertraulich 8

    Enhanced efficiency with 44-pass pump cavity

  • Jenoptik Laser GmbH customer day July 1st, 2011

    JenLas® D2.fsregenerative thin disk laser

    E > 40 µJ @ 100 kHzt < 400 fsf 200 kHz≤M² 1.25≤

    Yb:KYW / YAG

  • VaryDisk

    200fs, 4nJ, 100mW, 40MHz

    disk module

    HR

    Polarizer

    Pockels cell

    HR separation input/output

    seed laser

    compressor

    amplifier

    200µJ 50W 350fs 1MHz

    modulator

    Different pulse durations out of one resonator No further alignment for applications

    a product of Dausinger + Giesen GmbH

  • Institute of Technical Physics

    Folie 11

    State of the art – Lab results

    500 W, M² < 1.1

    (A. Killi et. al. „The broad applicability of the Disk Laser principle – from CW to ps“, in Solid State Lasers XVIII: Technology and Devices, Proc. SPIE Vol 7193 (SPIE 2009))

    27 kW, about 10 disks in an unstable resonator – “excellent beam quality”

    (P. Avizonis et. al. “PHYSICS OF HIGH PERFORMANCE Yb:YAG THIN DISK LASERS”, CLEO 2009)

    380 mJ, 8 ns, 88 W average power, M² < 1.3 (A. Killi et. al. „The broad applicability of the Disk Laser principle – from CW to ps“, in Solid State Lasers XVIII: Technology and Devices, Proc. SPIE Vol 7193 (SPIE 2009))

    CPA-System with 188 mJ, 100 Hz, M² < 1.1, compressible < 2 ps, amplification to ~ 300 mJ demonstrated

    (J. Tümmler et. al. “High Repetition Rate Diode Pumped CPA Thin Disk Laser of the Joule Class”, CLEO Europe 2009)

  • Thin Disk Amplifier Chain

    Multipass Amplifier – Results

    0 50 100 150 200 2500

    100

    200

    300

    400

    500

    600

    Out

    put E

    nerg

    y [m

    J]

    Input Energy [mJ] (Output PRA)

    multipass output after 4 double passes – pump power 6 kW

    Emax = 545 mJ Emean = 517 mJ +/- 1.8%

    Max-Born-Institut

    Disk parameter: diameter: 17 mm thickness: 500 µm doping level: 7%

  • Institute of Technical Physics

    Folie 13

    Time resolved model: spatial pump absorption spatial inversion ASE in the disk average temperature calculations with 1 ms pump pulse, 10% heat generation here: 10% duty cycle

    => Calculate gain /

    max. stored energy / efficiency

    4.5% Yb:YAG, thickness 600 µm, pump power 16 kW, pump spot radius 9.8 mm

    0 500 1000 15000

    10

    20

    30

    40

    50

    60

    doub

    le p

    ass

    gain

    [ %

    ]

    t [ µs ]

    gain without ASE with ASE

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45efficiency

    η ex [

    % ]

    Amplified spontaneous emission (ASE) results of time resolver numerical model

  • Institute of Technical Physics

    Folie 14

    Geomtrical Multipass amplifier Numerical calculations & experimental results

    0 20 40 60 80 100 120 140 160 180 2000

    100

    200

    300

    400

    500

    600

    Experiment Calculation

    7% Yb:YAG, 500 µm, 5.5 mm, 3.5 kW, 8 reflektions / V-passes

    pulse

    ene

    rgy

    [ mJ

    ]

    seed energy [ mJ ]

    Low duty cycle, low pump power

    Comparison with actual results from Max Born Institute

    high duty cycle, high pump power

    Possible concept for multipass amplifier

  • Institute of Technical Physics

    Folie 15

    Actual high energy / high peak power projects

    Max Born Institute Yb:YAG Thin Disk CPA system (regenerative amplifier + several multipass stages), goal: 1 J, 5 ps, 100 Hz (1,6 J before compressor, ns), 550 mJ reached

    MPQ Garching Yb:YAG Thin Disk CPA system (regenerative amplifier), 28 mJ, 3 kHz, 1.6 ps running

    extension with multipass amplifier stages planned (up to 10 J discussed)

    DLR-TP Yb:YAG Thin Disk system (regenerative amplifier + 1 multipass stage), goal: 1 J, 100 ps – 10 ns, 1 kHz for laser ranging of space debris

  • Institute of Technical Physics

    Folie 16

    High-Brightness Oscillator using Neutral Gain Modules V-shaped resonator with 2 Relay NGMs and AO

    0 1 2 3 4 50

    250

    500

    750

    1000

    1250

    1500

    outp

    ut p

    ower

    Pou

    t (W

    )

    pump power Pp (kW)

    0,1

    0,2

    0,3

    optic

    al e

    fficie

    ncy η

    M2x,y = 2.43, 2.91

    Pout = 1534 W

  • Institute of Technical Physics

    Folie 17

    Concept of Neutral Gain Modules Relay NGM with optional OPD compensation

    1

    10

    ...AO

    ......

    Σ

    Σ

    kj SSS

    =101

    totDtot D

    M

    +

    == −101

    tot

    1Dcorr tot D

    MM

  • Institute of Technical Physics

    Folie 18

    Power scalability & Brightness

    5.3 kW out of one disk / 20 kW with four disks

    Courtesy TRUMPF Laser Schramberg

    extracted volume power density > 600 kW/cm³

    0 5 10 15 20 25 30 35 400

    5

    10

    15

    20

    lase

    r pow

    er [

    kW ]

    pump power [ kW ]

    1 disk 2 disks 4 disks

    0 1 2 3 4 5 6 70,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    outp

    ut p

    ower

    Pou

    t (kW

    )

    pump power Pp (kW)

    0

    10

    20

    30

    40

    50

    60

    70Mx,y

    2 = 6.6, 6.3

    opt

    ical e

    fficie

    ncy

    (%)

    Mx,y2 = 5.2, 5.1

    Two confocal neutral gain modules* (4 disks) in V-shaped resonator

    3 kW laser power, M² ≈ 6.5

    * J. Mende et. al., Concept of Neutral Gain Modules for Power Scaling of Thin-Disc Lasers, Applied Physics B, 97 (2), 2009

  • Institute of Technical Physics

    Folie 19

    3-stage MOPA for 10 kW

    Stable resonator

    6 kW pump power

    2 kW output power

    6 kW pump power

    11.3 mm pump diam.

    20 passes

    5 kW output power

    6 kW pump power

    11.3 mm pump diam.

    8 passes

    7.5 kW output power

    6 kW pump power

    11.3 mm pump diam.

    6 passes

    10 kW output power

    Pump spot diameter, pump power and power densities similar to actual commercially used systems!

    multipass amplifier

    master oscillator 14% Isat

    multipass amplifier

    multipass amplifier

    52% Isat 33% Isat

    new design for high-power Disk module 30 kW pump power, suitable for vacuum Development of DLR-TP and industrial partner (D+G)

  • Institute of Technical Physics

    Folie 20

    MOPA for 200 kW

    Low power oscillator (~ 2-3 kW laser power)

    Pre-Amplifier with pump & beam size adaption 1 low-power amplifier (~ 6 kW pump power) with high number of multipasses 3 mid power amplifiers with high number of multipasses

    12 stage Power Amplifier with constant beam size & low number of multipasses

  • Institute of Technical Physics

    Folie 21

    Power amplifier

    0

    50

    100

    150

    200

    2 passes4 passes

    Lase

    r pow

    er [

    kW ]

    38 kW pre-amplifier 41 kW pre-amplifier 43 kW pre-amplifier 45 kW pre-amplifier

    29 kW pump power / Modultotal pump power 348 kW 4.5 cm² pump spot

    6 passes

  • Institute of Technical Physics

    Folie 22

    Preamp + Power amplifier

    0 1 2 3 4 5 60

    50

    100

    150

    200

    250

    Oscillator power [ kW ]

    Lase

    r pow

    er [

    kW ]

    power

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    efficiency

    Effic

    ienc

    y [ %

    ]

    402 kW total pump power

  • Institute of Technical Physics

    Folie 23

    New laser materials for the 2 – 3 µm wavelength range

    Ho:YAG Thin Disk laser Pump source 50 W Tm-fiberlaser Laser output power only limited by available pump power

    0 10 20 30 40 500

    2

    4

    6

    8

    10

    12

    14

    16 disk laser power efficiency

    1.908 µm fiber laser pump power (W)

    2.09

    µm

    disk

    lase

    r pow

    er (W

    )

    0

    10

    20

    30

    40

    efficiency (%)

  • Institute of Technical Physics

    Folie 24

    New laser materials for the 2 – 3 µm wavelength range

    Ho:YAG Thin Disk laser First low-power experiments More than 20 nm tuning range Suitable for Standoff / LIDAR applications High power operation possible

    2,07 2,08 2,09 2,10 2,110,00,20,40,60,81,01,21,4 Emission cross section

    Output power

    Wavelength [µm]Emis

    sion

    cro

    ss s

    ectio

    n [1

    0-20 c

    m2 ]

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    Out

    put p

    ower

    [W]

  • Institute of Technical Physics

    Folie 25

    Scaling limits

    Use “analytical ray tracing” with some simplifications / idealizations and some rough estimations

    Scaling strongly influenced by “thermal load parameter” / “thermal shock parameter” Cth and internal loss Lint

    570 kW with Lint=1%, 22 MW with Lint=0.25%, efficiency about 10%

    1 MW with Lint=0.25%, efficiency about 50% 400 J with Lint=1% Would benefit from materials with higher thermal conductivity and less heat generation (like Yb:Lu2O3 ) or reduced duty cycle

    D. Kouznetsov et. al. Surface loss limit of the power scaling of a thin-disk laser, J. Opt. Soc. Am. B 23, 1074 (2006) J. Speiser, Scaling of Thin Disk Lasers - Influence of Amplified Spontaneous Emission, JOSA B 26 (2009)

    − g

    hr

    hr pp

    ASE2

    exp~ ττ

    3int

    2max, ~

    −⋅LCP thout

  • Institute of Technical Physics

    Folie 26

    Outlook High power Thin Disk lasers several 100 kW based on actual technology (coating, disk diameter) feasible with good beam quality and high efficiency

    High energy Thin Disk lasers ~ 5 - 10 J based on actual technology (coating, disk diameter) under construction, scaling towards 100 J feasible

    Eye-safe Thin Disk lasers High power operation possible

    Pulse duration nearly arbitrary with MOPA (limited by round-trip time of first amplifier; sub-ps need suitable laser materials)

    Further energy scaling (Coherent) coupling of several amplifier chains ~ kJ possible

    High Power Thin Disk Lasers���Dr. Adolf Giesen���German Aerospace Center�Institute of Technical PhysicsResearch Topics - Institute of Technical PhysicsOutlineThin Disk laser concept�Thin Disk laser concept�Thin Disk laser – technical realizationState of the art - Commercial systems Enhanced efficiency with 44-pass pump cavityFoliennummer 9Foliennummer 10State of the art – Lab resultsFoliennummer 12Foliennummer 13Geomtrical Multipass amplifier�Numerical calculations & experimental results Actual high energy / high peak power projectsHigh-Brightness Oscillator using Neutral Gain Modules �V-shaped resonator with 2 Relay NGMs and AOConcept of Neutral Gain Modules �Relay NGM with optional OPD compensationPower scalability & Brightness3-stage MOPA for 10 kWMOPA for 200 kWPower amplifierPreamp + Power amplifierNew laser materials for the �2 – 3 µm wavelength range �New laser materials for the �2 – 3 µm wavelength rangeScaling limitsOutlook